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Abstract
Background Among the most common forms of cancer worldwide, breast cancer posed a serious threat to women. 
Recent research revealed a lack of oxygen, known as hypoxia, was crucial in forming breast cancer. This research 
aimed to create a robust signature with hypoxia-related genes to predict the prognosis of breast cancer patients. The 
function of hypoxia genes was further studied through cell line experiments.

Materials and methods In the bioinformatic part, transcriptome and clinical information of breast cancer were 
obtained from The Cancer Genome Atlas(TCGA). Hypoxia-related genes were downloaded from the Genecards 
Platform. Differentially expressed hypoxia-related genes (DEHRGs) were identified. The TCGA filtered data was evenly 
split, ensuring a 1:1 distribution between the training and testing sets. Prognostic-related DEHRGs were identified 
through Cox regression. The signature was established through the training set. Then, it was validated using the 
test set and external validation set GSE131769 from Gene Expression Omnibus (GEO). The nomogram was created 
by incorporating the signature and clinicopathological characteristics. The predictive value of the nomogram was 
evaluated by C-index and receiver operating characteristiccurve. Immune microenvironment and mutation burden 
were also examined. In the experiment part, the function of the two most significant hypoxia-related genes were 
further explored by cell-line experiments.

Results In the bioinformatic part, 141 up-regulated and 157 down-regulated DEHRGs were screened out. A 
prognostic signature was constructed containing nine hypoxia genes (ALOX15B, CA9, CD24, CHEK1, FOXM1, HOTAIR, 
KCNJ11, NEDD9, PSME2) in the training set. Low-risk patients exhibited a much more favorable prognosis than higher-
risk ones (P < 0.001). The signature was double-validated in the test set and GSE131769 (P = 0.006 and P = 0.001). The 
nomogram showed excellent predictive value with 1-year OS AUC: 0.788, 3-year OS AUC: 0.783, and 5-year OS AUC: 
0.817. Patients in the high-risk group had a higher tumor mutation burden when compared to the low-risk group. In 
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Introduction
Globally, breast cancer is the most common cancer 
among women [1–4]. Despite progress in diagnosing 
and treating breast cancer, approximately 12% of patients 
ultimately developed tumor metastasis [4]. Of all cancer-
related fatalities, breast cancer contributed to 23%, pos-
ing a substantial threat to women’s well-being among 
malignant diseases [5–6].

 Now, the main treatment methods include chemo-
therapy, targeted therapy, immunotherapy, surgery, 
endocrine therapy, and radiotherapy [7]. The therapeutic 
choice depends on clinical-pathological risks and molec-
ular sub-type. However, genetic analysis advancement 
has offered more precise decision-making to cope with 
the diversity of breast cancer [8].

Most tumors exhibited hypoxia, which meant an 
imbalance between oxygen consumption and supply 
[9–10]. Hypoxia was related to stem cell characteristics, 
angiogenesis, extracellular matrix organization, protein 
ubiquitination, immune evasion, and cancer cell metas-
tasis [9–15]. New insights had been gained from recent 
research on intricate cellular and genomic regulation net-
works involved in the hypoxic response. This included 
the epigenetic regulation of transcriptional coregulators, 
histone, chromatin modifications by hypoxia-inducible 
factor (HIF), and the expression of various non-coding 
RNAs [16]. Almost all solid tumors exhibited hypoxia as 
a typical tumor micro-environmental (TME) feature due 
to the uncontrolled and rapid proliferation of tumors. 
Besides, hypoxia, a sign of TME, was essential in drug 
resistance. Hypoxia-induced drug resistance was closely 
related to these signaling pathways, including autophagy, 
drug efflux, and mitochondrial activity [17].

