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Abstract: The important role of non coding RNAs (ncRNAs) in the cell has made their identification a critical issue in the 

biological research. However, traditional approaches such as PT-PCR and Northern Blot are costly. With recent progress 

in bioinformatics and computational prediction technology, the discovery of ncRNAs has become realistically possible. 

This paper aims to introduce major computational approaches in the identification of ncRNAs, including homologous 

search, de novo prediction and mining in deep sequencing data. Furthermore, related software tools have been compared 

and reviewed along with a discussion on future improvements. 
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INTRODUCTION 

 In the early biological researches, scientists mainly 
focused on the prokaryotes, which are dominated (85%-
90%) by protein-coding genes [1] and it is publicly 
considered that the cellular activities are implemented by the 
proteins which are transcribed from those coding genes. But 
in the evolution of species, the relative proportions of the 
coding genes are gradually reducing, whereas the variety of 
cellular functions increasing. It is estimated that 98% of 
mammalian genomic output may be non-coding RNAs 
(ncRNAs), while the remaining 2% encodes the proteins [2]. 
However, at present, we have incomplete knowledge of 
those non-coding regions containing both non-coding genes 
and genomic elements which may regulate gene expression 
[3]. As a result, we are currently more interested in the non-
coding regions which could lead to the better understanding 
of biological processes. They may be involved in the gene 
expression control, cancer and aging [61]. 

 As stated in the central dogma of molecular biology, 
gene sequences (DNA) are transcribed into RNA according 
to the law of chemistry and physics. Some RNAs, including 
messenger RNA (mRNA), are called coding RNAs, since 
they are translated into protein and the others are called non-
coding RNAs, because of their function as RNA molecules 
rather than coding protein. Non-coding RNAs are involved 
in translation, splicing, gene regulation, chromatin 
remodeling, gene modification, degradation and other 
functions [61]. They are also closely associated with cancer 
and other complex diseases [4]. Many kinds of functional 
ncRNAs have been discovered with biological experiments 
and computational methods. In the literature, ncRNAs are 
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divided into several categories [5]. Some ncRNAs are named 
according to their functions, like microRNAs (miRNA), 
package RNAs (pRNA) or transfer RNAs (tRNA), etc. 
Others are named by their cellular localizations, such as 
piRNAs (interact with piwi protein) and rasiRNAs (repeat 
associated small interfering RNAs). There are still many 
other ncRNAs unclassified.  

 Non-coding RNAs are recognized only in biological 
experiments with technologies such as full-length 
complementary DNA cloning and genomic tiling arrays in 
the transcriptomes of organisms. Although these 
technologies can suit long ncRNA (lncRNA) genes in an 
efficient way, they are costly always requiring enough RNA 
samples, and are therefore limited. To overcome this 
shortage, researchers have developed computational biology 
approaches to discover ncRNAs [6] and are incorporating 
these computational approaches in experimental methods 
[7]. 

 Although these computational methods and software 
tools have their characteristics, a unified framework for iden-
tifying all ncRNAs still needs to be discovered due to the 
diversity of ncRNAs, missing common sequence features 
and the lack of post-transcriptional processing information. 
Firstly, there are many kinds of ncRNAs in the species. For 
example, tRNAs and rRNAs involve in protein production; 
miRNAs control gene expression; snoRNAs modify post-
transcription of other RNA molecules [8]. Different 
functions are induced by diverse ncRNA structures and there 
are also variations in ncRNA length. Secondly, they are 
different from protein-coding genes which have a lot of 
common conserved features of primary sequence, including 
splice cites, promoters, terminator and binding motifs etc. 
There are few common primary features among the non-
coding RNAs, so it is difficult to identify all ncRNAs from 
primary sequence [9]. Therefore, although common primary 
features may exist in certain ncRNA families, researchers 
could not simply apply these features for identifying all 
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ncRNAs. Finally, many ncRNAs primarily transcribed from 
non-coding genes will go through the post-transcriptional 
processing to reach maturity. The modifications are intended 
to change their structures, which are closely related to their 
functions. So far, we are still unable to explain the 
modifications with the current knowledge and predict them 
with software programs. Consequently, we try to introduce 
most currently existing approaches about the identification 
of ncRNAs. 

