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Chronic hepatitis B virus (HBV) infection continues to be a major health

problem worldwide and remains hard to be cured. Therapy with interferon

(IFN) a is an important method for the clinical treatment of chronic hepatitis B.

IFNa exhibits direct antiviral effects as well as immunomodulatory activities,

which can induce sustained antiviral responses in part of the treated chronic

hepatitis B patients. Numerous IFNa subtypes with high sequence identity

between 76-96% exist which are characterized by diverse, non-redundant

biological activities. Our previous studies have demonstrated that the clinically

approved IFNa2 is not the most effective subtype for the anti-HBV treatment

among all IFNa subtypes. So far very little is known about the IFNa subtype

expression pattern during early HBV infection and the IFNa subtype-specific

susceptibility during persistent HBV infection as well as its related cellular

mechanism. Here we determined the Ifna subtype mRNA expression during

acute and chronic HBV infection by using the well-established hydrodynamic

injection (HDI) mouse model and we revealed a transient but strong expression

of a panel of Ifna subtypes in the spleen of HBV persistent replication mice

compared to HDI controls. Immunotherapy with distinct IFNa subtypes

controlled chronic HBV infection. IFNa subtype-mediated antiviral response

and immune activation were comprehensively analyzed in an AAV-HBV

persistent infection murine model and murine IFNa2 was identified as the

most effective subtype in suppression of HBV replication. Further analysis of the

immune response revealed a strong immunomodulatory activity of murine

IFNa2 on splenic and intrahepatic NK and T cell activation during persistent

HBV infection. Taken together, our data provide IFNa subtype-specific

differences in the antiviral and immunomodulatory effector responses and a
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1017753/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1017753/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1017753/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1017753&domain=pdf&date_stamp=2022-10-14
mailto:Kathrin.sutter@uni-due.de
mailto:jialiu77@hust.edu.cn
https://doi.org/10.3389/fimmu.2022.1017753
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1017753
https://www.frontiersin.org/journals/immunology


Xie et al. 10.3389/fimmu.2022.1017753

Frontiers in Immunology
strong expression of all IFNa subtypes in the spleen during persistent HBV

infection in mice. This knowledge will support the development of novel

immunotherapeutic strategies for chronic hepatitis B infection.
KEYWORDS

IFNa subtypes, hepatitis B virus, persistent infection, hydrodynamic injection,
IFN induction
Introduction

Hepatitis B virus (HBV) is a member of the Hepadnaviridae

family. It is a hepatotropic, non-cytopathic, enveloped DNA virus

that may cause acute and chronic liver inflammatory diseases.

Although highly effective prophylactic vaccines are available,

chronic HBV infections remain a major public health issue

affecting approximately 296 million individuals with 1.5 million

new infections every year (1). Persisting HBV predisposes to end-

stage liver diseases, such as liver cirrhosis and hepatocellular

carcinoma (HCC) and HBV is responsible for more than

800,000 deaths per year (1). Two types of antiviral therapies are

currently approved for chronic HBV infection: nucleot(s)ide

analogues (NUC), such as Entecavir and Tenofovir, and

pegylated interferon alpha 2a/b (PEG-IFNa2a/b). NUCs target

the viral reverse transcriptase leading to reduced viral replication.

However, NUC treatments are not curative as they do not

efficiently eliminate the HBV covalently closed circular DNA

(cccDNA), which results in rebounding viremia after cessation

of antiviral therapy (2). In contrast, IFNa2 therapy inhibits viral

replication intermediates, blocks reinfection and improves

clearance of infected hepatocytes through stimulation of

immune cell responses (3, 4) and it is also able to efficiently

reduce the cccDNA pool in HBV-infected hepatocytes (5, 6). It

has been shown in patients who achieved long-term effective

virological remission by NUCs that “adding-on” or “switching to”

PEG-IFNa2a/b significantly increased the HBsAg loss rates to

more than 20% (7, 8).

The early recognition of HBV by different pattern recognition

receptors in hepatocytes is not completely understood so far. It

was already shown that HBV is sensed by Toll-like receptor (TLR)

2, -3 and retinoic acid inducible gene I (RIG-I)/melanoma

differentiation-associated protein 5 (MDA-5) signaling pathways

(9); however, the expression of type I IFNs or IFN-stimulated

genes (ISGs) is undetectable or even low (9–11). Thus, HBV was

qualified as a “stealth virus” in comparison to other viruses like

Hepatitis C virus (HCV) or human immunodeficiency virus

(HIV). In contrast, early during HBV infection natural killer

(NK) cells and natural killer T cells are activated (12–14),

leading to the suggestion that HBV is able to evade the initial
02
innate immune response. HBV can also suppress type I IFN-

mediated antiviral immunity by reducing the production of type I

IFN (9), inhibiting IFN-mediated downstream signaling,

decreasing the surface expression of IFN receptors, attenuating

the function and expression of ISGs, or impairing host innate and

adaptive immune responses [reviewed in (15)]. So far, all reports

on IFN induction during HBV infection in vivo or in vitro (9–11)

showed low or no IFNa expression in HBV infection; however,

detailed expression pattern of individual IFNa subtypes during

different stages of HBV infection are still lacking.