Current studies showed that hypoxia stimulation 
could initiate epithelial-mesenchymal transition (EMT), 
which played a key rold in cancer progression [18]. On 
one hand, EMT was associated with the acquisition of 
stem cell characteristics from breast cancer cells, which 
led to drug resistance and poor prognosis [19–20]. On 
the other hand, EMT was involved in the formation of 
immunosuppressive microenvironment, resulting the 
impairment of anti-tumor immunity. For example, EMT 
destroed the immune synapses of breast cancer cells, 
which changed the susceptibility of cancer cells to T 

cell-mediated immune surveillance. It ultimately brought 
about the weakening of cellular immune function and 
immune escape [21]. Moreover, Lei Xiang et al. revealed 
that the expression of Hypoxia-Inducible Factor-2a (HIF-
2a) was significantly correlated with higher histology-
grade and Ki67 index of breast cancer [22]. As a result, 
hypoxia might be a hidden prognostic factor for breast 
cancer.

Previous studies had delineated a prognostic signature 
in breast cancer using hypoxia-related genes [23–24]. 
However, these studies had some limitations, including 
needing more validation and so on. In this research, we 
aimed to construct a robust signature to predict the out-
come of breast cancer patients with hypoxia genes and to 
explore the cell line function of these genes.

Materials and methods
Bioinformatic part
Database and DEHRGs
1072 breast cancer samples and 99 adjacent normal tis-
sues were downloaded from The Cancer Genome Atlas 
(TCGA, https://www.cancer.gov). They were applied for 
training and testing the signature in a ratio of 1:1. 293 
breast cancer cases downloaded from Gene Expression 
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) were 
used for external validation. Gene sets related to hypoxia 
were obtained from the GeneCards website (https://
www.gsea-msigdb.org/gsea/index.jsp) with a correlation 
cutoff value > 1.0. DEHRGs were acquired by comparing 
tumor and adjacent normal tissues with a cutoff value 
p < 0.05 and|logFC|>1.2. Limma package for R language 
was employed to analyze DEHRGs. Pheatmap package 
and ggplot2 package were applied for visualization of 
DEHRGs.

Construction and validation of a signature
Breast cancer patients with complete survival infor-
mation and follow-up time for at least 30 days were 
included. The training set and test set were randomly 
assigned at a 1:1 ratio. Univariate and multivariate Cox 
regression were utilized to identify prognostic-related 
DEHRGs by using the equation

the experiment part, the down-regulation of PSME2 inhibited cell growth ability and clone formation capability of 
breast cancer cells, while the down-regulation of KCNJ11 did not have any functions.

Conclusion Based on 9 DEHRGs, a reliable signature was established through the bioinformatic method. It could 
accurately predict the prognosis of breast cancer patients. Cell line experiment indicated that PSME2 played a 
protective role. Summarily, we provided a new insight to predict the prognosis of breast cancer by hypoxia-related 
genes.
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 RiskScore =
∑i

1
(coef i ∗ expri)

(coefi and expi were coefficiency and expressed level for 
each gene respectively).Calculations were made to deter-
mine the risk score of each patient.

Using the median risk score as cut-off value, patients 
were divided into low-risk and high-risk groups. Sta-
tistical analysis was performed on both cohorts using 
Kaplan-Meier survival curves. The receiver operating 
characteristic (ROC) was introduced to evaluate the sig-
nature’s effectiveness. Subsequently, the test set was used 
to reconfirm the performance of the signature. “Survival” 
package, “survminer” package and “timeROC” package 
for R language were applied.

Construction of the nomogram
The expectation of overall survival after 1 year, 3 years, 
and 5 years were predicted using a nomogram incor-
porating risk score, age, and TNM stage. To assess 
the performance of the nomogram, calibration plot, 
receiver operating characteristic curve, and C index were 
employed.

Functional enrichment analysis
To further investigate the molecular functional pro-
cesses, Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) were conducted. GO was 
categorized into biological processes (BP), cellular com-
ponents (CC), and molecular functions (MF). KEGG was 
employed to identify the relevant pathways of the genes.

