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Abstract: Integrin activation is essential for creating functional transmembrane receptors capable
of inducing downstream cellular effects such as cell migration, cell spreading, neurite outgrowth
and axon regeneration. Integrins are bidirectional signalling molecules that mediate their effects by
‘inside—out” and ‘outside—in’ signalling. This review will provide a detailed overview of integrin
activation focusing on intracellular activation in neurons and discussing direct implications in the
regulation of neurite outgrowth and axon regeneration.
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1. Introduction

Integrins are transmembrane receptors that form cell—cell or cell-matrix interactions in order
to instigate vital cellular events such as cell migration, cell spreading and, more recently, neurite
outgrowth and axon regeneration. Integrin receptor binding and subsequent receptor activation
are critical for these processes to occur. Both the developing and adult nervous systems are
affected by integrin-mediated interactions. For example, during cortical development, integrins are
required for neuronal migration during the process of laminar organisation and synaptogenesis [1,2].
In astrocytes, integrins are required for cell adhesion, differentiation and migration during nervous
system development and maintenance of the mature nervous system [3]. Myelinating cells such as
oligodendrocytes and Schwann cells also express integrins which are directly involved in coordinating
the process of axon myelination [4,5].

As integrins are essential for the proper functioning of a normal and healthy nervous system,
translational researchers in the field of axon regeneration have been trying to harvest the use of
integrins following a central nervous system (CNS) injury, such as spinal cord injury, in order to
recapitulate a developmental growth state that could enhance regenerative growth. In the past decade,
we have published a series of progressive studies that demonstrate the potential use of integrins
for promoting both neurite outgrowth and in vivo axon regeneration in the spinal cord following
injury [6-8]. Included in these data is the pivotal finding that although forced expression of integrin
subunits alone can promote substantial regeneration, the activation state of the integrin receptor
needs to be considered in order to fully maximise regenerative potential. In the event of CNS injury,
the upregulation of inhibitory molecules such as chondroitin sulfate proteoglycans (CSPGs), myelin
debris and Nogo-A in the lesioned environment can result in integrin inactivation, hence relinquishing
any axon-promoting effects [9-11]. In this review, we will discuss how an integrin receptor functions,
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with emphasis on its activation state and the implications that integrin activation has on promoting
axon regeneration.

2. The Challenging Task of Axon Regeneration

The adult mammalian CNS is well known for its inability to regenerate after injury due to the
limiting factors found in both the nervous system environment and within the neurons themselves.
This is in contrast to the peripheral nervous system (PNS) and the early developing CNS [12-14]
where axon regeneration and plasticity are not only possible but are also likely to occur. In order to
achieve functional axon regeneration after injury, processes such as growth cone formation, response
to guidance cues in the environment, synaptogenesis and axon pruning are required. These processes
are similar to those of developing axons for which integrins play a large part. However, there are
spatiotemporal regulations throughout CNS maturation that dictate the expression of particular
integrin subunits or heterodimers [15]. As a result, some integrin subunits are downregulated after
nervous system development, thereby having knock-on effects on the ability of adult neurons to form
certain cell-matrix interactions and thus inhibiting neurite outgrowth and axon regeneration required
for regrowth. The involvement of integrins in neuronal development, maturation and post-injury
expression has been reviewed in detail elsewhere [16].

The diverse integrin family allows for the binding of a plethora of ligands in the extracellular
matrix (ECM) and has, therefore, made integrin receptors ideal candidates for neurite outgrowth and
axon regeneration in terms of flexibility and specificity. As a family, integrins can recognise more than
20 different ligands in the ECM as well as on neighbouring cells [17]. During in vivo neurite outgrowth
or axon regeneration, the growing axon may have to grow through a long list of ECM ligands on
its path to the terminal target. Thus, optimising the expression and activation of a transmembrane
receptor such as an integrin that can recognise so many different ligands would be very useful for
nervous system repair.