Type I IFNs are among the first line of antiviral defense. In

humans, the type I IFN family comprises IFNb, IFNϵ, IFNk,
IFNw, and twelve IFNa subtypes (15). The human IFNa subtypes

share similarities in structure, like the lack of introns or the length

of the protein (161-167 amino acids), and their protein sequences

are highly conserved (76 – 96% amino acid sequence identity) (16,

17). Despite binding to the same receptor consisting of the two

subunits IFNAR1 and IFNAR2, the antiviral and antiproliferative

potencies of the IFNa subtypes differ considerably (18–21). It is

largely elusive, why different IFNa subtypes exhibit distinct

effector functions. Different receptor affinities and/or interaction

interfaces within the receptor have been discussed which may

account for the observed variability in the biological activity (22,

23). Furthermore, the dosage, cell type, timing and the present

cytokine milieu might further affect the type I IFN effector

response (24). Previous studies in vitro and in vivo already

revealed that other IFNa subtypes than human IFNa2 exhibited

the highest anti-HBV potency (18). Human IFNa14 was

identified as the most effective subtype for the suppression of

HBV cccDNA transcription and HBeAg/HBsAg production.

Importantly, IFNa14 treatment alone elicited an IFNa and

IFNg signaling crosstalk similarly to the combined usage of

IFNa2 and IFNg. This resulted in the induction of multiple

potent antiviral effectors, which synergistically restricted HBV

replication. Guanylate-binding protein 5 (GBP5), one of the most

differentially expressed genes between IFNa14- and IFNa2-
treated liver cells, was identified as a new HBV restriction factor

(18). However, the IFN-mediated modulation of immune cell

effector functions during chronic HBV infection still

remains elusive.
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In this study we aimed to investigate the mRNA expression of

different Ifna subtypes in liver and spleen at different time points

post HBV challenge in mice using the well-established

hydrodynamic injection mouse model (HDI). During persistent

HBV infection murine IFNa2 and IFNa11 strongly reduced HBV

viremia,whereasmurine IFNa4 and IFNa5didnot control chronic
HBV infection. In addition, exogenous application of murine

IFNa2 improved the host immune responses the most.

Interestingly, two intervals of IFN therapy significantly increased

the modulation of immune cell effector responses compared to

short-term IFN treatment.Of note, similar effects of IFNa subtypes

on CD8+ T cells were also observed in human PBMCs implying

global IFN-mediated immunomodulatory effects. Here we clearly

demonstrated IFNa subtype-specific differences in the antiviral

and immunomodulatory effector responses during persistent

HBV infection.
Material and methods

Mice

Male wildtype C57BL/6mice were purchased fromVital River

Laboratories Co., Ltd. (Beijing, China). All animals were bred and

kept under specific pathogen-free (SPF) conditions in the Animal

Care Center of Tongji Medical College (Wuhan, China).
Virus and plasmid

BPS (genotype B persistent strain) plasmid was kindly

provided by Prof. Xie from Fudan University. PSM2, a pUC19

vector-based plasmid harboring a head-to-tail-oriented HBV

genome, was used to mimic acute-resolving HBV replication in

mice after HDI. Recombinant adeno-associated virus 8 vector

carrying 1.3 copies of HBV genome (rAAV8-HBV1.3) was

purchased from Beijing FivePlus Gene Technology Co., Ltd.

(Beijing, China).
HBV replication mouse model

For hydrodynamic injection, 10 µg plasmids (pSM2 or BPS)

in a volume of phosphate buffer saline (PBS) equivalent to 0.1

mL/g of the mouse body weight was injected through the tail

vein within 5-8 seconds.
Expression of murine IFNa subtypes and
determination of IFN concentrations

Expression of murine (m)IFNa2, IFNa4, and IFNa5 were

performed as previously described (25). To produce murine

IFNa11, the cell line HEK293mIFNalpha11 was cultivated as
Frontiers in Immunology 03
described (26). All concentrated supernatants were tested for

type I IFN concentration by a virus-free, cell-based bioassay

using Mx/Rage 7 cells in comparison to commercially available

recombinant mouse IFN (PBL assay science) (25, 26).
HBV infection and mIFNa subtype
treatment in vivo

A recombinant adeno-associated virus 8 vector carrying 1.3

copies of HBV genome (rAAV8-1.3HBV, 5.0 × 1010 viruses, 50 µL)

was intravenously injected into the male C57BL/6 mice to induce

HBV infection. After 4 weeks, the mice were intraperitoneally

injected with 8000 U mIFNa subtypes (mIFNa2, IFNa4, IFNa5,
or IFNa11) or left untreated (control) for 10 consecutive days.

Blood samples were collected to dynamically monitor the

characteristics of serum viremia.
Serological assays

The levels of hepatitis B surface antigens (HBsAg) and

HBeAg in the serum were determined by the corresponding

ELISA kits (Kehua, Shanghai, China). A quantitative assay for

HBsAg/HBsAb and HBeAg was conducted by commercial

methods (Maglumi X8, SNIBE Co. Ltd., Shenzhen, China).

HBV DNA copies were measured by a diagnostic kit for HBV

DNA (Sansure, Changsha, China) using quantitative real-time

PCR (qRT-PCR).
Cell surface and intracellular staining of
murine splenocytes and hepatocytes by
flow cytometry

Cell surface and intracellular staining for flow cytometry

analysis was performed as previously described (27, 28). The

antibodies used in this study are listed in Supplementary Table 1.

Cell debris and dead cells were excluded from the analysis based

on scatter signals and Fixable Viability Dye eFluor 506

(eBioscience, San Jose, CA, USA). Fluorescence minus one

(FMO) controls were used for all conditions. Data were

acquired on a FACS Canto II flow cytometer and analyzed

using FlowJo software (both BD Bioscience, Franklin Lakes, NJ,

USA). Gating scheme and representative dot plots are shown in

Supplementary Figure 2.
RNA isolation

Total RNA was isolated from splenocytes and hepatocytes

RNAiso Plus (Takara, Shiga, Japan). Isolated RNA was dissolved

in RNase-free water and stored at -80°C.
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Real-time-PCR

Real-time-PCR (RT-PCR) analysis for the quantification of

murine Ifna subtypes mRNA was performed using One Step

SYBR® PrimeScript™ RT-PCR Kit II (Takara) on the iCycler

real-time amplification system (Bio-Rad, Hercules, CA, USA).