METHODS USED IN ncRNA IDENTIFICATION 

 A lot of computational approaches for detecting ncRNA 
genes have been designed and reported, but as the variations 
of ncRNAs, most of these methods are developed for spe-
cific ncRNAs or specific ncRNA family. In general, these 
methods can be divided into two classes. 

1) Methods based on homology information. These methods 
always require homology information and a good quality 
of alignment among sequences. Only those ncRNAs, 
which are homologous to known ncRNA family, can be 
discovered with these methods. Novel computational 
methods need to be developed for identifying novel 
ncRNAs.  

2) Methods based on common features in ncRNA genes. 
These methods are called “de novo” approaches, which 
do not require homology information and sequence 
alignment except known sequence and structural features 
derived easily from the genome. In addition, the machine 
learning method known as Random Forest or Support 
Vector Machine is often used to predict ncRNA genes 
based on features. In fact, ncRNA gene-finding method 
based on nucleotide composition like (G+C)% has made 
some success in some specific species genomes [10]. 
However, other investigations have indicated that pro-
grams based compositions alone are not sufficient to 
identify ncRNA genes effectively [11]. As a conse-
quence, when using the de novo methods for identifying 
ncRNAs, we can derive features, including sequence and 
structural features, from sequences and select the appro-
priate classifier to model these features and train the 
model to achieve high accuracy of ncRNA prediction 
[12]. 

METHODS FOR HOMOLOGY-BASED ncRNA IDEN-
TIFICATION 

 It is commonly believed that most ncRNAs are less con-
served in sequence [8]. Although there are few common fea-
tures in ncRNA sequences, it may be different for some spe-
cial ncRNA families. So common sequence and structural 
characteristics are used as homology information to detect 
these ncRNAs. Homology search is to detect all homologous 
genes in the target sequences, given one or more ncRNA 
which could represent for a specific ncRNA family. Conse-
quently, we mainly focus on their sequence homology and 
structure homology, which are based on their features re-
spectively. 

 There are some software tools based on sequence homol-
ogy, such as BLAST [13], FASTA [14], S Search [15] and 
BLAT [16] etc. BLAST (Basic Local Alignment Search 

Tool) employs a measure of sequence similarities between 
input sequences and known ncRNAs. A score derived from 
BLAST approximately quantifies this similarity. However, 
ncRNAs rarely preserve high degree of the similarity. Fur-
thermore, it relies too heavily on individual sequences rather 
than focusing on the common features of the ncRNA family. 
Consequently, a family of homologous sequences is aligned 
to find the positions conserved than others. And then BLAST 
is used for finding these common positions in the alignments 
for target sequence when looking for the additional ncRNA 
family member. BLAT, which is the abbreviation of 
“BLAST-like alignment tool”, is similar in many ways to 
BLAST. When multiple sequences as inputs are aligned to a 
large sequence database, BLAT performs at higher speed 
than BLAST. In addition, BLAT has also high sensitivity 
and specificity for ncRNA detection [12]. In the research of 
sequence homology, a probabilistic model, named Hidden 
Markov Model (HMM), which models the features of the 
homologous sequences, is also used to predict ncRNAs. It 
builds a model representing the consensus sequence for the 
family, not the sequence of any particular member [17]. 

 It is naturally hard to identify ncRNAs effectively on 
sequence level when the level of sequence homology is low. 
Secondary structure of sequence is more conserved than se-
quence in the long evolutionary time [18]. Consequently, 
structure homology is also used to detect ncRNA genes. Pro-
grams INFERNAL [18], Rsearch [19] and FastR [20] are all 
based on structure homology. FastR package is applied to 
search homologous structure of ncRNAs in large genomic 
sequence [20]. INFERNAL and Rsearch allow for searching 
a sequence database for homologous ncRNAs, which are 
given and structured [15]. Taken tRNA as an example, it is 
publicly believed that tRNA has a classical “cloverleaf” 
structure. When Rsearch and BLAST or FASTA are both 
used to identify tRNA, prediction accuracy from Rsearch is 
better than that from BLAST or FASTA. 

 At present, there are many approaches based on a combi-
nation of sequence and structure homology to identify 
ncRNA. For example, when we annotate miRNA genes, 
known mature miRNAs are mapped into the predicted se-
quences with BLAST. After that, the mapped sequences are 
in high level of sequence homology with known miRNA. 
Then a model is built for the mapped sequences with their 
structure homology information, including secondary struc-
tures, pairwise sequence alignment and structural alignment. 
Finally, we get a measure of similarity of sequences to anno-
tate true miRNAs, as shown in Fig. (1). 