The neurons of the dorsal root ganglion (DRG) have been a popular model for researchers
studying integrin and neurite outgrowth. The unique characteristic of DRG neurons with axonal
projections both in the periphery (peripheral branch) and the spinal cord (central branch) has made
them a useful model for studying the underlying mechanisms for successful axon regeneration in the
PNS environment and also the failure of axon regeneration in the adult mammalian CNS. Successful
PNS regeneration of DRG neurons after injury has been demonstrated with an upregulation of
specific integrin subunits such as a4, a5, a6, 7 and (1 [18-21]. Furthermore, it has been shown that
embryonic/developing DRG neurons can modulate their integrin expression in response to different
concentrations of a ligand, such as laminin [22], as well as adapt their integrin expression in the
presence of an inhibitory substrate such as CSPG in order to achieve maximum neurite outgrowth [23].
The fact that embryonic DRG neurons possess this dynamic regulation of integrin expression and
subsequent outgrowth has prompted the integrin manipulation in adult DRG neurons to promote
adult CNS axon regeneration [24]. Firstly, to further understand how integrin activation can have
an implication on axon regeneration, it is essential to understand how integrin receptors function as
signalling molecules.

3. Integrin Heterodimers as a Transmembrane Signalling Molecule

A functional integrin receptor is a heterodimer made up of an alpha (o) and a beta (3) subunit.
The integrin family comprises 18 & and 8 {3 subunits that are non-covalently associated into 24 different
heterodimers [25]. Different integrin heterodimers bind to different ligands such as laminin, collagen,
fibrinogen, tenascin-C and cadherin [17,26]. Most integrin heterodimers can recognise more than one
ligand and the same ligand can bind to different heterodimers.

Each integrin subunit contains a large extracellular domain, a transmembrane domain and a
cytoplasmic domain. Briefly, the extracellular domain of the « subunit consists of a 3-propeller,
thigh, calf-1 and calf-2 domains [27]. In addition, a subset of « subunits such as a1, a2, 10 and «11
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also has an I/ A domain within the B-propeller. The I/A domain contains a metal ion-dependent
adhesion site (MIDAS) that acts as a ligand binding site [28,29]. Metal ions such as the cations
magnesium, calcium or manganese can be found binding in the MIDAS. On the other hand, the
extracellular domain of the 3 subunit consists of an I/A domain, an immunoglobulin-like hybrid
domain, a plexin-semaphorin-integrin (PSI) domain, four EGF-like repeats (EGF1-4) and a (-tail
domain [27]. For those « subunits that do not have an I/ A domain, the I/ A domain located on the
subunit serves as the ligand binding site instead, after forming a complex with the 3-propeller on the
o subunit [30] (Figure 1).
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Figure 1. Integrin Structure and Activation. Activation of integrin heterodimers leads to intracellular
signalling cascades and resulting processes such as cell motility, cell survival, cell differentiation,
cell differentiation and neurite outgrowth. Schematic representing integrin conformations at the
membrane including changes that occur with ‘Inside-Out signalling” and ‘Outside-In signalling’.
An inactivated integrin heterodimer exists with a closed and bent conformation (extracellularly)
stabilised by a cytoplasmic salt bridge. This conformation has a very low ligand binding affinity.
With Inside—Out signalling, intracellular activators (such as kindlin and talin) bind the 3 subunit
cytoplasmically and interact/destabilise the salt bridge, leading to an open and extended (active)
conformation with increased ligand binding affinity. With Outside-In signalling, binding of a ligand
(ECM molecules such as laminin, fibronectin, or tenascin) extracellularly occurs as a result of integrin
activation leading to a conformational change to an open and extended (active) conformation with high
ligand binding affinity. Individual names of the extracellular domain components have been shown in
the Outside-In signalling example for simplicity, with further explanation in the main text.
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Integrins are bidirectional signalling molecules. They exist in either the inactivated or activated
state. It has been suggested that integrins are transported to the plasma membrane from the
endoplasmic reticulum as a heterodimer in the bent inactivated state [31]. During integrin activation,
the molecule changes from a bent low-affinity conformation into a stable extended high-affinity
conformation, known as ‘inside—out’ signalling. This results in a higher affinity binding of extracellular
ligands to the activated integrin and triggers a series of intracellular signalling cascades that are
important for relaying information from the external environment to the inside of the cell, termed as
‘outside—in’ signalling (Figure 1).