The quantitative mRNA levels were determined by using CFX

Manager™ Software v3 (Bio-Rad, Hercules, CA, USA) and were

normalized to b-actin mRNA expression levels. Sequences of

oligonucleotides are shown in Supplementary Table 2.
Isolation of PBMCs

PBMCs were isolated from each blood sample by density

gradient centrifugation. For this purpose, 9 ml of EDTA-whole

blood mixed with RPMI 1640 supplemented with 100 U/ml

penicillin and 100 µg/ml streptomycin was layered on Pancoll

solution (Pan Biotech, Aidenbach, Germany) and centrifuged at

900 x g for 35 minutes with brakes off. Then, the PBMCs

(interphase) were transferred to a new 50 ml tube and washed

twice with RPMI 1640 medium supplemented with penicillin/

streptomycin. Cryostocks with 1x107 PBMCs/ml were prepared

in fetal calf serum (FCS) (Sigma Aldrich, St. Louis, MO, USA)

supplemented with 10% DMSO.

PBMCs were thawed one day prior to experiments. Up to

90% of viable cells were cultivated in RPMI 1640 with 10% FCS,

100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM L-

glutamine, and 10 mM HEPES. Cells were incubated at a

density of 1x106 cells/ml over night at 37°C, 5% CO2.
Stimulation with different human IFNa
subtypes

Human IFNa subtypes were produced and purified as

previously described (29). Briefly, recombinant IFNs were

expressed in E. coli after M13 phage transduction. To harvest

the proteins, the bacteria were pelleted, the protein-containing

inclusion bodies were denatured by sonication, dissolved in 6M

guanidin-hydrochlorid, and refolded in arginine. The

recombinant proteins were further purified by ion exchange

chromatography and size exclusion chromatography, specificity

and purity of the proteins were verified after each step via an SDS

gel. By phase separation of the products with Triton X-114,

remaining endotoxin was removed from the solution. Endotoxin

levels were tested using ToxinSensor (GenScript, Piscataway, NJ,

USA) and are below 0.25 EU/mL. The activity of each subtype was

determined using the human ISRE-Luc reporter cell line, a retinal

pigment epithelial cell line transfected with a plasmid containing

the Firefly Luciferase gene, stably integrated under control of the
Frontiers in Immunology 04
IFN-stimulation-response element (ISRE). Following stimulation

with type I IFNs, chemiluminescence can be detected and used to

calculate the respective activity in units against commercially

available IFNa (PBL assays sciences, Piscataway, NJ, USA) (20).
Stimulation with SEB

PBMCs from healthy individuals were stimulated with 200

ng/ml Staphylococcal enterotoxin B (SEB) (Merck, Darmstadt,

Germany) in the presence of 20 U/ml IL-2 (Miltenyi Biotec,

Bergisch Gladbach, Germany) and treated with 2000 U/ml IFNa
subtypes, or without IFN (-IFN) for 4 days. Then, PBMCs were

re-stimulated with 5 µg/ml SEB and incubated in presence of

antibodies against the co-stimulatory molecules CD28 (9F10,

BioLegend, San Diego, CA, USA) and CD49d (CD2.2,

BioLegend) at 37°C for 6 h. Brefeldin A with a final

concentration of 5 µg/ml was added after 1 h of stimulation.

Cells were immediately used for flow cytometric analysis.
Cell surface and intracellular staining of
PBMCs by flow cytometry

For surface staining, cells were washed once with FACS

buffer (PBS containing 0.1% BSA and 0.02% sodium azide) and

cells were incubated for 15 min with the antibody mixture in

FACS buffer. Cell surface staining was performed using the

antibodies listed in Supplementary Table 1. The Fixable

Viability Dye eFluor™ 780 (eBioscience) was used to exclude

dead cells from the analysis. Cells were washed with FACS buffer

and fixed with Fixation Buffer (BioLegend). Cells were washed

twice with Intracellular Staining Perm Wash Buffer (BioLegend)

and incubated for 20 min with intracellular targeting antibodies

listed in Supplementary Table 1 in Intracellular Staining Perm

Wash Buffer. Cells were washed again twice with Intracellular

Staining Perm Wash buffer, collected in FACS staining buffer,

and stored at 4°C until acquisition. Samples were acquired with

BD FACSymphony™ A5 Cell Analyzer and data were analyzed

using FACSDiva and FlowJo Version 10.8.
Statistical analysis

Experimental data were reported as means +SEM. All

statistically significant differences between the all groups were

analyzed using Friedman test and Dunn’s multiple comparison

test (human samples) or one-way ANOVA (mouse samples).

Statistical analyses were performed using GraphPad Prism

software v8 (GraphPad, San Diego, CA, USA).
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Results

All Ifna subtypes are strongly induced
during persistent and self-resolving HBV
infection in vivo

So far, it remains unknown whether HBV infection induces

the expression of certain types of Ifna subtypes, and how the

kinetic of Ifna subtype mRNA expression differs between self-

resolving (SR) and persistent-replicating (PR) HBV infection.

