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Abstract
There many possible types of drug-target interactions, because there are a
surprising number of ways in which drugs and their targets can associate with
one another.  These relationships are expressed as polypharmacology and
polyspecificity.  Polypharmacology is the capability of a given drug to exhibit
activity with respect to multiple drug targets, which are not necessarily in the
same activity class. Adverse drug reactions (‘side effects’) are its principal
manifestation, but polypharmacology is also playing a role in the repositioning
of existing drugs for new therapeutic indications.  Polyspecificity, on the other
hand, is the capability of a given target to exhibit activity with respect to
multiple, structurally dissimilar drugs.  That these concepts are closely related
to one another is, surprisingly, not well known.  It will be shown in this work that
they are, in fact, mathematically related to one another and are in essence ‘two
sides of the same coin’.  Hence, information on polypharmacology provides
equivalent information on polyspecificity, and  .vice versa
Networks are playing an increasingly important role in biological research.
Drug-target networks, in particular, are made up of drug nodes that are linked to
specific target nodes if a given drug is active with respect to that target.  Such
networks provide a graphic depiction of polypharmacology and polyspecificity. 
However, by their very nature they can obscure information that may be useful
in their interpretation and analysis.  This work will show how such latent
information can be used to determine bounds for the degrees of
polypharmacology and polyspecificity, and how to estimate other useful
features associated with the lack of completeness of most drug-target datasets.
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Introduction
The study of drug-target interactions and their manifestation in 
polypharmacology and polyspecificity is playing a major role in 
the growing field of chemogenomics in particular, and in drug  
research in general. Polypharmacology describes the multiplic-
ity of drug targets against which a given compound exhibits some 
form of biological activity1–6. A less appreciated characteristic of 
drug targets is their polyspecificity, namely the ability of multiple, 
structurally dissimilar drugs to exhibit biological activity against 
the same target.

The principal manifestation of polypharmacology is adverse drug 
reactions (‘side effects’), a phenomenon that has been recognized 
ever since the administration of the first drug7,8. In an interest-
ing turnabout, side-effect similarity has recently been used to  
identify drug targets9. A useful public data source called SIDER  
has also been developed; it links approximately 1000 drugs to  
nearly 1500 side effects10. An emerging role of polypharmacol-
ogy is in the repositioning of existing drugs for new therapeutic  
indications11.

The term polyspecificity was primarily used to describe antibody 
recognition, and has been around for more than three decades12,13. 
It is only in the last few years, however, that it has been employed 
in the context of drug-target interactions. Consequently, there are 
fewer papers on this topic, and many of them deal with transport-
ers and the efflux pumps that confer drug resistance14–18, which 
is hardly a broad sample of biological activity. This is somewhat 
surprising, given that the polyspecificity of drugs has not always  
been explicitly recognized as such. For a number of years, it 
has been manifest in many different forms in drug research, 
under the guise of multiple lead series19, scaffold hopping20, 
and pharmacophore-based structure-activity studies21. All of 
these applications suggest that diverse structures may neverthe-
less exhibit biological activity with respect to the same target. 
This view is further supported by more recent evidence on the  
surprising prevalence of similarity cliffs22, and indirectly by the 
enhanced effectiveness of group fusion in identifying new active  
compounds23. These examples and the widespread occurrence 
of drug side effects suggest that some type of relationship might  
exist between polypharmacology and polyspecificity.

The alternative terminologies ‘drug promiscuity’ and ‘target pro-
miscuity’ that are sometimes used instead of polypharmacology 
and polyspecificity, are slightly more general since they do not 
require the occurrence of biological activity, only that drugs and 
their targets interact (e.g., bind) in some specific fashion. Likewise, 
the term drug-target is sometimes replaced by the more general 
terms ligand-target or compound-target. However, the more popu-
lar although less general terms polypharmacology, polyspecificity, 
and drug-target will be used throughout the remainder of this work, 
with the caveat that their usage may sometimes be too narrow and 
may not always be strictly correct.

Recognition of the growing importance of polypharmacology in 
drug research and in biological research in general has resulted 
in the development of a number of drug-target databases24–32  
summarized in Table 1. A cursory examination of these databases 

shows that most drugs, as well as many xenobiotics, apparently 
exhibit very high degrees of polypharmacology. However, the data 
in these databases needs to be considered with caution, because it 
may not be of uniform quality since many experimental methods 
or computational techniques of varying accuracy may have been 
used in its generation. This is further exacerbated by the fact that 
reproducing biological data can be difficult even when the same 
experimental method is used in different laboratories, or even in the 
same ones! The paper by Jasial33 provides an interesting discussion 
that is relevant to this point.

To counter this issue database developers have established  
‘reliability scores’ based on criteria of data quality, but there is 
no uniform procedure that is applied in all cases. Hence, drug- 
target datasets assembled with data obtained from multiple, diverse 
sources are unlikely to be of uniform quality. And this can give  
rise to significant uncertainties in the inferences that are drawn  
from analyses of such datasets.

By contrast, a number of more stringent evaluations have led to 
significantly reduced values for degrees of polypharmacology of 
many drugs33–36. But these values represent lower bounds to the true 
values, since the datasets from which these results are drawn are 
typically incomplete, an issue that is discussed further in this sec-
tion. Additional study is certainly warranted in order to determine 
the true degree of polypharmacology for most drugs. As discussed 
in the following section, the multiplicity of ways that drugs can 
bind to a wide variety of different structural features in protein  
targets suggests the possibility that polypharmacology may be 
more prevalent than the most conservative view suggests. It does 
not, however, provide incontrovertible support for the extremely 
high degrees of polypharmacology implied by the data in many  
drug-target databases.

Data quality is not the only issue associated with drug-target  
datasets; another important concern is that of data completeness, 
as discussed in a recent paper by Mestres et al.37. Data on all of 

Table 1. Sample of drug-target databases available over the 
Internet given by name, web address, and reference number in 
this work.

Name Web Address Reference

1 DrugBank www.drugbank.ca 24

2 STITCH stitch.embl.de 25

3 WOMBAT sunsetmolecular.com 26

4 PubChem 
BioAssay ncbi.nlm.nih.gov/pcassay 27

5 BindingDB bindingdb.org/bind/index.jsp 28

6 ChEMBL ebi.ac.uk/chembl/target 29

7 canSAR cansar.icr.ac.uk 30

8 PROMISCUOUS bioinformatics.charite.de/
promiscuous 31

9 MATADOR omictools.com/matador-tool 32
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the possible drug-target interactions within a given dataset of  
drugs and targets is generally unavailable, making a complete  
analysis of these interactions impossible. This issue is aggravated 
by the fact that almost all drug-target databases only report data 
on active compounds. The most complete datasets undoubtedly  
can be found in the laboratories of pharmaceutical companies, 
but since their data is proprietary it is of little value to research-
ers outside of these companies. The problem of data availability 
is also affected by biases that arise from the popularity of particu-
lar research areas such as GPCRs, ion channels, protein kinases, 
and proteases, which make up a significant portion of all targets in  
drug discovery research38.