The integrin cytoplasmic domains, especially the 3 subunit cytoplasmic domain, are important in
regulating the affinity state of the receptor and triggering intracellular signalling cascades. When the
receptor is in the bent inactivated low-affinity state, a salt bridge is formed between the KLLITIHD
motif on the 3 subunit and the GFFKR motif on the o subunit [32]. Binding of an activator to the
 subunit cytoplasmic domain unclasps these two cytoplasmic domains and induces affinity and
conformational changes in the receptor [33] (Figure 1).

4. ‘Inside-Out’ Signalling

The process that induces a conformational change in the integrin receptor from a bent inactivated
low-affinity state to a stable extended activated high-affinity state via an intracellular activator is
termed ‘inside—out’ signalling or integrin activation. Upon integrin activation, the ligand binding site
on the I/ A domain, which is normally hidden in the inactivated state, is exposed to the surrounding
environment for ligand binding [33]. The two well-known intracellular activators of integrin are
kindlin and talin. Both kindlin and talin contain a FERM (4.1 /ezrin/radixin/moesin) domain that has
a phosphotyrosine binding (PTB) site serving as the integrin binding site [34,35].

4.1. Kindlin

Three members have been identified in the kindlin family: kindlin-1, kindlin-2 and kindlin-3.
These isoforms differ in terms of subcellular localisation and expression [36]. For instance, kindlin-1 is
expressed predominantly in epithelial cells, kindlin-2 is ubiquitously expressed and is the only kindlin
isoform present in the nervous system, and kindlin-3 is expressed almost exclusively in haematopoietic
cells such as leukocytes and macrophages. The FERM domain is located at the C-terminus of kindlin
and is made up of F1, F2 and F3 subdomains [37]. All kindlin isoforms bind to the membrane-distal
NxxY motif on the 3 subunit cytoplasmic tail of integrin via the F3 subdomain at the PTB site, resulting
in a conformational change and activation of the integrin receptor. Functionally, kindlin was first
observed to colocalise with integrin and play a role in integrin-dependent cell-matrix adhesion in
C. elegans [38].

Most studies on kindlin have focused on its role in epithelial cells and leukocytes, with very
few studies being performed on the nervous system. We have recently published two related studies
that have clearly shown the growth-promoting role of kindlin in the nervous system as it relates to
integrin expression and activation [7,8]. Specifically, overexpression of kindlin-1 in adult rat DRG
neurons promotes sensory axon regeneration by overcoming the growth-inhibiting effect of the CSPG,
aggrecan. This was achieved by increasing the level of integrin activation demonstrated with increased
levels of phosphorylated FAK (by immunostaining with anti-pY397). Previously, CSPGs have been
shown to have a direct effect on integrin inactivation, although the underlying cellular mechanism is
not clear [11]. Interestingly, overexpression of kindlin-2, the isoform usually present in the nervous
system, did not result in any axon growth [7]. This suggests that the kindlin isoforms presumably have
different and non-redundant functions from each other, despite their structural similarities.