 Among the current prediction tools based on homology 
information, most are designed using both sequence homol-
ogy and structure homology information, such as ERPIN 
[21] and miRAlign [22]. ERPIN and BLAST are both used 
to detect new miRNAs. As a consequence, ERPIN increases 
the number of new miRNA candidates by 17% compared to 
a BLAST search. The result means that the programs using a 
combination of sequence and structure homology can get 
higher accuracy to identify conserved structure ncRNAs than 
those programs based only on sequence homology. But ER-
PIN package is limited to identify miRNAs when there are 
not sufficient known miRNA samples. On the contrary, mi-
RAlign is applicable to identify novel miRNAs with few 
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known miRNA samples. And in order to investigate the abil-
ity of miRAlign to identify miRNA in different species, re-
searchers compared miRAlign with BLAST and ERPIN. 
Consequently, miRAlign achieved higher specificity and 
sensitivity compared to that exhibited by BLAST and ERPIN 
searches [18]. As the sequences and structures are deeply 
researched in miRNA, HMM (Hidden Markov Model) is 
used for the miRNA precursors [23] and targets [24] identi-
fication. For some ncRNAs, when the secondary structure is 
conserved, such as tRNA and H/ACA box snoRNA, context-
sensitive HMM is used for identification [25]. And the non-
coding RNA database RFAM is built based on HMM [26]. 

METHODS FOR de novo ncRNA IDENTIFICATION 

 We can not discover novel ncRNA families with homol-
ogy-based methods which rely mostly on homology informa-
tion. Thus, de novo approaches are developed to solve this 
problem using features derived from the sequences and 
structures of known ncRNA genes. 

Methods Based on Sequence Features 

 In the earlier studies, nucleotide composition was used as 
sequence features to identify ncRNA in some nucleotide 
compositional bias species. For example in an AT-rich ex-
treme hyperthermophile, ncRNA genes with a stable secon-
dary structure might be found by calculating GC content, 
which is intended to stabilize their structures in the high 
temperature environment [8]. However, a single feature is 
not sufficient to identify ncRNA effectively. As a result, 
other sequence features have been employed to combine 
with nucleotide composition to detect ncRNA, including di- 
and tri-nucleotide frequencies, known RNA motifs and fold-
ing energy etc.  

 Currently, many programs based on sequence features 
have been developed, such as CRITICA [27], CST miner 

[28] and EST scan [29]. Researchers utilize these three pro-
grams to identify ncRNA from the 102801 FANTOM se-
quences respectively and find that CRITICA shows the high-
est degree of concordance which is up to 94.8% with the 
other two programs. And its concordance reveals the indi-
vidual prediction accuracy of each program [30]. Further-
more, the machine learning algorithms are added into 
ncRNA identification. For example, CONC [31] takes se-
quence features as input and then uses SVM (Support Vector 
Machine) to train these features. It has high specificity and 
sensitivity for ncRNA annotation. However, CONC is slow 
to the large datasets and spends much computing resources. 
Compared to CONC, we run CPC [32] on two datasets in-
cluding one non-coding RNA dataset and one protein-coding 
dataset respectively and record its result in (Table 1). What 
we get from the result is that CPC has higher accuracy and 
consumes lower time and space than CONC. 

Methods Based on Structure Features 

 It is publicly known that RNA molecule is a single 
strand, and usually folds into secondary structure, which is 
more conserved than primary sequence in long distant evolu-
tion. Thus, we investigate approaches for incorporating sec-
ondary structure into identification of novel ncRNAs. Actu-
ally, the minimum folding energy (MFE) approach is exten-
sively used to predict secondary structure of the target se-
quences [33]. For example, the programs RNAfold [34], 
Mfold [35] and Afold [36] all based on this approach have 
successfully been applied for novel ncRNA identification. 
To achieve high sensitivity and specificity, an alternative 
approach, Sfold also incorporates a probabilistic model in 
the prediction [37]. In addition, searching novel H/ACA 
snoRNA in the yeast or other eukaryote genomes, the ap-
proach based on MFE structure could also provide good pre-
diction [38]. 