The crux of this paper is based on an analysis of the relationship 
between polypharmacology and polyspecificity, and it is dem-
onstrated that they represent mathematical duals of one another. 
We describe (1) a rigorous mathematical relationship between  
polypharmacology and polyspecificity, based on a simple math-
ematical argument, and (2) an analysis of the latent information 
associated with drug-target interactions, described by edge-colored 
bipartite drug-target networks. The use of edge-colored networks 
provides the means for establishing bounds on the degrees of  
polypharmacology and polyspecificity. A simple example of a  
drug-target network is presented in order to clarify a number of 
the technical points raised in this paper. Currently, there is greater 
research focus on polypharmacology, since it has a seemingly  
more direct relationship to the pharmacological behavior of drugs. 
However, as far as we can determine, a definitive study rigor-
ously linking polypharmacology and polyspecificity has yet to be  
published by other authors.

Structural basis of drug-target interactions
It is important to recognize that polypharmacology and polyspecifi-
city are purely phenomenological concepts. As such, they do not 
contain or require any specific structural information on the drugs 
or the targets they interact with. This is akin to classical chemi-
cal thermodynamics where, for example, the entropy, enthalpy,  
and free energy functions are purely phenomenological and  
do not in any way take account of the structural features of  
molecules39. In the case of drug-target interactions, all that is  
needed is some measure of the degree of interaction, such as an 
activity, inhibition constant, or an IC

50
 value, all of which are  

phenomenological constants.

It has been generally assumed that in most instances of  
polypharmacology, the drug binding-site of one target or the domain 
within which it resides is in some fashion structurally related to 
the binding-site or domain of other targets that the drug interacts 
with40–42. A number of papers43–46 have taken a more high-resolution 
approach that focuses on individual groups within binding sites. 
The work from these laboratories has dramatically expanded the 
rather limited contemporary view of the structural requirements 
of drug-target interactions43–46. It counters the widely held, albeit 
changing, belief that if similar ligands bind to different proteins 
they must bind to structurally similar subsites in these proteins. The 
paper by Ehrt, et al.47 provides an overview of this developing area 
of research.

Recent work from Shoichet’s group at UCSF is based on detailed 
structural studies of the binding of 59 different ligands in  
116 complexes, where the binding of a given ligand involved pairs 
of proteins with different folds. In almost half of the protein pairs 
examined, a given ligand interacted with unrelated residues in the 
two proteins. Even in cases with similar binding-site environments, 
the ligands interacted with different residues. All of this shows 
that multiple patterns of residues and binding site environments 
are capable of interacting with highly structurally similar, even  
identical ligands. The investigators concluded that “There appears 
to be no single pattern-matching ‘code’ for identifying binding sites 
in unrelated proteins that bind identical ligands”. This view is in 
line with what has been espoused by Mathews for protein-DNA 
interactions almost two decades earlier48.

Mathematical representations of drug-target 
interactions
Drug-target relationships
Mathematically, drug-target interactions can be characterized as 
binary relations, R(D,T), that describe an association between a set 
of drugs 

                                   
{ }1 2, , ...,D nd dd=

                                   
(1)

and a set of drug targets 

                                   { }1 2T , , ..., .mt t t=                                   
(2)

These relations are described by ordered-pairs of elements, (d
i
,t

j
), 

formed by the Cartesian product of these two sets, D × T, i.e. 

        ( )( , ) R D,T D T for all D and T .i j i jd t d t∈ ⊆ × ∈ ∈         (3)

The meaning associated with ordered-pairs in a given relation 
depends on the nature of the relation. In this work we are interested 
in whether a drug is active with respect to a specific target. This is 
given by the characteristic function r(d

i
, t

j
) ∈ R associated with the 

relation, which satisfies 

           

1 if is active with respect to
( , ) ,

0 if is inactive with respect to
i j

i j
i j

d t
r d t

d t


=


              (4)

where the activity values are equal to or greater than a threshold 
value that typically lies in the range of 1μM -10 μM. The elements 
r(d

i
, t

j
) are generally collected into a n × m dimensional matrix, 

                  

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

.

m

m

n n n m

r d t r d t r d t

r d t r d t r d t

r d t r d t r d t

 
 
 =
 
 
 

R




   
                  

(5)

Now consider the transpose of the relation, R(D,T)′ = R(T,D). This 
changes the order of the elements in the ordered-pairs, i.e. 

                  
( ) ( )( , ) , ( , ) ,R D T R D Tj ji id t t d ′→∈ ∈

                    
(6)
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Nothing has fundamentally changed, except the arrangement of  
the elements of the relation; their values remain the same 

                  

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

.

n

n

m m m n

r t d r t d r t d

r t d r t d r t d

r t d r t d r t d

 
 
 =′  
 
 

R




   


               

(7)

Now the relation can be viewed from the ‘target perspective’.  
This clearly shows that however the values of the elements of  
R(D,T) or R(D,T)′ are obtained, i.e. from the drug perspective 
r(d

i
,t

j
), which is associated with polypharmacology, or from the tar-

get perspective r(t
j
,d

i
), which is associated with polyspecificity, the 

two views are completely comparable. The above argument is the 
basis for showing that polypharmacology and polyspecificity are 
mathematical duals of one another.

In order to simplify and clarify all subsequent discussion, the fol-
lowing three categories of relations associated with ordered drug-
target pairs are defined: 

(1) ‘active’, which includes all drug-target pairs whose activity has 
been experimentally measured or computationally estimated to 
meet or exceed the designated activity threshold value;

(2) ‘inactive’, which includes all drug-target pairs whose activ-
ity value has been experimentally measured or computationally  
estimated to fall below the designated activity threshold value;  
and

(3) ‘unknown’, which includes all drug-target pairs whose activi-
ties have neither been measured experimentally nor estimated  
computationally.