Analysis of tumor immune microenvironment and tumor 
mutation burden
The TME score of every breast cancer patient was cal-
culated by the ESTIMATE algorithm. The proportion of 
immune cells was quantified with the help of the CIBER-
SORT algorithm. To acquire information on somatic 
mutations from breast cancer patients, the tumor muta-
tion burden(TMB) score was analyzed through the 
“maftools” R package.

Experimental part
Cell culture and transfection
Breast cancer cell lines of human origin, including MDA-
MB-231 and MCF7, were acquired from the American 
Type Culture Collection (Manassas, VA, USA). Cells 
were incubated at 37 ◦C in a humidified atmosphere with 
5% CO2 after being cultured in Dulbecco’s modified Eagle 
medium (DMEM, Gibco, USA) supplemented with 10% 
fetal bovine serum (FBS, Gibco, USA). Following diges-
tion with trypsin, cells were seeded in 24-well plates at 
a density of 7 × 10^4 cells per well. RiboBio (Guangzhou, 
China) synthesized PSME-shRNA and KCNJ11-shRNA 

(sh-PSME and sh-KCNJ11) and NC (sh-NC) in vivo 
experiment, with a concentration of 10^4 cells/500 mL 
per well. Lentiviruses were used to infect MDA-MB-231 
and MCF7 cells. All shRNAs and negative control were 
transfected into cells using Lipofectamine 2000 accord-
ing to the manufacturer’s instructions.

Western blots
The cells were broken down in ice-cold RIPA buffer with 
PMSF, cocktail, and phosphatase inhibitor, followed by 
bicinchoninic acid (BCA) assay for protein concentra-
tion quantitation. Polyvinylidene difluoride membranes 
received electro-transferred sodium dodecyl sulfate-
polyacrylamide (SDS) gel electrophoresis of 20  µg pro-
tein lysates. Membranes were blocked with 5% skimmed 
milk for 30  min at room temperature. Then, specific 
primary antibodies, such as CDK2 (CST, #2546), CDK4 
(CST, #12,790), CDK6 (CST, #3136), P21 (CST, #2947), 
CyclinD3 (CST, #2936),Bcl-2 (Proteintech, 12789-1-AP), 
Bax (Proteintech, 50599-2-Ig), and GAPDH (CST, #2118) 
(1:1,000 and 1:2,000 in 1% BSA/TBS-T), were then added 
and incubated overnight at 4℃. Incubation of second-
ary antibodies was carried out for a duration of 1  hour 
at room temperature. Finally, the enhanced chemilumi-
nescence (ECL) reagent was used to visualize the protein 
bands. CDK2/4/6 P21 and CyclinD3 are cell cycle-related 
proteins, which regulate cell proliferation. Bcl and Bax 
are apoptosis-related proteins. Cell proliferation and 
apoptosis are assessed by detecting those proteins’ lev-
els. To analyze the western blot results, the bands were 
assessed with the Quantity One 1-D Analysis Software 
(Bio-Rad, Hercules, CA).Targeting protein expression 
levels were measured in the same sample and compared 
to ACTB/GAPDH levels, then normalized to a control 
group set at 1.

Cell counting kit-8 (CCK8) analysis
CCK8 assay was conducted following the manufacturer’s 
instructions (meilunbio, MA0218). In summary, 96-well 
plates were seeded with 2000 cells, and 10  µl/well of 
CCK-8 reagent was added on day-1 -2, -3, -4, and − 5. 
Following the inclusion of CCK-8 solution, the cells were 
left to incubate for an additional 2  hours at a tempera-
ture of 37 °C, and the optical density (OD) was gauged at 
450 nm. CCK8 analysis was used to evaluate the growth 
and proliferation ability of cells.