4.2. Talin

In vertebrates, there are two forms of talin: talin-1 and talin-2. Talin-1 is expressed in all cell types
with talin-2 being found primarily in the brain, skeletal and cardiac muscles [39]. Talin is a 270 kD
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protein composed of a head domain (=50 kD) and a tail domain (/220 kD). On the talin head, there is a
FERM domain that binds to the membrane-proximal NPxY motif on the 3 subunit integrin cytoplasmic
tail. This binding separates the cytoplasmic tails of the « and 3 subunits, leading to a conformational
change of the integrin receptor and integrin activation [40]. This is similar to the ‘inside—out’ signalling
of kindlin. However, unlike talin, kindlin does not possess a tail domain. The talin tail domain can
self-regulate its integrin-binding site on the head domain [41]. In addition, the tail domain contains
binding sites for F-actin and vinculin, which are components of the cytoskeleton at focal adhesions.
Talin has been suggested as a scaffolding protein that holds multiple integrin-associated proteins and
the cytoskeleton together at the focal adhesions as a large complex, triggering a series of intracellular
events and cell motility [42]. Hence, talin is widely considered to be a more potent integrin activator
than kindlin due to the additional cellular functions associated with the talin tail domain. A recent
study has demonstrated that kindlin alone is unable to unclasp the cytoplasmic tails of « and
subunits for integrin activation, unlike talin [43]. It is also possible that talin and kindlin may have
distinct roles in regulating the function of integrins [44].

Despite its higher potency in activating integrin, many studies have chosen to study talin by
focusing on either the head or tail domain [43,45,46]. This is very likely due to the large size of the
entire molecule (/2500 amino acids), which makes experimental procedures such as cell transfection
of full-length talin difficult. However, to utilise the full function of talin in activating integrins to
promote neurite outgrowth, the full-length talin molecule is required. In its full length, talin can
achieve integrin activation and stimulate neurite outgrowth on inhibitory CSPG substrates when
overexpressed in cultures of adult rat DRG neurons [47]. Since this study has only been confirmed in
cell culture, its potential for in vivo axon regeneration is yet to be investigated.

4.3. Intracellular Interactions with Kindlin and Talin

Although it is clear that kindlin binds to integrin on the membrane-distal NxxY motif of the
 subunit cytoplasmic tail and talin binds to the membrane-proximal NPxY motif, the interactions
between integrin, kindlin and talin are not yet well understood. It is possible that kindlin and talin
work independently or as co-activators [48,49]. Three models have so far been proposed for the
synergistic activation of integrins by talin and kindlin [50]:

(1) The sequential binding model: Kindlin binds to the membrane-distal NxxY motif to induce a
slight change in the conformation of the 3 subunit cytoplasmic tail and this facilitates the binding
of talin to the membrane-proximal NPxY motif.

(2) The Cis co-operation model: Simultaneous binding of kindlin and talin to the same {3 subunit
integrin cytoplasmic tail via their respective binding sites.

(3) The Trans co-operation model: Kindlin and talin each bind to different 3 subunit cytoplasmic
tails and then interact with each other to form integrin clustering at focal adhesions.

5. ‘Outside-In’ Signalling

As a result of integrin activation, high-affinity binding of an extracellular ligand to the activated
integrin receptor can occur. Upon ligand binding, integrin clustering occurs as part of the focal adhesion
required to stabilise cell-cell or cell-matrix interactions (Figure 2). The formation of focal adhesions
triggers a series of intracellular signalling cascades for responses ranging from short-term effects,
such as cell adhesion and motility, to long-term effects, such as cell proliferation and differentiation,
which may include changes in gene expression. As integrin cytoplasmic tails do not possess any kinase
or phosphatase activities, the transduction of intracellular signalling cascades is mediated by molecules
such as focal adhesion kinase (FAK) [51] and the adaptor protein integrin-linked kinase (ILK) [52].
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Figure 2. Focal adhesion formation. Schematic representing integrin receptor clustering at the
membrane as an example of receptor activation, a result of ligand (ECM) binding and one of the
resulting changes following ‘outside-in’ signalling.