The following simple, illustrative example shows that the 8 × 4 
dimensional drug-target interaction matrix and its transpose, the  
4 × 8 target-drug interaction matrix, contain entirely equivalent 
information – only the ‘viewpoint’ has changed: 

       

+

1 1 0 1

0 1 1 0

1 0 0 0 1 0 1 1 0 1 1 0

1 1 1 0 1 1 0 1 1 0 1 0
,

0 1 0 1 0 1 0 1 0 0 1 1

1 0 0 1 1 0 0 0 1 1 1 1

1 1 1 1

0 0 1 1

.

 
 
 
   
   
   = =′   
   
   
 
 
  

+R R

   

(8)

In R
+
, the rows correspond to drugs and the columns to targets, 

while in R
+
′ the rows correspond to targets and the columns to drugs. 

The positive subscript indicates that the matrix represents active 
drug-target pairs.

Bipartite networks
It may also be desirable to represent the information in  
Equations (5), (7), and (8) as a network49,50, since a considerable 

amount of the data on biological interactions is presented in the 
literature as networks. When the entities that are being compared 
belong to different sets, for example drugs and targets, a bipartite 
network such as that given in Equation (9) is commonly used: 

                               N D T,E .= ∪                         (9)

These networks are comprised of sets of drug and target nodes, D 
and T, that are non-overlapping, i.e. D ∩ T = ∅. Edges only link 
nodes between D and T; there are no edges linking pairs of nodes 
within either D or T. Thus, the edge set can be defined as 

         
E ( , ) if ( , ) is an 'active ' drug-target pair{ }i j i je d t d t=

  
(10)

In networks, pairs of nodes directly linked by edges are said to be 
adjacent and constitute the elements of the (n + m) × (n + m) dimen-
sional adjacency matrix: 

                  
( ) ( ) ,n n n m
n m n m

m n m m

× ×
+ × +

× ×

 
= ′ 

0 A
A A 0


                  
(11)

where 

              

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ( , )
( , ) ( , ) ( , )

,

( , ) ( , ) ( , )

m

m

n n n m

a d t a d t a d t
a d t a d t a d t

a d t a d t a d t

 
 

=  
 
  

A




   
              

(12)

is called a biadjacency51 or incidence matrix49, although the lat-
ter usage is not strictly correct. The elements of A indicate which 
nodes of D are adjacent (i.e. linked or connected) to those of T. 
This provides what could be called drug-based view of the network. 
Since A′ is the transpose of A, its elements now indicate which 
nodes of T are adjacent to those of D (Cf. Equation (6)). This can 
be said to provide a target-based view of the network. Because the 
same information is contained in both matrices, the corresponding 
network has no directionality and is thus an undirected network. 
Moreover, the network topology is independent of which represen-
tation is used.

While not technically correct, for simplicity in this work A will be 
termed the adjacency matrix of 𝒩, since it contains all of the infor-
mation in 𝒩. The zero valued submatrices in A  show that there are 
no links among nodes within D or among those within T. Since the 
elements of A are in one-to-one correspondence with the elements 
of R, the two matrices are isomorphic. Hence, R and A, and by 
implication 𝒩, contain essentially the same information.

Figure 1 depicts the bipartite network corresponding to the drug-
target interaction matrix R

+
 given Equation (8). From the discussion 

of the general relationship of R and A in the previous paragraphs 
it follows that 

                                     

1 1 0 1
0 1 1 0
1 0 0 0
1 1 1 0
0 1 0 1
1 0 0 1
1 1 1 1
0 0 1 1

.+ +

 
 
 
 
 = ≡ 
 
 
 
  

A R

                         

(13)
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Note that R
+
′ and A

+
′ interchange the positions of the nodes of the 

corresponding network, so that the target nodes now lie on the left 
hand side of the network diagram and the target nodes lie on the 
right hand side. This changes nothing, since the topology of the 
network is the same in both cases.

Drug-target networks
Network data
Yildrim, et al.52 provided the earliest example of drug-target  
networks. Vogt and Mestres53 have also discussed a number of 
issues associated with such networks including, as mentioned  
earlier, the issue of data completeness37. Other related databases 
have also been developed such as those based on drug-side  
effects10 and gene-disease networks54.

While it is true that drug-target networks provide dramatic views 
of the complex interrelationships amongst drugs and their putative 
targets, they are difficult to interpret when the number of drug- 
target pairs becomes too large, as is demonstrated by several of the 
figures depicted in references 52 and 53. In those cases networks 
merely provide a visual sense of drug-target relationships and their 
overall complexity.

Because of this, such networks are rarely used directly to draw 
detailed inferences. Rather, as the information contained within 
them is available in various matrices such as the adjacency  
matrices shown in Equations (11) – (13), it can be analyzed by 
algebraic procedures, some of which are described in this work. 
However, even the matrix algebraic approach becomes limiting 
for the adjacency matrices of large drug-target systems, which are 
quite sparse. In such cases, normal matrix-algebraic procedures 
become very inefficient. Storing the limited amount of data in such 
large sparse matrices is also very wasteful. This necessitates the  
development of efficient data structures and algorithmic procedures 
that facilitate the management and analysis of large drug-target 

datasets55. The fact that so many large networks such as the Inter-
net have been analyzed has led to the development of highly effi-
cient algorithms that are more than capable of handling the size  
problems typically encountered with drug-target networks. The 
last part of the book by Newman49 describes a number of these 
algorithms. They are not employed here, since the goal of the cur-
rent work is the development of an understanding of some of the  
overlooked characteristics of drug-target network data and their 
analysis. Consequently, a very simple example is used as a basis for 
describing the underlying principles.

Many databases have been developed in order to provide a more 
unified source of experimental and computational data on drug- 
target interactions. Table 1 provides a summary of some use-
ful drug-target databases. References to the various experimental  
methods used can best be found in the databases themselves. 
Because of the size and complexity of the chemogenomic space, 
computational methods have begun to play a larger role in deter-
mining drug-target interactions. A sample of some of the many 
computational techniques is given in the following references6,56–59.

Polypharmacology and polyspecificity
The work described here is based on a phenomenological model 
of interactions between a set of drugs and a corresponding set of 
targets. Thus, as noted earlier, there is no requirement for any infor-
mation on the molecular structure of the drugs, their targets, or any 
details on the nature of their inter- molecular interactions.

The degree of a given drug node is equal to the number of edges 
connected to that node, which is equivalent to the degree of poly-
pharmacology of the drug associated with that node. The degree 
of a given target node is equivalent its degree of polyspecificity. It 
should be clear from Figure 1 that knowing the polypharmacology 
associated with the drug nodes is tantamount to knowing the degree 
of polyspecificity of the target nodes, and vice versa.