Thus, we utilized the well-established HBV hydrodynamic

injection (HDI) mouse model using the two different plasmids

(pSM2 and BPS) to mimic acute and chronic HBV infection in

C57BL/6 mice (Figure 1A). As previously shown (30, 31),

application of pSM2 plasmid resulted in HBsAg and HBeAg

clearance at 2-3 weeks post HDI, whereas hydrodynamic

injection of BPS led to persistent expression of HBsAg and

HBeAg (Figure 1B). Next, we analyzed the mRNA expression of

all murine Ifna subtypes in liver (Figure 1C) and spleen

(Figure 1D) in comparison to control HDI (PBS) mice at

different time points post HDI. Of note, at 4 days post HDI

significant upregulation of some murine Ifna subtypes (Ifnab,

Ifna1, Ifna2, Ifna6, Ifna7, IFNa8, and Ifna9) was already detected

in the liver of SR mice, whereas at 7-10 days post HDI up to 7-

fold increase in the expression of all Ifna subtypes was observed

in both SR and PR mice compared to control mice, which started

to decline at day 14. Interestingly, in the spleen (Figure 1D) an

upregulation of Ifna subtype mRNA was only observed at 7

days post HDI, and was only markedly increased in PR but not

SR mice. The expression of distinct IFNa subtypes (Ifnab,

Ifna4, IFNa8, Ifna12, and Ifna14) was utmost induced in the

spleen. Thus, using the HDI mouse model, we demonstrate

that a transient but strong type I IFN mRNA expression was

induced in the spleen of mice injected with persistent-

replicating HBV.
Therapeutic treatment with distinct IFNa
subtypes efficiently controlled persistent
HBV infection in the HDI mouse model

In previous experiments using the HDI model of acute HBV

infection in Balb/c mice, we already reported subtype-specific

effector functions with murine IFNa4 and IFNa5 controlling

HBV infection the most. In addition, strong immunomodulatory

effects of murine IFNa4 and IFNa5 on T and NK cells were

reported in spleen and liver (32). Thus, we aimed to elucidate the

role of murine type I IFNs during chronic HBV infection. As

depicted in Figure 2A, hydrodynamic injection of the BPS

plasmid was performed to establish chronic infection (33) and
Frontiers in Immunology 05
IFN-treatment was started at day 36 post HDI on 10 consecutive

days. In addition to IFNa4 and IFNa5, which were previously

used during acute HBV infection, we also applied murine IFNa2
and IFNa11, which had a strong immunomodulatory effect on

CD4+ T cell responses in vitro (data not shown) or antiviral

activity in acute and chronic Friend retrovirus infection in vivo,

respectively (34, 35). Human IFNa14, which was the most

effective subtype in controlling HBV infection in vitro (18),

was not included here due to unclear cross-species activity of

human type I IFNs in mice. In contrast to acute HBV infection,

therapeutic treatment with IFNa4 and IFNa5 did not inhibit

HBV replication as measured by HBsAg and HBV DNA levels.

However, therapeutic application of IFNa2 or IFNa11
significantly reduced HBV viral loads as shown by HBV DNA

and HBsAg levels (Figures 2B, C). IFNa11 treatment resulted in

up to 40-fold decrease in HBV DNA in the serum of mice

compared to untreated control mice. All mice failed to develop

detectable HBs antibody (HBsAb) levels in the serum during the

whole observation period (data not shown).
Repeated therapeutic treatment
approach with IFNa2 resulted in better
control of HBV infection and improved
antiviral immune responses in an AAV-
HBV persistent infection mouse model

Although, the HDI mouse model is a suitable model to

determine immune responses against HBV, the model has also

limitations like the lack of inflammation in mice with persistent

HBV replication, general absence of cccDNA and low

intrahepatic transfection efficiency, which is much lower

compared to HBV-infected patients (reviewed in (36)).

Therefore, we applied an hepatotropic AAV containing 1.3-

fold HBV genome, which leads to HBV replication, secretion of

infectious particles and cccDNA formation (36). To study the

antiviral effects of murine IFNa2, IFNa4, IFNa5, and IFNa11
on persistent viral infection using a replicating virus in vivo, mice

received rAAV8-1.3HBV i.v. and 4 weeks post infection IFN-

treatment was performed on 10 consecutive days. One day later,

half of the mice were sacrificed for analysis, whereas the other

half received a second round of IFN-therapy starting at day 50

post infection to determine if repeated IFN therapy could further

improve the outcome of the antiviral treatment (Figure 3A;

1xIFN tx; 2xIFN tx). Again, as seen in HDI mouse model

(Figure 2), first treatment interval with IFNa2 and IFNa11
markedly reduced HBV DNA levels (up to 135-fold) in

comparison to untreated controls (Figure 3B), but treatment

interruption resulted in complete viral rebound. A second IFN-

treatment interval further reduced HBV DNA level after IFNa2
application more than 420-fold compared to untreated controls,
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whereas second IFN-treatment with IFNa4, IFNa5, and IFNa11
marginally reduced viral titers potentially due to IFN

desensitization. However, no significant effects on HBsAg and

HBeAg levels after treatment with the different IFNs were

observed (Supplementary Figure 1). All mice failed to develop
Frontiers in Immunology 06
detectable HBsAb levels in the serum during the whole

observation period (data not shown). The serum alanine

aminotransferase (ALT) and aspartate aminotransferase (AST)

levels did not significantly change in IFN-treated mice AST

(Supplementary Figure 1).
A

B

D

C

FIGURE 1

The mRNA expression profile of Ifna subtypes of HBV replication mice models. (A) Male C57BL/6 mice were hydrodynamically injected with
pSM2 and BPS plasmids to establish HBV self-resolving (SR) and persistent replication (PR) mice models respectively. Mice hydrodynamically
injected with PBS were used as HDI controls. Peripheral blood, liver, and spleen tissue samples were collected to extract total RNA at 1, 4, 7, 10,
14, and 21 days after injection. The mRNA expression of mIFNa subtypes was detected by RT-PCR. Five mice were sacrificed in each group at
each indicated timepoint. Created with BioRender.com. (B) Levels of HBsAg (left) and HBeAg (right) in serum at indicated time points. (C) The
mRNA expression profile of IFNa subtypes in liver and (D) spleen tissues represented as fold changes compared to HDI control. (C, D) Three to
five mice were analyzed at the respective timepoint and individual mice are depicted as boxes.
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Exogenous application of murine IFNa2
significantly improved immune
responses in chronically HBV-infected
mice