Extracellular Ligand Binding

Integrin receptors comprise a huge and complex family of proteins. Part of this complexity is
derived by, as previously mentioned, the fact that different integrin heterodimers bind to different
ligands with most heterodimers able to recognise more than one ligand and also the same ligand can
be recognised by different integrin heterodimers (Reviewed by [17,26]). From our previous studies on
integrins and axon regeneration, we focus mainly on the heterodimer «931 [6,8]. The «931 integrin
binds to osteopontin and tenascin-C (TN-C) to mediate cell-matrix interactions, as well as VCAM-1
for cell-cell interactions. In addition, osteopontin is also recognised by «4f31, «5p1, «VB1 and aV35,
while TN-C is also recognised by a831 and V33, as well as others. The list of integrin ligands
continues to grow as more integrin-ligand interactions are being discovered.

The presence or absence of a particular integrin heterodimer on the cell directly affects its ability
to grow on a particular ECM substrate. It was observed that motor and sensory neurons have different
preferences for substrates at early postnatal stages due to the difference in integrin heterodimer
expression [53]. For instance, sensory neurons tend to extend longer neurites on laminin matrices
due to the expression of the laminin receptor a731 integrin, while motor neurons were observed to
grow better on fibronectin matrices due to the expression of the fibronectin receptor o531 integrin.
However, this difference was lost in the adult [53]. This finding has highlighted the fact that different
ligands can have different integrin-mediated growth effects on the neurons, and the expression of
integrin is subject to both temporal and spatial regulations.
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6. Other Factors That Can (Artificially) Modulate Integrin Function

6.1. Divalent Cations

Divalent cations have various effects on ligand affinity of integrin receptors ranging from
enhancement to suppression. The cation calcium (Ca?*) mainly functions intracellularly and induces
an inhibitory effect on ligand binding. Specifically, Ca?* has been shown to stabilise the closed and
bent conformation of the integrin heterodimer, creating low or null binding affinity of these receptors
for the ECM and other ligands [54,55]. On the other hand, certain divalent cations such as manganese
(Mn?*) and magnesium (Mg?*) have been shown to modulate integrin activity by their interactions and
binding to the extracellular domain. Complete extension of the extracellular domain and subsequent
separation of the cytoplasmic domains lead to intracellular signalling events such as induction of cell
adhesion, migration and neurite outgrowth [24,56]. Ligand binding leads to an increase in ligand
affinity as well as an increase in receptor clustering and recruitment at the membrane, which may
further contribute to increased ligand affinity, leading to the use of Mn?* to artificially activate integrins
in cell culture assays. For example, Mn?* binding to integrin was shown to induce a 2-10 fold increase
in integrin receptor affinity and specificity for fibronectin [57].

In cell culture, activation of endogenous and/or overexpressed integrins enhances neurite
outgrowth significantly more than the expression of integrins alone in the presence of inhibitory
substrates [7,8,11,58]. Specifically, the application of Mn?* to adult dorsal root ganglia (DRG) cultures
grown in the presence of the inhibitory proteoglycan aggrecan led to significantly increased neurite
outgrowth compared to untreated cultures [11,58].

6.2. Integrin-Activating Antibodies

There are a whole host of integrin antibodies available commercially. Depending on the
recognition site and/or resultant conformational change following the binding of these antibodies,
some of these antibodies have an inhibitory effect on integrin function, some have a stimulatory or
activation effect on integrin function, and some purely recognise a specific epitope on an integrin
subunit. The latter are well suited for biochemical and immune-based investigation of integrin
expression, whereas the others can be utilised to modulate integrin activity and are commonly
monoclonal. Although it is outside the scope of this review, inhibitory antibodies act mainly as
competitive inhibitors for ligand binding, thus blocking or significantly reducing integrin interactions
with ECM and other ligands (Reviewed by [59]). It is because of this functionality that monoclonal
integrin blocking antibodies are being used therapeutically in various cardiac conditions and cancer,
to name a few.