That this is the case can also be seen from the relational matrix, R
+
, 

given by Equation (8) or from the adjacency matrix, A
+
, given by 

Equation (13). In both instances, the rows represent drugs and the 
columns targets. Rows can be thought of as binary vectors associ-
ated with each of the drugs whose components are the targets the 
drugs can potentially interact with; correspondingly, columns can 
be thought of as binary vectors associated with each of the targets 
whose components are the drugs they can potentially interact with. 
Thus, all of the information on the degrees of polypharmacology and 
polyspecificity are contained in R

+
 and A

+
. Polypharmacology data, 

polyspecificity data, or some combination of the two can be used to 
‘fill in’ the elements of R

+
 and A

+
. The degrees of polypharmacol-

ogy and polyspecificity can then be computed by the expressions  
given in Equation (14) where the row and column sums correspond  
to the usual nodal degrees of the drug and target nodes, + PP( ) ( )i id dk π≡ˆ ˆ  
and PS( ) ( ).ˆ ˆ

j jt tk π+ ≡, which are equivalent to their corresponding degrees of 
polypharmacology and polyspecificity, PP ( )ˆ

idπ  and PS ( )ˆ
jtπ , i.e. 

        

T

D

PP

PS

,( ) ( ) ( ) ,   

( ) ( ) ( , ) ,   

ˆ for all D

,
ˆ for all T

ˆ

ˆ
j

i i i j i

j j i j j

t

d

d d d t d

t t d t t

k a

k a

π

π
∈

∈

+ +

+ +

≡ = ∈

≡ = ∈

∑

∑
   

(14)

Figure 1. Simple example of a bipartite drug-target network 
made up of eight drugs and four targets.
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where the a
+
(d

i
, t

j
) are elements of A

+
. Note that use of the caret 

or circumflex symbol “∧” follows customary statistical usage and 
indicates that these values are estimates. This will be used consist-
ently throughout this manuscript to indicate parameters estimated 
from data in the corresponding relational or adjacency matrices. As 
noted earlier, the adjacency or relational matrices contain all of the 
information needed to determine the degrees of polypharmacology 
and polyspecificity, in this case for the set of eight drugs and four 
targets, regardless of how the data are created. Having information 
about one of them automatically provides information on the other, 
since r(d

i
, t

j
) = r(t

j
,d

i
) and a(d

i
, t

j
) = a(t

j
,d

i
).

Table 2 summarizes the degrees of polypharmacology and polyspe-
cificity for the sets of drugs and targets in the example depicted in 
Figure 1, and represented by the adjacency matrix in Equation (13). 
But there is more that needs to be considered.

Limitations of network representations
The network representation of drug-target interactions effectively 
captures the information associated with active drug-target pairs, 
but in many instances it does not capture comparable information 
on inactive drug-target pairs or pairs whose activities have not been 
evaluated experimentally or computationally. This can lead to con-
siderable uncertainty in the dataset and can be a latent source of 
error in the determination of degrees of polypharmacology and 
polyspecificity. The situation is exacerbated by the fact that most 
drug-target databases do not report data on drugs that are inactive, 
even if such data exists. In those cases, the drug-target pair must be 
assumed to belong to the category of pairs with unknown activity. 
How this affects the analysis of drug-target interactions is described 
in the sections that follow.

It is quite likely that within larger datasets, the activity of many 
of the drug-target pairs has not been evaluated experimentally or 
computationally. Since some of these may nevertheless be active, 

it follows that the degrees of polypharmacology and polyspecificity 
are typically underestimated and hence only provide approximate 
lower bounds to the true values. They are not true lower bounds 
because the data used for their determination are not always entirely 
consistent or accurate. Hence their reliability may be questionable.

Even though the number of drug-target pairs in the inactive and 
unknown categories is small in the example given here, in reality 
the number can be substantial and generally exceeds the number 
of active drug-target pairs. This makes total sense given that the 
number of active compounds in large corporate databases is gener-
ally only a few percent of the total number of compounds in their 
database. Thus, the problem now becomes how to obtain data on 
drugs in a dataset that are known to be inactive. As mention ear-
lier, this is a significant problem for two reasons. First, activity 
data in corporate databases, where such information is likely to 
exist, is generally unavailable to the general research community.  
Second, most databases accessible by the non-industrial research 
community either do not report or report very little data on  
inactive drugs. Because of this, it is difficult to determine the  
contributions of drugs to the inactive category, which directly affects 
our knowledge of drugs in the category of unknown activity status. 
As will be seen in a forthcoming section, this impacts the size of 
the bounds to the degrees of polypharmacology and polyspecifi-
city. Thus, while data on inactive drug-target pairs does not provide 
information that is useful for identifying drug targets, its availabil-
ity reduces the size of the category of drugs of unknown activity, 
which improves the bounds on the degrees of polypharmacology 
and polyspecificity. The details of this argument are presented in a 
forthcoming section and are exemplified by the expression given in 
Equation (22).

More importantly, in many cases the number of possible drug-target 
pairs whose activity status is unknown may be significant. If they 
were experimentally or computationally determined, at least some 
of these might have activity values that meet or exceed the desired 
activity threshold. Not including these data will result in a less  
reliable estimation of the degrees of polypharmacology and polyspe-
cificity. It may also suggest that the observed drug-target interac-
tions involve a more limited region of target space than is actually 
the case. All of these issues raise questions as to how such data can 
be effectively incorporated into an analysis of drug-target interac-
tions. One way to address this issue is by extending the current 
networks to include the class of edge-colored bipartite networks.

Edge-colored bipartite networks
An edge-colored bipartite network is depicted in Figure 2 for the 
simple example shown in Figure 1. Edges corresponding to active 
drug-target pairs are colored green, those corresponding to inactive 
pairs are colored red, and those corresponding to pairs of unknown 
activity are colored black. Thus, all of the possibilities are now 
incorporated into a single edge-colored network. Figure 3a repre-
sents a separation of this network into its three components, cor-
responding to active (+), inactive (−), and unknown (*) bipartite 
subnetworks. Figure 3b depicts their respective adjacency matri-
ces, A

+
, A

-
, and A

*
, where the colored squares correspond to matrix 

elements with value ‘1’ and the uncolored squares correspond to 
matrix elements with value ‘0’. An examination of Figure 3b shows 
that the matrix elements of A, A

+
, A

-
, and A

*
 satisfy 

Table 2. Active drug-target interactions. The rows 
correspond to drugs and the columns to targets. The 
far right hand column gives values for the degree of 
polypharmacology, while the bottom most row gives 
values for the degree of polyspecificity. The binary 
values at the center of the table show whether a given 
drug-target pair is active (1) or inactive (0) or of unknown 
activity (0).

t1 t2 t3 t4 Polypharmacology

d1 1 1 0 1 3

d2 0 1 1 0 2

d3 1 0 0 0 1

d4 1 1 1 0 3

d5 0 1 0 1 2

d6 1 0 0 1 2

d7 1 1 1 1 4

d8 0 0 1 1 2

Polyspecificity 5 5 4 5 19
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( , ) ( , ) ( , ) ( , )   

   

1

for all D and T
i j i j i j i j

i j

d t d t d t d t

d t

a a a a−+ ∗= + + =

∈ ∈         
(15)

The elements of the three matrices cover all possible drug-target 
interactions and are non-overlapping. Thus, they represent a parti-
tion of the matrix elements of A, all of whose elements have value 
unity.