As the beneficial outcome of an IFNa2a/b therapy in

patients depends on direct antiviral and immunomodulatory

activities, we next investigated host immune responses in liver

(Figure 3) and spleen (Supplementary Figure 3) after the first

and second IFNa subtype treatment interval during persistent

HBV. The total numbers as well as percentages of NK cells and T

cells did not noticeably change during IFN-treatments in the

liver (Supplementary Figures 3A–C). Especially after the second

round of IFN treatment MHC class I expression per cell (mean

fluorescence intensity, MFI) was significantly increased on

monocytes and dendritic cells with IFNa2 increasing the

surface expression the most (Figures 3C, D). Similar results

were also observed for the percentages of activated (CD69+) and

GzmB-expressing NK cells (Figures 3E, F). Interestingly, the

frequencies of IFNg-producing NK cells were solely increased

after IFNa2-application, and the effect was stronger after the first
IFN-interval compared to the second IFN-interval (Figure 3G).

Next, we elucidated the impact of IFNa therapy on HBV-specific

CD8+ T cell phenotypes and their effector functions. Percentages of

CD8+ T cells expressing GzmB was remarkably enhanced after the
Frontiers in Immunology 07
second round with all different IFNs, but the strongest effect was

again seen with IFNa2, which already improved GzmB expression

after the first IFN-treatment interval (Figure 3H). Tetramer

stainings to identify core-specific and env-specific CD8+ T cells

revealed significantly higher percentages after one or two rounds of

IFNa2-treatment, whereas the activation (CD69 MFI) on env-

specific CD8+ T cells was significantly increased with all IFNa
subtypes (2x IFN tx; Figures 3I–L). In in vitro peptide stimulation

with core93 or env180 similar results on IFNg-expressing env-

specific CD8+ T cells were observed, indicating that 2 rounds of

IFN treatment specifically improved env-specific CD8+ T cell

responses (Figures 3M, N). Furthermore, we also analyzed the

immunomodulatory effects of the IFNa subtypes on monocytes,

DCs, NK, and T cells in the spleen at the same time points. Similar

tendencies and higher percentages after IFNa2 treatment were

observed, but the effects on the splenic immune responses were not

significant (Supplementary Figures 3D–P).

To scrutinize if the observed immunomodulatory effects of the

tested IFNa subtypes in the liver are further influenced by HBV

itself,we treatedHBV-uninfectedmicewith IFNa2, IFNa4, IFNa5,
and IFNa11 for ten consecutive days and subsequently analyzed

the immune response in the liver (Supplementary Figure 4A).

Similar to the results observed after the first interval of IFN-

treatment during persistent HBV infection, we detected higher

frequencies of MHC-class I expressing monocytes and DCs
A

B C

FIGURE 2

The virus levels of HBV persistent replication (PR) mice after IFNa subtypes administration. (A) The BPS plasmid hydrodynamically injected mice
were intraperitoneally injected with 8000 U mIFNa subtypes for 10 consecutive days at 36 days post hydrodynamic injection. Created with
BioRender.com. Additionally, blood samples were collected before, during, and after mIFN treatment to dynamically monitor the characteristics
of serum viremia shown as (B) log HBV DNA and (C) HBsAg (OD at 450nm). Mean values ± SEM are shown for ctrl, n=4; IFNa2, n=5; IFNa4,
n=5; IFNa5, n=5; IFNa11, n=5. Statistical analyses between the treated groups and the untreated group were done by one-way ANOVA.
*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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FIGURE 3

Distinct antiviral and immunomodulatory activities of different IFNa subtypes during HBV infection. (A) Male C57BL/6 mice were intravenously
injected with rAAV8-1.3HBV to establish HBV infection. After 29 days post infection mice were treated by intraperitoneal injection with 8000 U
mIFNa subtypes for 10 consecutive days. Blood samples were collected before, during, and after mIFN treatment to dynamically monitor the
characteristics of serum viremia. One day after the treatment with mIFNa subtype, the mice were sacrificed to freshly separate the intrahepatic
lymphocytes (IHLs)for immune function analysis by flow cytometry. For a second group of mice the same procedure was additionally repeated
at 50 dpi. Created with BioRender.com. (B) The HBV DNA levels after mIFNa subtypes administration were determined by RT-PCR (ctrl, n=9-14;
IFNa2, n=8-12; IFNa4, n=10-15; IFNa5, n=10-15; IFNa11, n=11-16). (C, D) The MHCI expression (MFI) of intrahepatic monocytes and dendritic
cells was analyzed by flow cytometry (E–G) The CD69/GzmB/IFNg expression of intrahepatic NK cells were analyzed by flow cytometry (H) The
GzmB expression of intrahepatic CD8+ T cells was analyzed by flow cytometry (I, J) Frequencies of HBV core- and env-specific CD8+ T cells
were detected by Tetramer staining (K, L) The expression of CD69 on core-specific and env-specific CD8+ T cells were analyzed by flow
cytometry. (M, N) IHLs were stimulated with HBcAg epitope peptide (core93) or HBsAg epitope peptide (env208) for 5 h in vitro. Intracellular
staining is performed, and the frequencies of IFNg+ CD8 T cells are shown. (C–N) Individual mice are depicted as dots. Mean values ± SEM are
shown for 1x ctrl, n=3; 1x IFNa2, n=3; 1x IFNa4, n=3-5; 1x IFNa5, n=3-5; 1x IFNa11, n=4; 2x ctrl, n=3-5; 2x IFNa2, n=3-5; 2x IFNa4, n=4-5; 2x
IFNa5, n=4-5; 2x IFNa11, n=3-5. Statistical analyses between the treated groups and the untreated group were done by one-way ANOVA.
*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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(Supplementary Figures 4B, C), activated, GzmB and IFNg
expressing NK (Supplementary Figures 4D–F) and CD8+ T cells