In terms of integrin activation using specific monoclonal antibodies, the majority recognises
the 3 subunit (with a small minority having « subunit specificity) with many of these inducing a
conformational change to the integrin heterodimer that results in opening up or exposure of a ligand
binding site. Activation can be further dictated by cation or ligand binding in a portion of these
antibodies such as the HUTS-4 antibody for 31 integrin, whereas some are cation/ligand-independent
such as the TS2/16 antibody, also for 1 integrin. As these antibodies function at the extracellular
domain of the integrin, in terms of the [ subunit, this would involve the PSI domain and
the EGF-like repeats, all of which are obscured in the bent conformation (Reviewed by [59]).
Therapeutically, less work has been done in pushing integrin-activating antibodies to the clinic although
there is strong evidence to show that the use of these antibodies (specifically the human-specific
antibody, TS2/16) to artificially induce activation can significantly enhance neurite outgrowth of
cultured human embryonic stem cell-derived motor neurons grown on inhibitory proteoglycan-rich
substrates over untreated cultures [11].
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7. Our Findings on Integrin Activation and Axon Regeneration

Our initial experiments on integrin and axon regeneration were based on previous studies
observing ECM glycoproteins such as CSPGs and TN-C upregulated at the lesion site after spinal
cord injury. Recognising that these molecules pose both a biochemical and physical barrier for axon
regeneration, we began our research into overcoming the barrier presented by these molecules to
achieve functional axon regeneration. In doing so, we have studied the effect of both integrin expression
and integrin activation in the context of nervous system injury and repair, examining axon regeneration
as well as behavioural and functional recovery.

The o9 integrin subunit is a receptor for TN-C. In the CNS, a9 integrin is downregulated upon
maturation. In the injured CNS however, TN-C is upregulated without the subsequent expression
of the a9 integrin subunit [6] contributing to a detrimental imbalance and failed CNS regeneration.
Using adult rat dissociated DRG sensory neurons as a model, transgenic expression of «9 integrin
resulted in these neurons growing vigorously on a TN-C substrate, similar to control cultures grown
on growth-permissive laminin [6]. When the same hypothesis was tested in vivo using adult rat dorsal
root or dorsal column crush injury and examining sensory axon regeneration, &9 integrin-expressing
DRG neurons regenerated into the TN-C-rich dorsal root entry zone (DREZ) or TN-C-rich lesion
site, respectively, with no axonal growth observed beyond these areas [6]. The different levels of
neurite outgrowth observed in cell culture (significant) versus the axon regeneration observed in vivo
(modest but above control levels) raised the question as to whether the overexpressed «9 integrin had
been deactivated in the injured CNS.

After CNS injury, growth inhibitory molecules such as CSPGs and Nogo-A are highly upregulated
at the lesion site. As mentioned earlier, both of these lesion site factors have been shown to inactivate
integrins [7,10,11]. Specifically, we and others examined integrin activation in relation to the inhibitory
CSPG, aggrecan, and /or Nogo-A using adult rat DRG neurons [7,11] or motor neurons derived from
human embryonic stem cells [11] and showed that both can directly affect integrin activation to
effectively reduce neurite outgrowth. In these studies, the levels of phosphorylated FAK (pY397) were
reduced in cells cultured in the presence of aggrecan or Nogo-A with the level of total FAK remaining
unchanged, suggesting a significant reduction in integrin activation [7,11]. Fortunately, this can
be overcome by experimentally inducing integrin activation via the application of Mn?* or an
integrin-activating antibody [11] or via transgenic expression of an integrin intracellular activator,
kindlin-1 [7]. As both of these studies did not investigate integrin directly, it was left to speculation
whether the overexpressed a9 integrin in the previous study of in vivo axon regeneration had been
deactivated and maintained in the inactivated state due to CSPGs and Nogo-A at the lesion site,
suggesting a rationale for the modest regeneration observed.