 

 
Fig. (1).  Overview of approaches based on a combination of sequence and structure homology. 

Table 1. Evaluation of Accuracy and CPU Time of CPC and CONC on Two Datasets 

Accuracy Time(min) 
Dataset Dataset type Dataset size 

CPC CONC CPC CONC 

Rfam Non-coding 9020 87.57% 85.36% 1053 13594 

Embl cds Coding 8949 93.24% 92.93% 5073 60647 
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 However, secondary structure alone is generally not effi-
cient enough for the detection of ncRNAs [39]. For a given 
sequence, it might fold into different secondary structures 
but these structures intend to have similar MFE. Thus, other 
structure features are extensively discovered and applied to 
distinguish ncRNA from the target sequences, such as ther-
modynamic stability and shannon entropy etc. For example, 
in a data set, containing real ncRNAs and their di-shuffled 
sequences, the di-shuffled sequences are intended to have 
higher MFE and Shannon entropy than the real ncRNAs 
[40]. In addition, a program MiPred [41], employs a combi-
nation of features, containing local contiguous structure-
sequence composition, MFE and P-value of randomization 
test, uses a novel machine-learning technique based on ran-
dom forest algorithm to identify putative miRNA precursors 
and seems to provide high sensitivity and specificity. Fur-
thermore, PlantMiRNAPred [42] can classify plant miRNA 
precursors efficiently by SVM together with feature and 
sample selection strategies. It selects a variety of features 
from both primary sequence and secondary structure and 
provides a viable method for discovering novel plant pre-
miRNAs. However, all these methods and software men-
tioned above suit for the long DNA sequences, such as EST 
or genome data. When dealing with deep sequencing or the 
next generation sequencing data, it needs more mapping or 
assembling strategies. 

Methods Based on Deep Sequencing Technology 

 With the development of the next generation sequencing 
technologies, it has been implemented for small ncRNAs 
discovery, particularly for miRNAs. Massively next genera-
tion sequencing technologies (also named deep sequencing) 
are currently in widespread use, including 454, Solexa and 
SOLiD. Compared to conventional sequencing technologies, 
deep sequencing technologies accelerate biological research 
and significantly reduce the cost. Here we present currently 
available tools for miRNA identification with the deep se-
quencing technologies, including miRDeep [43], CID-
miRNA [44], MiRank [45], miRCat (identify plant miRNAs) 
[46], mirTool [47], and miRanalyzer [48]. 

 MiRNA discovery with deep technologies is generally 
divided into two steps. The first step is called filtering. The 
sequence reads derived from deep sequencing are mapped to 
the whole genome. The reads that map to tRNA or sRNA, 
etc are discarded and then the remaining reads are mapped to 
known miRNA database again. The sequence reads that map 
to the known miRNA database are passed and recognized as 

miRNA candidates. The other step is called modeling. The 
miRNA candidates are simply modeled by some algorithms. 
For example, in the core algorithm of miRDeep, potential 
miRNA candidates are modeled for the combined compati-
bility of energetic stability, positions and frequencies of 
reads with Dicer processing [33]. A number of features con-
tribute to the final score derived from the model. miRDeep 
could discover not only known and novel miRNAs but also 
provide a statistical evaluation of false positive rate and sen-
sitivity, which most machine learning algorithm could not 
provide. The flow is shown in Fig. (2). 

 However, compared to other tools, miRDeep relies on the 
characteristic pattern of high expression, thus it is limited for 
the miRNA at low level of expression. In this situation, it 
needs researchers to explore other means to indentify novel 
miRNA in the low expression sequences. For example, the 
conservation pattern of structure can be used to discover 
miRNA precursors [49]. Firstly, taking the sequence reads to 
map the whole genome, we can remove those reads that do 
not map to genome then fold remaining reads with RNA by 
Vienna package [25]. The novel hairpins produced by Vi-
enna are filtered, while those single –loop hairpins with ma-
ture-miRNA in one side of hairpin are passed as possible 
hairpins. Secondly, these possible hairpins are refolded by 
the Vienna package and filtered again with Ambros criteria 
[50]. Finally, real mature-miRNA can be discovered in the 
remaining hairpins.  