(Supplementary Figures 4G–I) only after therapeutic treatment

with IFNa2. As we observed similar frequencies of activated

immune cells and effector subsets in naïve and HBV-infected

animals after 1xIFN tx, we suggest no direct HBV-mediated

inhibition of IFN-responses (6) after 1xIFN tx. Taken together,

these data further imply that, apart from its direct antiviral effect,

IFNa2 stimulated antiviral effector functions of different immune

cell subsets during persistent HBV infection likely contributed to

the control of viral replication.
IFN-stimulation of polyclonal triggered
PBMCs from healthy individuals strongly
modulated T and NK cell responses

To ensure that the observed immunomodulatory effects of

murine IFNa2, IFNa4, IFNa5, and IFNa11 were not specific to

mouse IFNs, we investigated the role of human IFNa subtypes on

PBMCs of healthy individuals. Therefore, PBMCs were stimulated

with staphylococcal enterotoxin B (SEB) in order to trigger

polyclonal T cell activation (37) for 4 days in the presence and

absence of the different human IFNs. At day 4 post stimulation the

cells were re-stimulated with SEB and analyzed by flow cytometry.

As shown in Figure 4, additional stimulation with IFNa subtypes

increased the frequencies of activated CD38+ CD8+ T cells up to 3-

fold ((-IFN: mean: 19.52%; IFNa6: mean 62.24%), and this effect

was also significant after stimulation with human IFNa1, IFNa2,
IFNa6, IFNa7, IFNa10, and IFNa21 (Figure 4A). Next, we

analyzed effector functions of CD8+ T cells and we observed

significantly higher percentages of CD107a-expressing CD8+ T

cells and higher GzmB expression (MFI) after stimulation with

IFNa1, IFNa2, IFNa4, IFNa21, and IFNa7, respectively
(Figures 4B–D). However, no significant differences on human

IFNg+ CD8+ T cells were detected (Figure 4E).

Taken together, we could show that murine Ifna subtype

mRNA was transiently induced in liver and spleen of the HDI

mouse model. Furthermore, in vivo treatment with murine IFNa2
and IFNa11 strongly reduced HBV DNA and HBsAg level during

chronicHBV infectionusingBPSHDI.Therapeutic treatmentwith

IFNa2 strongly activated immune responses in the liver of chronic

HBV-infected mice (rAAV8-1.3HBV), whereas repeated

treatments with IFNs further improved host immune responses.

These data clearly demonstrate IFNa subtype-specific differences

in the antiviral and immunomodulatory response during chronic

HBV infection.
Discussion

In this study, we described that different murine IFNa
subtypes show distinct antiviral activities in inhibiting HBV
Frontiers in Immunology 09
replication as well as inducing anti-HBV T cell and NK cell

responses in vivo in a chronic HBV infection mouse model. The

most effective subtype, murine IFNa2, demonstrated superior

ability in inducing NK cell and CD8 T cell activation in both

naïve and chronic HBV infected mice than the other tested IFNa
subtypes. In line with the findings in the different used mouse

models, we also observed that different human IFNa subtypes

show distinct potencies in improving CD8+ T cell activation and

effector functions in vitro. These results suggest that selecting an

appropriate IFNa subtype to replace or combine the currently

used human IFNa2 in HBV immunotherapy may achieve better

antiviral effects for chronic HBV infection in humans.

HBV is traditionally described as a “stealth virus”, but it has

been shown that HBV is sensed by different pattern recognition

receptors (9); however, expression of innate immunity genes like

IFNs or ISGs is rather low or even undetectable (9–11).

Interestingly, the characteristic of poor induction of early type

I interferon production is not associated with HBV persistence

as shown in the HBV infected chimpanzee models (11). In

contrast, we recently showed that simultaneous or prior

activation of intrahepatic type I IFN signaling leads to HBV

persistence in an HBV HDI mouse model (38). Here, we further

characterized the expression kinetics of different IFNa subtypes

in the liver and spleen post HBV exposure and compared their

differences between acute-resolving and persistent HBV

replication. In line with previous observations, we observed

only weak upregulation of mRNA expression of certain IFNa
subtypes in the liver of both acute-resolving HBV replication

mice and persistent HBV replication mice. However, we

observed that Ifna subtype mRNA expression was strongly

upregulated in the spleen at early-stage post HBV exposure in

HBV persistent replication mice, but not in acute-resolving HBV

replication mice. This is, to our knowledge, the first

characterization of early IFNa subtype expression in the

scenario of chronic HBV infection. The results demonstrate

that HBV may also trigger robust type I IFN responses; however,

these responses might be associated with unfavorable outcome

for HBV clearance.