After demonstrating that both a9 integrin and kindlin-1 can promote the regrowth of injured
axons, we next examined whether combined expression of 9 integrin and the activator kindlin-1 could
promote long-distance functional axon regeneration further than the expression of either alone [8].
In dissociated adult rat DRG cultures expressing «9 integrin only, there was a modest amount of
neurite outgrowth observed when plated on a mixed substrate of both CSPG (aggrecan) and TN-C [8].
In contrast, when DRG cultures expressed both «9 integrin and kindlin-1, the resultant neurite
outgrowth on the substrate of CSPG and TN-C was significantly increased. This result suggests that
the overexpressed o9 integrin was indeed deactivated in the injured CNS in our initial «9 integrin
study. Subsequently, we examined the effect of co-expression of &9 integrin and kindlin-1 in vivo
using adult rat lower cervical dorsal root crush injury (C5-C8) as our model. When adeno-associated
viruses (serotype 5; AAV5) expressing o9 integrin and kindlin-1 were co-injected directly into the
DRGs concurrent with the dorsal root injury, we observed long-distance axon regeneration of DRG
sensory axons up to 25 mm into the spinal cord by 12 weeks post-injury [8]. The axons grew
beyond the TN-C-rich region and, in addition, they also formed topographically accurate connections
in the dorsal horn of the spinal cord and continued to grow rostrally within the dorsal columns
of the spinal cord. The time point at which we examined the combined treatment group was
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12 weeks post-injury, 6 weeks longer than the time points tested in the previously published studies
examining regeneration with x9 integrin alone or kindlin-1 alone. Despite this, either o9 integrin
alone or kindlin-1 alone were tested alongside the combined treatment group, also with a 12-week
post-operative timeline. No additional regeneration was observed in the single treatment groups above
the regeneration observed in the original 6-week studies. Regeneration of the major subtypes of sensory
neurons was observed including large-diameter NF200- (neurofilament 200 kD) positive neurons and
small-diameter CGRP- (calcitonin gene-related peptide) and isolectin IB4-positive neurons. In addition,
functional recovery and thus regenerative growth was evident following electrophysiological analysis.
Furthermore, neuroanatomical analysis demonstrated significant regenerative growth into the caudate
nucleus in the caudal medulla, while behavioural recovery was demonstrated through tasks such as
ladder-walking (for limb control and coordination), von Frey mechanical pressure and Hargreaves
thermal tasks (for mechanical and pain sensation, respectively) [8].

In summarising our findings (Table 1), the presence of an appropriate integrin heterodimer on
the neuronal surface determines whether a regenerating neuron possesses the ability to grow on a
particular ECM molecule. However, it should also be stressed that the activation state of the integrin
receptor should be taken into consideration in order to induce maximal integrin-dependent neurite
outgrowth and/or axonal regeneration.

8. The Outlook for Nervous System Repair

We have demonstrated that modulating the expression and activation of integrins in
neurons presents a promising therapeutic approach to promoting neurite outgrowth and axon
regeneration [6-8]. Moving forward clinically, one may question the feasibility of translating our
findings into a clinical treatment. Although the use of gene therapy in the clinic is still in its infancy,
there may be the potential for integrin-mediated treatment to be introduced into viable therapies
alongside other growth-promoting strategies for spinal cord repair.

It is clear that the activation state of integrin receptors is an important factor in attaining
significant regenerative growth, especially and in particular in the presence of inhibitory
molecules. We demonstrated this with the expression of the intracellular integrin activator,
kindlin-1 [7,11]; however, integrin activation can also be achieved by using integrin-activating
antibodies. These antibodies, as mentioned above, act to enhance integrin signalling extracellularly
by inducing a conformational change in the receptor and thereby increasing ligand affinity /binding
and promoting neurite outgrowth. The majority of integrin-activating antibodies are human specific,
which, although does not work for experimental rodent models, already work for human cells.
Further proof-of-concept experiments utilising human stem cell cultures as a model will continue to
move the field forward towards translation. Several antibodies (human and humanised) that induce
inhibition of specific factors/proteins are already in use clinically. Examples include natalizumab
against o4p1 integrin in immune-mediated conditions such as multiple sclerosis and Crohn'’s
disease [60,61], and alemtuzumab against the lymphocyte antigen CD52, also for multiple sclerosis [62];
while antibodies in clinical trials include anti-Nogo A against myelin protein Nogo-A for the treatment
of spinal cord injury [63].