Because of this, it is possible to determine the degrees of nodes for 
each of the subnetworks independently. Thus, the row and column 
sums for the three colored networks associated with A

+
, A

-
, and A

*
, 

are given, respectively, by 

                            

Y

X

( ) ( , )  

( ) ( , )  

ˆ for all X

ˆ for all Y

j

i i j i
y

j i j j
xi

d d t d

t d t t

k a

k a

∈

∈

= ∈

= ∈

∑

∑

η η

η η

                 

(16)

where η ≜ +, –, *. Equation (14) shows the equivalences  

PP+ ( ) ( )iid dk ≡ˆ π̂  and PS( ) ( ) .ˆ ˆj jt tk+ ≡ π  As is discussed in detail 
in forthcoming sections, the terms ( )ˆ

idk∗  and ( )ˆ
jk t∗  are 

equivalent to error terms that provide uncertainty measures  
with respect to the degrees of polypharmacology and polyspe-
cificity. In order to emphasize this property and to make their  

Figure 2. Example of the network in Figure 1 represented as an 
edge-colored network, where the green edges correspond to 
active drug-target pairs, the red edges to inactive drug-target 
pairs, and the black edges to drug-target pairs of unknown 
activity status.

Figure 3.  (a) Decomposition of the bipartite, edge-colored network depicted in Figure 2 into its three component subnetworks, namely drug-
target pairs that are active, inactive, and of unknown activity status. (b) The adjacency matrices corresponding to the bipartite, edge-colored 
subnetworks given in (a). The colored cells correspond to a value of unity and the uncolored cells to zero values.
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association with PP )(ˆ
idπ  and PS ( )ˆ

jtπ  clear, the following equiv-
alences are defined: PP( ) ( )ˆ ˆ

i id dk ε∗ ≡  and PS( ) ( )ˆ ˆ
j jt tk∗ ≡ ε  for  

all d
i
 ∈ D and t

j
 ∈ T.

The results for the simple example depicted in Figure 1–Figure 3  
are collected in Table 3 and Table 4. In Table 3, PP( ) ( )ˆ ˆ

i id dk ε∗ ≡_ PP( ) ( )ˆ ˆ
i id dk ε∗ ≡ corre-

sponds to the right hand column designated ‘Row-Sum’, and PP( ) ( )ˆ ˆ
i id dk ε∗ ≡_ PS( ) ( )ˆ ˆ
j jt tk∗ ≡ ε   

corresponds to the bottom row designated ‘Col-Sum’, and similarly 
for PP

ˆ ( )idε  and PP
ˆ ( )idεPS ( )ˆ

jtε , respectively, in Table 4. These latter quanti-
ties associated with the drug-target pairs of unknown activity are  
important since they contain information, albeit latent information, 
that bears on the degrees of polypharmacology and polyspecificity 
for any drug-target dataset. As noted earlier, some of the drugs 
known to be inactive may nonetheless fall in the category of drugs 
of unknown activity, because inactivity data is not generally incor-
porated into many of the widely available drug-target databases. 
Moreover, the terms associated with inactive drug-target pairs k_(d

i
) 

and k_(t
j
) provide useful information since they eliminate the pos-

sibility of being considered as active pairs. They also have an effect 
on the sizes of PP

ˆ ( )idε  and PS
ˆ ( )itεPS ( )ˆ

jtε , as discussed in a forthcoming 
section.

The information in Table 2–Table 4 can be represented as three-
dimensional Euclidean vectors 

          

( )
( )

PP PP PP

PS PP PP

( ) ( ), ( ) , ( )

( ) ( ) , ( ) , ( )

ˆ ˆˆ

ˆ ˆˆ

i i i i

j j j j

d d d d

t t t t

k

k

−

−

=

=

k

k

π ε

π ε     
(17)

that can be plotted in three dimensions as depicted in Figure 4.  
Although not examined in this work, Euclidean vectors also 
allow computation of inter-vector distances and cosine-based  
similarities23, either of which can be used to cluster the data points 
by a variety of well-known methods60.

In the case where the activities of all of the drug-target pairs have 
been measured, ideally the points will lie entirely within the ‘Active-
Inactive’ plane. In general, the information provided exceeds that of 
typical bipartite drug-target networks, because of the explicit inclu-
sion of data on drug-target pairs of inactive and unknown activity.

Measures of data completeness
Global measures
A global measure of data completeness that accounts for experi-
mentally determined or computationally estimated activities of 
drug-target pairs is given by 

                           
DT

ˆ ˆˆ
ˆ ˆ ˆ

C + −

+ − ∗

µ + µ
=

µ + µ + µ                        
(18)

where ˆ
+µ  is an estimate of the total number of experimentally or 

computationally determined active pairs, ˆ
−µ  is an estimate of the 

total number of experimentally or computationally determined 
inactive pairs and *µ̂  is an estimate of the total number of pairs of 
unknown activity status. Thus, 

                        D T

ˆ ( , )
i j

i j
d t

a d tη η
∈ ∈

µ = ∑ ∑
                      

(19)

where η ≜ +, −, *. The denominator of Equation (18) is a known 
constant because it is equal to the total number of possible drug-
target pairs in the dataset, |D × T| = n·m. Hence, there are only two 
degrees of freedom for the estimated quantities, and the value of *µ̂  
is specified directly if the values of ˆ

+µ  and ˆ
−µ  are known.