Host innate and adaptive immune responses are very

important to determine the outcome of HBV infection. NK

cells represent the main effector population of the innate

immune system in the liver that is able to recognize virus-

infected hepatocytes. They secrete either IFNg or TNFa to

induce apoptosis in infected cells or directly eliminate these

cells by the expression of granzymes, Fas ligand, or killer cell

immunoglobulin-like receptors. In chronic HBV patients,

altered phenotype and impaired function of NK cells were

found (39). The IFNg and TNFa production by NK cells are

also strongly suppressed during chronic HBV infection (40). In

adaptive immune responses, T cells play a fundamental role in

HBV clearance and pathogenesis. Cytotoxic CD8+ T cells (CTL)

can control viral infection by killing virus-infected cells through

various effector molecules (Granzymes, TRAIL, Fas ligand). The
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non-cytopathic effector functions of CD4+ and CD8+ T cells like

the production of antiviral cytokines (IFNg, TNFa) are

indispensable to control HBV infection (41, 42). During acute

HBV infection, virus-specific CD8+ T cells were required for the

control and elimination of HBV infection (43). Previous studies

in HBV-infected chimpanzees also reported, that the depletion

of CD8+ T cells during acute HBV infection resulted in

remaining high viral titers (44), emphasizing their importance

in viral control. In contrast, chronic HBV infection is

characterized by weak or undetectable HBV-specific CD8+ T

cell responses and the presence of functionally exhausted HBV-

specific CD8+ T cells that are unable to clear the virus (45). We

have previously reported that murine IFNa4 and IFNa5
treatment could strongly increase the activation, cytotoxic

capacity, and cytokine production of both NK cells and CD8+
Frontiers in Immunology 10
T cells in an HBV HDI mouse model which mimics acute-

resolving HBV infection (46). However, anti-HBV innate and

adaptive immune responses are not compromised in this mouse

model (36), and it remained unclear whether these two IFNa
subtypes could recover NK cell and T cell responses in the

scenario of chronic HBV infection. Here, we demonstrate that

murine IFNa4 and IFNa5 show only very limited effects in

inducing NK cell and T cell activation in the rAAV8-HBV1.3

chronic infection mouse model. Instead, we identified murine

IFNa2 as the most efficient subtype in inducing NK cell and

CD8+ T cell activation among all tested IFNa subtypes in

chronic HBV-infected mice. In addition to the different time

points of HBV infection (acute versus chronic), there are several

other substantial discrepancies between our previous study (46)

and the current study. Firstly, the HBV HDI mouse model is not
A

B

D E

C

FIGURE 4

Expression of cytotoxic molecules by in vitro stimulated T and NK cells of PBMCs from healthy individuals PBMCs from healthy individuals were
stimulated with 200 ng/ml SEB in presence of 20 U/ml IL-2 and treated with 2000 U/ml IFNa subtypes or without IFN (-IFN) for 4 days. PBMCs
were re-stimulated with 5 µg/ml SEB and incubated in presence of antibodies against the co-stimulatory molecules CD28 and CD49d for 6 h.
BFA was added after 1 h of stimulation. Flow cytometry was used to analyze T cell activation and cytokine expression. (A) Activation profile
determined by the frequencies of CD38+ CD8+ T cells with or without stimulation in the presence or absence of the different IFNs. (B, C)
Frequencies of GzmB-expressing CD8+ T cells and the GzmB expression per cell shown as MFI. (D) Frequencies of degranulating CD107a CD8+

T cells and (E) IFNg expressing CD8+ T cells are shown. Mean values ± SEM are shown for (A–C) n=6 and (D, E) n=3. Statistical analyses
between the treated groups within a cell population were done by using Friedman test and Dunn’s multiple comparison test. *, p < 0.05
**p<0.01; ***p<0.001.
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an infection model and the HBV replication is limited to the

hepatocytes, that were initially transfected with the respective

plasmid. In contrast, the newly generated rAAV8-HBV1.3

recombinant virus can constantly infect mouse hepatocytes,

which better mimics the process of a natural HBV infection in

humans. Secondly, the 10-days regime of IFNa subtype

treatment in the previous study started 1 day prior to HBV

HDI, suggesting that cells become alerted toward an antiviral

state and antiviral effectors can already be expressed before viral

entry. In contrast, in the current study we chose to treat mice

with IFNa subtypes 4 weeks after rAAV8-HBV1.3 inoculation,

when persistent HBV infection is already established. The latter

model should better mimic the clinical scenario of treating CHB

patients as HBV HDI. In clinical practice, human IFNa2 is the

only available subtype for the treatment of chronic HBV (CHB)

patients so far. Pegylated human IFNa2 has been shown to have

both direct antiviral and immunomodulatory effects in CHB

patients and it is conceivable that treatment outcome may be

mostly triggered by the immunomodulatory effects of peg-

IFNa2 on the innate and adaptive immune responses (47). For

example, treatment with IFNa2 in CHB patients has been shown

to significantly enhance NK cell frequency and their antiviral

effector cytokine production (48, 49). Very recently, we have

reported that patients who received IFNa treatment

demonstrated a more active phenotype of global T cells than

IFN–naïve patients, although no significant increase in HBcAg-

specific CD8+ T cell responses were found in patients who

received IFNa treatment compared to those without (50). In

this study, we demonstrated that different human IFNa subtypes

may also differ in their abilities to modulate T cell responses in

healthy individuals. Future studies are needed to characterize the

capacity of different human IFNa subtypes to improve anti-

HBV NK and T cell responses in CHB patients.

In addition to activating the antiviral cellular immune

response, IFNs could also mediate their antiviral effects through

the transcriptional regulation of relevant genes, such as ISGs (51).