Furthermore, although it has not been touched on in this review, consideration for the localisation
and transport of overexpressed integrin receptors within the axonal compartment of neurons is also
vital for maximising integrin-mediated regenerative potential [64,65]. Nonetheless, the recapitulation
of a developmental growth state in the CNS to enhance regeneration following traumatic injury is
potentially possible through modulation of appropriate integrin expression and activation within
damaged neurons.
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Table 1. Summary of integrin-mediated dorsal column axon regeneration.

Publication

Andrews et al., 2009

Tan et al., 2012

Cheah et al., 2016

Molecule

a9 integrin

Kindlin-1

a9 integrin + kindlin-1

In vitro model

Adult rat dissociated dorsal root ganglia (DRG)
neurons plated on laminin (control) or
tenascin-C (TN-C).

Adult rat dissociated DRG neurons plated on
laminin (control) or aggrecan.

Adult rat dissociated DRG neurons plated on laminin (control),
aggrecan, TN-C, or aggrecan + TN-C.

In vitro results

Neurite outgrowth when grown on TN-C rescued
by expression of &9 integrin to levels similar to
growth on laminin. Growth was significantly
higher than wildtype neurons grown on TN-C.

Neurite outgrowth when grown on aggrecan
rescued by expression of kindlin-1 to levels similar
to growth on laminin. Growth was significantly
higher than wildtype neurons grown on aggrecan.

Neurite outgrowth of DRG neurons when grown on aggrecan + TN-C
rescued by combined expression of a9 integrin and kindlin-1 to levels
similar to growth on laminin. Growth was significantly higher than
neurons expressing «9 integrin or kindlin-1 alone grown on

aggrecan + TN-C.

In vivo model

Unilateral cervical dorsal root crush injury
(C5-C8) *, examined 6 weeks post-injury.

Unilateral cervical dorsal root crush injury
(C5-C8), examined 6 weeks post-injury.

Unilateral cervical dorsal root crush injury (C5-C8); examined 12 weeks
post-injury **.

Virus transduction

AAV2-9 integrin injected into C6, C7 DRGs.
AAV2-fGFP as control.

AAV2-kindlin1l-mCherry injected into C6,
C7 DRGs. AAV2-mCherry and AAV2-fGFP
as controls.

AAV5-kindlin1-GFP and AAV-x9integrin-V5 injected into C6, C7 DRGs.
AAV5-fGFP as control.

Anatomical results

Regeneration Control

«9 integrin-expressing axons grew into the
TN-C-rich DREZ. Control axons did not grow into
the CNS at all.

Regeneration i Control

Kindlinl-expressing axons grew beyond the
DREZ and into the dorsal horn. Control axons did
not grow into the CNS at all.

Regeneration Control

Axons co-expressing a9 integrin and kindlin-1 grew beyond the
TN-C-and-CSPG-rich DREZ and into the dorsal horn topographically,
and also within the spinal cord (cuneate fasciculus) to the medulla for a
distance of up to 25 mm. Control axons did not grow into the CNS at all.

Behavioural tests

Behavioural recovery to pre-operative levels in o9
integrin group in thermal pain sensory test.

Behavioural recovery to pre-operative levels in
kindlin-1 group occurred in both the mechanical
pressure and thermal pain sensory tests.

Significant behavioural recovery to near pre-operative levels in
combined treatment group in mechanical pressure and thermal pain
sensory tests, and ladder-walking (limb proprioception) test.

Electro-physiology

N/A

N/A

Significant functional reconnection shown between injured dorsal roots
and associated dorsal horn in combined treatment group.

* Cervical (C4-C5) dorsal column crush lesions also performed in a separate group of experiments. ** Cheah et al. also performed experiments with &9 integrin alone and kindlin1 alone
for direct comparison to the combined treatment group for a 12-week duration, but no additional regeneration was observed over the results observed in Andrews et al. and Tan et al.
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