 MiRanalyzer, which is similar to miRDeep, could search 
known miRNA in the miRNA database and discover novel 
miRNA, particularly those undiscovered miRNA family. The 
core algorithm of MiRanalyzer is a sensitive machine learn-
ing method using random forest algorithm. And the feature 
selection technologies are also used in the MiRanalyzer. 
Subsequently, the prediction of new miRNAs using MiRana-
lyzer could reach high sensitivity and keep a low level of 
false positive rate [38]. Similar to miRDeep and MiRana-
lyzer, MirTool also can predict known and novel miRNAs. 
Furthermore, it could provide detailed information for the 
known miRNAs, such as miRNA/miRNA* and abso-
lute/relative reads count [37]. Here is another program called 
miRank using random walk-based ranking algorithm. The 
miRank method has some remarking properties. For exam-
ple, it does not rely on cross-species conservation so that it 
can identify species-specific miRNAs. In addition, it does 
not require a number of miRNA samples but could reach a 
high discover accuracy. Hence, miRank is a useful tool for 
the miRNA identification [35]. Besides using deep sequenc-

 

 

Fig. (2).  Flow chart of miRNA discovery using deep sequencing technology. 
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ing technologies to detect miRNAs, other small ncRNA 
molecules such as snoRNA, piRNA, endo-siRNA, are also 
identified by deep sequencing technologies. For example, we 
can apply SnoSeeker which can identify snoRNAs from deep 
sequencing data [51]. (Table 2) lists the main software tools 
for the ncRNA discovery. 

 Indeed, the main disadvantage of the popular software 
tools is that they are designed specially for just one kind of 
ncRNAs. For example, tRNAscanSE is used for detecting 
tRNA; snoSeeker is to look for snoRNA; miRDeep, miRCat, 
mirTool, miRanalyzer and MIReNA are all designed for 
mining microRNA. So there are working repeat and confu-
sion for the conflict result when we annotate new sequencing 
data. Moreover, they are unfair to compare for ncRNA anno-
tation. 

 Two methods, i.e., CSHMM and MIReNA, are employed 
for comparison. CSHMM is the machine learning based 
method used either to analyze individual sequences or scan 
potential pre-miRNAs from human genome-scale data. 
MIReNA is the method based on a genome-wide search al-
gorithm for pre-miRNAs search. Both methods are used to 
search for known pre-miRNAs from the Chr 19. Results 
show that 70 and 74 true positives are correctly predicted by 
CSHMM, and MIReNA, respectively. Regarding methods to 
detect pre-miRNAs from human genome-scale data, main-
taining high specificity is even of greater importance. 
MIReNA correctly predicts the highest number of true posi-
tives, but also produces 10,626 pre-miRNA candidates, 
while CSHMM predicts 18,258 false true results. This large 
number of pre-miRNA candidates is perhaps due to the low 
specificity of MIReNA. Similarly, the low specificity results 
in CSHMM as a poor choice for the identification of pre-
miRNAs. Actually, MIReNA is capable of performing in 
different modes when handling different data types (e.g., the 
genome data, and the deep-sequencing data). It is believed 
that MIReNA can achieve better performance when evalu-
ated on a more comprehensive data. 

 In the general, de novo methods use machine learning 
algorithms to train the features from sequence, structure and 
deep sequencing data to identify ncRNAs. With the devel-
opment of bioinformatics, more and more features are de-
rived and used in the ncRNA discovery. However, in most 
cases, these features are redundant. In order to reduce the 
redundancy, features selection technologies are created and 
applied to de novo methods. Now the main feature selection 
technologies constantly used are Filter, Wrapper and Em-
bedded technologies [52]. On the other hand, different ma-
chine learning methods employed in the discovery are in-

tended to lead to different efficiency and accuracy. Com-
pared to those classifiers, such as SVM and Bayesian, an 
integrated machine learning model called incRNA is devel-
oped and can significantly improve the results in the ncRNA 
identification [53]. 

lncRNA AND lncRNA IDENTIFICATION 

 Besides small non-coding RNAs, there are long non-
coding RNAs (lncRNA), which are longer than 200nt. They 
can be categorized into long intronic non-coding RNA and 
intergenic non-coding RNA. They are considered to regulate 
gene expression through changes in chromatin state, impli-
cate in cancer pathogenesis and correlate with clinical fea-
tures [58]. With the increasing amount of lncRNAs, identifi-
cation and function research for lncRNA is called lncRNome 
[59]. 