IFNa induces several hundred ISGs, and a number of ISGs like

MxA, APOBEC3G, MyD88, ISG20 and TRIM22 have been

reported as effectors that actively inhibit transcriptional and

post-transcriptional HBV gene expression (52–54). We recently

reported that human IFNa14 is the most effective subtype in

suppression of HBV cccDNA transcription and HBeAg/HBsAg

production in HBV infected human cell lines in vitro as well as

humanized mice in vivo (18). In particular, the induction of the

restriction factor GBP5 by IFNa14 seemed to be required for

HBV control (18). In previous studies in HIV-infected humanized

mice and HIV-infected PBMCs and gut-derived mononuclear

cells, as well as PBMCs from HIV-infected patients different

immunomodulatory effects of human IFNa subtypes were

observed with IFNa2 mainly modulating T cell responses,

whereas IFNa14 stimulation prevented hyperimmune activation

of T cells and improved cytotoxic NK cell responses (20, 55, 56).

So far, it remains unclear whether human IFNa14 is also efficient
Frontiers in Immunology 11
in inducing anti-HBV NK and T cell responses, and more

important, whether therapeutic combinations of different IFNa
subtypes are effective in inducing antiviral ISGs and anti-HBVNK

and T cell responses, which together might achieve a synergistic

effect in suppressing HBV replication. Further studies are needed

to address this issue and to develop more efficient treatment

strategies for chronic hepatitis B therapy.
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SUPPLEMENTARY FIGURE 1

Virological and biochemical parameters after IFN treatment. Male C57BL/

6 mice were intravenously injected with rAAV8-1.3HBV to establish HBV

infection. After 29 days post infection mice were treated by
intraperitoneal injection with 8000 U mIFNa subtypes for 10

consecutive days. Blood samples were collected before, during, and
after mIFN treatment to dynamically monitor the characteristics of

serum viremia. The day after the end of treatment with mIFNa subtype,
the mice were sacrificed to freshly separate the intrahepatic lymphocytes

for immune function analysis by flow cytometry. For a second group of

mice the same procedure was additionally repeated at 50 dpi. (A) The
HBsAg (B) and HBeAg levels after IFNa subtypes administration were

shown (ctrl, n=4-7; IFNa2, n=2-6; IFNa4, n=5-10; IFNa5, n=5-10; IFNa11,
n=5-9). (C) The ALT (D) and AST levels after IFNa subtypes administration

were shown (ctrl, n=4; IFNa2, n=2-5; IFNa4, n=5; IFNa5, n=5; IFNa11,
n=5). Statistical analyses between the treated groups and the untreated

group were done by one-way ANOVA *p<0.05; **p<0.01.
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SUPPLEMENTARY FIGURE 2

Gatingstrategyfor liverandspleeninfiltratinglymphocytes.Flowcytometrygating
scheme formonocytes, dendritic cells, NK cells and CD8+ T cells are shown.

SUPPLEMENTARY FIGURE 3

Immunomodulatoryactivitiesofdifferent IFNasubtypesduringHBVinfection in
spleen and liver. Male C57BL/6 mice were intravenously injected with rAAV8-

1.3HBV to establish HBV infection. After 29 days post infection mice were
treated by intraperitoneal injection with 8000 U mIFNa subtypes for 10

consecutive days. Blood samples were collected before, during, and after

mIFN treatment to dynamically monitor the characteristics of serum viremia.
The day after the end of treatment with mIFNa subtype, the mice were

sacrificed to freshly separate the intrahepatic lymphocytes and splenocytes
for immunefunctionanalysisbyflowcytometry.Forasecondgroupofmicethe

same procedure was additionally repeated at 50 dpi. The cell number of
infiltrating lymphocytes in liver (A) and spleen (D)were shown. The frequency

ofNKcellsandTcellsof infiltrating lymphocytes in liver (B,C)andspleen (E)and
(F) were shown. (G–P) The phenotypes and effector function analysis of
monocyte/dendritic cell/NK and HBV-specific CD8 T cell in spleen were

shown. Individual mice are depicted as dots. Mean values ± SEM are shown
for 1x ctrl, n=3; 1x IFNa2, n=3; 1x IFNa4, n=5; 1x IFNa5, n=5; 1x IFNa11, n=4; 2x
ctrl, n=3-5; 2x IFNa2, n=4-5; 2x IFNa4, n=5; 2x IFNa5, n=5; 2x IFNa11, n=5.
Statistical analyses between the treated groups and the untreated group were

done by one-way ANOVA *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.

SUPPLEMENTARY FIGURE 4

Comparison of intrahepatic immune responses in naïve and chronically
infected mice after IFNa2 treatment. (A) Naïve male C57BL/6 mice were

treated by intraperitoneal injection with 8000 U mIFNa subtypes for 10
consecutive days.Oneday after the treatmentwithmIFNa subtype, themice

were sacrificed to freshly separate the intrahepatic lymphocytes for immune

function analysis by flowcytometry. Createdwith BioRender.com. (B, C)The
MHCI expression (MFI) of intrahepatic monocytes and dendritic cells was

analyzed by flow cytometry. (D–F) Frequencies of CD69/GzmB/IFNg
expressing intrahepatic NK cells and (G–I) CD8+ T cells were analyzed by

flowcytometry. Individual mice are depicted as dots. Mean values ± SEM are
shown for ctrl, 3-5; IFNa2, n=5-6; IFNa4, n=6; IFNa5, n=3-6; IFNa11, n=4-6
Statistical analysesbetweenthe treatedgroupsandtheuntreatedgroupwere

done by one-way ANOVA. *p<0.05; **p<0.01; ***p<0.001.
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