Table 3. Inactive drug-target 
interactions. The rows correspond to 
drugs and the columns to targets. The 
far right hand column gives values for 
the row sums (‘Row-Sum’), while the 
bottom most row gives values for the 
corresponding column sums (‘Col-
Sum’). The binary values at the center 
of the table show whether a given drug-
target pair is inactive (1) or active (0) or 
of unknown activity (0).

t1 t2 t3 t4 Row-Sum

d1 0 0 0 0 0

d2 0 0 0 1 1

d3 0 0 0 1 1

d4 0 0 0 1 1

d5 1 0 0 0 1

d6 0 1 1 0 2

d7 0 0 0 0 0

d8 0 1 0 0 1

Col-Sum 1 2 1 3 7

Table 4. Unknown drug-target 
interactions. The rows correspond to 
drugs and the columns to targets. The 
far right hand column gives values for 
the row sums (‘Row-Sum’), while the 
bottom most row gives values for the 
corresponding column sums (‘Col-Sum’). 
The binary values at the center of the 
table show whether a given drug-target 
pair is of unknown activity (1) or  
active (0) or inactive (0).

t1 t2 t3 t4 Row-Sum

d1 0 0 1 0 1

d2 1 0 0 0 1

d3 0 1 1 0 2

d4 0 0 0 0 0

d5 0 0 1 0 1

d6 0 0 0 0 0

d7 0 0 0 0 0

d8 1 0 0 0 1

Col-Sum 2 1 3 0 6
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In the example given in Figure 2 and Figure 3 and Equation (8) and 
Equation (13), and ˆ

+µ  = 19, ˆ
−µ  = 7, *µ̂  = 6. Thus, 

       C
DT 

= (19 + 7)/(19 + 7 + 6) = 26/32 = 0.813,     (20)

which satisfies 0 ≤ C
DT

 ≤ 1. Obviously, the closer C
DT

 is to unity, 
the more accurate the estimates of polypharmacology and polyspe-
cificity will be, but it provides no information on the degrees of 
polypharmacology and polyspecificity associated with individual 
drugs or targets.

Local measures
In many instances, it is desirable to have local measures that are 
associated with individual drug or target nodes. One possible 
local measure is related to the nodal degrees of bipartite subnet-
works associated with drug-target pairs of unknown activity status, 

PP
ˆ ( )idε  and PS

ˆ ( )itε , which can be viewed as measures of error or 
uncertainty. Fractional measures could also be defined by dividing 
each of them by | T | and | D |, respectively, but this will not be done 
here.

In order to develop these measures, the nodal degrees are combined 
with respect to all three types of relations given by Equation (16) 
for each of the nodes d

i
 ∈ D and t

j
 ∈ T. Combining and simplifying 

terms using Equation (15) yields 

            
PP PP

PS PS

( ) ( ) ( )  

( ) ( ) ( )  

ˆ ˆˆ for all DT
.

ˆ ˆˆ for all TD

i i i i

j j j j

d d d d

t t t t

k

k

π ε

π ε
−

−

+ + = ∈

+ + = ∈           
(21)

As was the case for the variables in the denominator of Equation (18),  
the sum of terms in either expression in Equation (21) is equal 

to a constant, and hence there are two degrees of freedom. Once  
values for the first two terms in either expression of Equation (21) 
are obtained by appropriately summing the experimentally or com-
putationally determined elements of their corresponding adjacency 
matrices A

+
 and A

−
, the values of the remaining error terms, PP

ˆ ( )idε  
and PS

ˆ ( )itε , are automatically specified. Nevertheless, uncertainties 
in these terms remain because it is not known which of their ele-
ments, a

*
(d

i
, t

j
), correspond to active drug-target pairs, i.e. which 

have a value of unity, and which do not.

Knowing that the values of k
−
(d

i
) and k

−
(t

j
) are useful is seen by 

rearranging Equation (21) 

                       

PP PP

PS PS

( ) ( ) ( )

( ) ( ) ( )

ˆ ˆT

ˆ ˆD

i i i

j j j

d d d

t t t

k

k

−

−

= − −
⋅

= − −

ε π

ε π                
(22)

The following example illustrates this point. Consider a  
specific drug, say d

p
, with unknown activity with respect to a  

subset of two of the targets under study; hence, PP ( ) 2.ˆ
pd =ε  Now 

experimentally or computationally determine the activity of the  
drug with respect one of the targets, say tq. The drug will either be  
active or inactive. Regardless of which, it will diminish the size 
of PP ( ) 2ˆ

pd =ε  and, as will be seen in the following section, will  
tighten the bounds on PP ( ) .ˆ

pdπ  Hence, even though the compound 
has no particular value as a drug for that target, knowing that it is  
inactive improves the estimate of its degree of polypharmacology 
with respect to the entire set of targets under study. This affords a clear  
example of the usefulness of information on the inactivity of 
drugs towards specific targets. An exactly analogous argument can  
be made regarding targets, although the details will not be given 
here.

Figure 4. (a) Three-dimensional plots of the information in Table 2–Table 4 for drugs. (b) Three-dimensional plots of the information in  
Table 2–Table 4 for targets.
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Bounds for the degrees of polypharmacology and 
polyspecificity
Bounds to the values of PP ( )ˆ

idπ  and PS ( )ˆ
jtπ  can be derived in a  

relatively straightforward manner from two basic assumptions:

(1) all (d
i
, t

j
) pairs of unknown activity are actually active, i.e.  

a
*
(d

i
, t

j
) ⇒ a

+
(d

i
, t

j
) = 1, for all a

*
(d

i
, t

j
) ∈ A

*
; and

(2) all (d
i
, t

j
) pairs of unknown activity are actually inactive, i.e 

a
*
(d

i
, t

j
) ⇒ a

−
(d

i
, t

j
) = 1 for all a

*
(d

i
, t

j
) ∈ A

*
.

In the first case the magnitudes of PP
ˆ ( )idε  and PS ( )ˆ

jtε  determine 
the respective uncertainties of PP ( )ˆ

idπ  and PS ( )ˆ
jtπ , while in the sec-

ond case, assuming that all (d
i
, t

j
) pairs of unknown activity are 

in fact inactive gives values of PP ( )ˆ
idπ  and PS ( )ˆ

jtπ  that are lower 
bounds to their true values. But as noted earlier their true values 
may be lower because of measurement, computational, or other 
types of errors.

The mathematical expressions in Equation (23) show that the true 
values, πPP ( )ˆ

idπ  and πPS ( )ˆ
jtπ , are bounded, i.e. 

                 
PP PP PP PP

PS PS PS PS

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ˆˆ ˆ

ˆˆ
i i i i

j j j j

d d d d

t t t t

≤ ≤ +

≤ ≤ +

π π π ε
π π π ε            

(23)

and thus they depend directly on the magnitudes of their correspond-
ing uncertainties, PP

ˆ ( )idε  and PS ( )ˆ
jtε . Maximum upper bounds to 

these quantities are given by max[ PP ( )ˆ
idπ ] = | T | and max[ PS ( )ˆ

jtπ ] =  
| D |, since the maximum connectivity of any d

i
 node is equal to the 

total number of t
j
 nodes, | T |, and similarly the maximum connec-

tivity of any t
j
 node is equal to the total number of d

i
 nodes, | D |. 