 Since the lack of conservation among lncRNA primary 
sequences, detecting lncRNAs from genomes relies on ex-
pression analysis that makes comprehensive characterization 
of lncRNome difficult. The latest GENCODE has specially 
collected lncRNAs. First, the transcriptome data were anno-
tated and the protein coding sequences were filtered. Then 
short sequences, which were shorter than 200nt were re-
moved and the remaining ones were viewed as lncRNAs 
[56]. Since the lack of experimental transcriptome data, 
computational prediction of lncRNAs is necessary and 
meaningful. Machine learning method based on SVM was 
employed for detecting polycomb-associated lncRNAs [57]. 
It can distinguish lncRNAs from transcription noise. How-
ever, features extraction for lncRNA is a challenging task 
since lncRNAs are largely unstructured. So regulation ele-
ments such as enhancers or promoters are always utilized. 
Although lncRNAs do not have common secondary struc-
tures, structure features can be used for distinguishing 
lncRNAs with other small ncRNA precursors [60]. 

DISCUSSIONS 

 Although many ncRNA families have been discovered by 
variety of identification tools, there is currently no unified 
prediction tool which could detect all kinds of ncRNA. For 
the specific ncRNA research, it will lead us to develop dif-
ferent programs. In fact, most current approaches and tools 
are complementary. In order to improve specificity and sen-
sitivity as well as reduce false-positive, we are interested at 
how to combine these methods and tools effectively. This 
process seems a little complicated, because it requires us to 
evaluate different combinational methods, which represent 
another direction of ncRNA identification. 

Table 2. The Main Software Tools of ncRNA Discovery 

Homology-based ncRNA 

identification methods 

BLAST, Blat, INFERNAL, FASTA, SSEARCH, Rsearch, FastR, ERPIN, miRAlign 

Sequence features-based methods CRITICA, CSTminer, ESTscan, CONC, CPC 

Structure features-based methods RNAfold, Mfold, Afold, MiPred 

De novo-based ncRNA 

identification   methods 

Deep sequencing-based methods miRDeep, CID-miRNA, MiRank, miRCat, mirTool, 

snoSeeker, MiRanalyzer 
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 In the field of ncRNA identification based on homology 
information, the selection of window size of alignment se-
quences would be a problem to limit us to use sequence ho-
mology methods, because the fixed alignment programs 
typically assume a window size to reduce computational 
requirements. In addition, the window size not suitable for 
the sequence alignments might reduce the prediction accu-
racy. When level of sequence homology is relatively low, 
alternative methods based on structure homology are appli-
cable to detect new ncRNAs. Structural alignment ap-
proaches are incorporated into the structure homology re-
search. And how to improve speed of structural alignments 
and their accuracy becomes another area of active research.  

 In de novo methods, most of them are based on the fea-
tures derived from sequence and structure. By utilizing these 
features, kinds of classifiers have been applied to the re-
search. At present, how to combine these features and select 
a proper classifier represent another direction in the field of 
ncRNA identification. With the quick development of next 
generation sequencing technologies, massive sequencing 
data provides a great deal of power to the ncRNA research. 

 Computation detecting methods mentioned above are 
mostly designed for the short non-coding RNAs, such as 
miRNAs, tRNAs, siRNAs, piRNAs, etc. When dealing with 
long non-coding RNAs (lncRNA), the computation methods 
always can not work well. To our knowledge, RT-PCR or 
CHIP-SEQ is the main detecting method for lncRNA [54, 
55]. More research ought to be done on the lncRNA and the 
computational detecting methods are required for decreasing 
the molecular biology experiments cost. 

 In conclusion, ncRNA research is still at its infancy. To 
get more knowledge about complex ncRNA world, we still 
have to explore other novel methods, either biological ex-
periments or computational methods. However, since ex-
perimental technology has not yet been developed, we 
should still focus on exploring ncRNA world by computa-
tional tools. And novel insights do not only help us to in-
crease our knowledge about RNA world, but also help us to 
improve computational tools for further identification. Be-
sides detection methods, more computation methods and 
tools need to be researched deeply, including identification 
alternative splicing or SNP in ncRNA. They are both inter-
esting and important for the function research of ncRNA. 
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