If all of the d nodes are connected to all of the t nodes the network 
is fully connected, and thus would be a complete bipartite network. 
This result is clearly seen in Figure 2 if all of the edges were colored 
green and in Equation (13) if all of the matrix elements a

+
(d

i
, t

j
) = 1,  

a situation that is only achieved in the case where there are no inac-
tive or unknown elements, i.e. a

−
(d

i
, t

j
) = a

*
(d

i
, t

j
) = 0 for all and 

d
i
 ∈ D and t

j
 ∈ T. Lastly, consider the case where all of the edges 

correspond to active or inactive drug-target pairs, i.e. there are no 
drug-target pairs of unknown activity. In this case, all of the edges 
in the network are either green or red, and the elements of the three 
adjacency matrices satisfy a

+
(d

i
, t

j
) + a

−
(d

i
, t

j
) = 1 and a

*
(d

i
, t

j
) = 0 

for all d
i
 ∈ D and t

j
 ∈ T.

Applying the expressions in Equation (23) to the data in Table 2 and 
Table 4 yields the bounds given in Table 5 and Table 6. As discussed 
earlier, these bounds are unrealistically small, since in real cases 
the sizes of PP

ˆ ( )idε  and PS ( )ˆ
jtε  are likely to be much larger than 

those used in the simple example presented here. Nevertheless, it 
illustrates a number of relevant points. In carrying out this analysis 
it is important to remember that all drug-target pairs whose activity 
has not been determined must be included in the class of drug-target 
pairs of unknown activity, which directly contributes to the uncer-
tainty in PP ( )dπ̂  and PS ( )ˆ tπ .

Summary and conclusions
The study of polypharmacology is becoming increasingly impor-
tant in drug research because it raises awareness of the inherent 
lack of specificity of drugs and xenobiotics for specific targets. 
Moreover, it provides a basis for understanding the prevalence of 
side effects and the rationale behind the repurposing of drugs for 
new therapeutic indications. The concept of polyspecificity, on the 
other hand, affords support for the lack of specificity of drug tar-
gets. A simple mathematical argument shows that these seemingly 
disparate characteristics of drugs and targets are, in fact, closely 
related, a result that to the best of our knowledge has not been pre-
viously published by other authors. This is supported by a growing 
number of structural studies that suggest that the variety of different 
structural patterns arising in drug-target interactions is so large it is 
highly unlikely that high degrees of specificity in these interactions 
will occur.

Table 5. Upper 
and lower bounds 
to the degree of 
polypharmacology for 
the set of eight drugs 
in the simple example 
described in this work.

Lower Upper

d1 3 4

d2 2 3

d3 1 3

d4 3 3

d5 2 3

d6 2 2

d7 4 4

d8 2 3

Table 6. Upper 
and lower bounds 
to the degree of 
polyspecificity for the 
set of four targets in 
the simple example 
described in this work.

Lower Upper

t1 5 7

t2 5 6

t3 4 7

t4 5 5
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Constructing networks is a popular enterprise in biology nowadays. 
Although useful, these networks have some significant limitations. 
For example, while they offer a highly visual depiction of the  
interrelationships among entities associated with the nodes in the 
network it is difficult to extract detailed information from them 
when the number of entities is large, a situation that also obtains 
in the case of drug-target networks. The issue can be overcome 
by utilizing the adjacency matrix of the network, which provides 
a faithful representation of its edge structure, and thus preserves 
the relations associated with active drug-target pairs. Because of 
this the degrees of polypharmacology and polyspecificity can be 
computed directly from adjacency matrices.

There is other information associated with drug-target pairs that 
is rarely if ever dealt with. Representing this information involves 
the use of the edge-colored bipartite drug-target networks intro-
duced in this paper. In addition to representing active drug-target 
pairs, which is the case with standard drug-target networks, these 
augmented networks represent data associated with inactive drug- 
target pairs and with pairs of unknown activity. By including 
this heretofore latent data it is possible to compute global and  
local measures of data completeness as well as bounds for the 
degrees of polypharmacology and polyspecificity. These parameters 
can be viewed as diagnostics of the suitability of a given analysis of 
a drug-target network.

In the simple example describe here, the values for the uncertain-
ties PP

ˆ ( )dε  and PS
ˆ ( )tε  are quite small, and hence the upper bounds 

lie close to the values of PP ( )dπ̂  and PS ( )ˆ tπ . This is not likely to 
be the case in larger, more realistic drug-target networks. In such 
cases, the uncertainties will be considerably larger due to a lack 
of data availability. As noted above, the reliability of the analysis 
can be increased by the use of experimentally or computationally  
determined data on inactive drug-target pairs. Unfortunately, 
such data is not as readily available in many publicly accessible  
databases where the focus is largely on drugs that are active with 
respect to specific targets. Assuming drugs without activity data 
are inactive, as is the case in the use of ‘decoys’ to test various  
computational methodologies, clearly leads to a loss of informa-
tion. This trend needs to be reversed.

Although the analysis presented here is useful, it is just a start and 
by no means exhausts the possibilities for further study. Three  
areas for to consider for future research include: 

(1) Expanding statistical analysis of drug-target network  
properties;

(2) Examining higher-order drug-target interactions; and

(3) Developing weighted and fuzzy representations of drug-target 
networks.

A lot of work is still needed in order to provide a suitably  
rigorous formalism for treating drug-target networks in ways that 
allow maximum extraction of information, which clarifies a number 
of the subtle issues associated with these biologically important  
networks.
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This subject is relevant for the drug discovery community. The theoretical approach is potentially sound,
as far as I can tell - but (full disclosure) while familiar with statistics and matrices algebra, I believe

.someone more competent in such mathematics should judge that part of the publication

The problem is  : Indeed, after more than a century of pharmaceutical research, it has becomegenuine
clear (owing to high throughput screening of large chemical libraries) that many drugs bind to multiple

This problem is compounded by other aspects such as  , targets. tissue distribution on- and off-
,   and other pharmacokinetics parameters. Target and drug dissociation constants half-life (*see

 specific elements influence the relevance of both polypharmacology and polyspecificity.below)

Which begs the question,   The authors encode how relevant is target polyspecificity? "structurally
 in their definition (see Abstract and Introduction). This in itself is a slippery slope,dissimilar drugs"

considering   that similar molecules do not always share the same activityMaggiora's 2006 Commentary
landscape. The implication being that structural similarity does not always work. So, dis-similarity would
have to be defined... at the 2D level (which fingerprints)? 3D? (shape? electrostatics? etc.). In my opinion,
polyspecificity does NOT require "dissimilar" in the definition.

Polyspecificity is relevant when one considers drugs co-administered simultaneously - with the possibility
of exacerbating some side-effects or, perhaps, staying "on target". This is likely to occur, considering that 

 (aka  ). Thus, the issue of15% of U.S. adults are likely to use 5 or more prescription drugs polypharmacy
target polyspecificity is relevant  and ought to be investigated more in the context of co-prescribed
medications.

The main topic of this paper is polypharmacology. The issue of  appears to be brushed aside, aspotency 
shown in the assumption that " " (seedrug-target interactions can be characterized as binary relations
Drug-Target Relationships). This, of course, implies that Drug D1, with a Ki of 1 nM (10  M) has the same
relevance for polypharmacology and polyspecificity as Drug D2, with a Ki of 1 mM (10  M). In practice,
this is not likely to be the case.

Polypharmacology is not a binary issue of binding or not binding. The bi-partite drug-target network in
Figure 1, therefore, not only has nodes and edges, but edges have values: D1 binds to target T1 with
potency P1, D1 binds to T2 with P2 and so on... Which would change Table 2 into something more

familiar to medicinal chemists, i.e., a Structure-Activity Table. 
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1.  

2.  

familiar to medicinal chemists, i.e., a Structure-Activity Table. 

The issue of what's "active" vs. "inactive" (e.g., Fig 3) is a somewhat subjective issue. Take for example 
: ropinirole "although the anti-Parkinsonian drug ropinirole is more potent at the D  receptor than the D

 receptor by an order of magnitude, we annotate the D  receptor as the mechanism of action target
because D  receptors, but not D  receptors, are expressed in the substantia nigra, the pathologically

. Our own   shows other targets, such as therelevant tissue for anti-Parkinsonian drugs" DrugCentral entry
5-HT  and alpha-  adrenergic receptors, with potency similar to D  receptors. Is that relevant? Should
all targets with potency below 6 (on the negative log scale) be considered "inactive"? The answer to these
questions depends on the problem at hand.

By the same token, the issue of polyspecificity may be regarded differently given a target for which over
20 potent (approved) drugs are known (some Receptor Tyrosine Kinases fit this profile), compared to a
target for which only 2 drugs are approved (e.g., cyclin-dependent kinases 4 and 6).

Given the wealth of data for drug-target interactions from a variety of sources such as  , ChEMBL
,   or  , it is recommended that real examples are used in thisDrugBank DrugCentral GuideToPharmacology

paper. Although " " remains an issue, the authors can no doubt identify a subset ofdata completeness
20-50 drugs, say anti-depressants or anti-psychotics, for which a wealth of   bioactivity data arein vitro
available through various channels, including   in addition to the above.PDSP

That would provide clear and immediate utility to the upper and lower bounds for the degree of
polypharmacology (Table 5), which would make this paper more impactful. The authors are clearly aware
of this, as discussed in Conclusions...

I found the discussion related to the limitations of network biology representations particularly interesting.
Perhaps that section could be expanded... 

 Two simple scenarios are discussed. These do not include  target mutations (e.g., causing(*) Footnote.
drug resistant cancers or infections), allelic variation, or other population-specific phenomena.  

The target is in the CNS, but the drug itself is an ABCB1 substrate (see for example the impact of
), or the drug lacks blood-brain barrier permeability - in which case theABCB1 on CNS side-effects

potency of the drug   is irrelevant  . in vitro in vivo
The drug can have significant   potency on many targets, e.g.,   hits over 20in vitro dobutamine
human targets according to  . However, its half-life is 2 minutes. Therefore, these "offDrugCentral
target effects" are irrelevant.  
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If applicable, is the statistical analysis and its interpretation appropriate?
I cannot comment. A qualified statistician is required.

Are all the source data underlying the results available to ensure full reproducibility?
No source data required

Are the conclusions drawn adequately supported by the results?
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This is as close to 'publish as is' as I've ever seen. Excellent work, well articulated, good overview of
literature.

My only suggestion is that a paragraph at the end would be helpful, laying out the experimental
implications of this theory, i.e. if this theory holds or if such analyses pan out, how would an
experimentalist change their research plan?
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This is an original and nice contribution to the field. The authors propose a mathematical approach to
analyse the relation between polypharmacology and polyspecificity, that are, as presented here “two
concepts running on the same avenue”. I particularly like the idea of extracting latent information to
describe relationships between the degrees of these two complementary features.

This work highlights the inherent complexity of biological systems providing a view of drug-target
interactions as a pattern where both sides have an array of possibilities. Pattern recognition involved in
the perception of odorants provides an additional example (See for instance DOI: 10.1038/81774) of the
complexity involved in the recognition of ligands by biomacromoleules. It could be envisioned that the
mathematical approach described in this paper will be attractive to parallel areas of biological processes
governed by pattern interactions.
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 José L Medina-Franco
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This well-written and organized manuscript addresses an extremely timely topic in drug discovery.

The authors starts defining the basic concepts of polypharmacology and polyspecificity. Then, in a very
clear and didactic manner (using nice illustrations), propose a general and intuitive mathematical
approach to quantify the degrees of both concepts. It is clear from the manuscript the mathematical
relationship of polypharmacology and polyspecificity (e.g., paraphrasing the authors “the two sides of the
same coin”). The new measures address at some extent data incompleteness that is a major issue of
chemogenomics data sets. As the authors point out in the Conclusions, this paper sets the ground to
implement these metrics to public or private chemogenomics data sets. In particular, I found quite
innovative and clear the edge-colored bipartite networks introduced in this manuscript.
 
I strongly support indexing of this paper. Minor suggestions to further improve the manuscript:
 

The term “frequent hitter” related to polypharmacology can be added in the Introduction.
 
Comment on the effect of drug concentration in chemogenomics data sets. For instance, adverse
drug reactions, and drug-interaction networks in general, will depend on the drug concentrations.
 
Page 4: Include reference related to the statement: “Recent work from Shoichet’s group at UCSF
…”. I believe the authors refer to the paper published in ACS Chem. Biol. 2015 . This manuscript is
not included in the Reference section of the current version.
 
Spell out "UCSF" (University of California at San Francisco).
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