Colony formation
A total of one thousand cells were placed in a 12-well dish 
and grown for a period of two weeks. Then the cells were 
first treated with 4% paraformaldehyde and then stained 
with 0.5% crystal violet for an hour. The number of colo-
nies was counted for analysis. Colony formation was used 
to evaluate the proliferation ability of cells.
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5-Ethynyl-2’-deoxyuridine (EdU) staining
Following the guidelines provided by Beyotime (C0078S), 
the EdU test was performed. Briefly, cells were seeded 
on the glass slide. Cells were labeled with 10 µM EdU 
reagent for 1 hour at 37 °C when cells reached 80% con-
fluence. Next, the cells were rinsed using PBS and treated 
with 4% paraformaldehyde for 20 min at room tempera-
ture. After that, the nuclei were stained with DAPI. To 
visualize the count of cells positive for EdU, Nikon Ti2 
was used to capture images. Edu staining was used to 
detect the proliferation rate of cells.

Wound healing assay
Cells were seeded into 12-well plates and cultured with a 
complete medium. When cells reached 80% confluence, 
straight wounds were made by using 10-µl pipette tips 
and then cultured cells in a medium with 1% FBS. The 
wound gaps were photographed at regular intervals (0, 
24, and 48 h) using Nikon Ti2 microscope. Wound heal-
ing assay was used to assess the ability of cell migration 
and repair ability.

Statistical analysis
Continuous variables conforming a normal distribution 
were expressed as mean ± standard deviation (SD). The 
difference between groups was evaluated using Student’s 
t-test or one-way ANOVAs. Continuous variables that 
did not conform a normal distribution were represented 
as median and interquartile range (IQR). Wilcoxon test 
was used to compare the difference of the groups. Cat-
egorical variables were presented as frequency and pro-
portion [n (%)] and χ2 test or fisher exact test was used to 
identify the groups difference. The overall survival (OS) 
was estimated using Kaplan-Meier. The log-rank test 

was used to compare the median survival time between 
groups. Cox proportional hazard model was established 
to identify independent prognostic factors for OS. The 
prognostic value was assessed using the operating char-
acteristic curve (ROC) and area under the curve (AUC) 
was calculated. All the statistical analysis was performed 
by GraphPad Prism V6.0 (GraphPad Software, Inc., La 
Jolla, CA, USA) and R language. The experiments were 
repeated thrice independently. A two-sided P < 0.05 was 
considered statistically significant.

Results
In this study, we tried to make use of TCGA and the Gen-
ecards platform to identify prognostic-related hypoxia 
genes for breast cancer. Then the predictive signature 
was established and doubled validated based on these 
hypoxia genes. Finally, the cellular function of the two 
genes (KCNJ11 and PSME2) were explored through in 
vitro experiment.

Database and DEHRGs
1072 breast cancer samples and 99 adjacent normal tis-
sues were retrieved from TCGA. 1607 hypoxia-related 
genes were acquired from GeneCards, with a correlation 
cutoff value>1.0 (Supplementary Table 1). 141 up-regu-
lated and 157 down-regulated DEHRGs were screened 
out through analyzing the RNA-Seq data of the tumor 
and adjacent normal tissue. (Figure 1A and B, and Sup-
plementary Table 2).

Construction and validation of the risk-score model
After excluding samples with incomplete clinical and 
follow-up information, 861 breast cancer cases were 
including in model construction. They were divided 

Fig. 1 Differential expression of hypoxia-related genes in tumor and adjacent normal tissues. (A) The volcano map showed the up-regulated and down-
regulated DEGs (P < 0.05). (B) The heatmap showed 298 DEGs expressed in tumor and adjacent normal tissues
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into training set and test set in a 1:1 ratio. As a result, 
the training set contained 432 samples and the test set 
included 429 samples (Supplementary Tables 3 and Table 
4). In the training set, nine prognosis-related hypoxia 
genes were screened out, including six tumor suppressor 
genes (ALOX15B, CA9, FOXM1, KCNJ11, NEDD9, and 
PSME2) [Hazard ratio(HR)<1] and three oncogenic genes 
(CD24, CHEK1, and HOTAIR) [Hazard ratio(HR)>1] 
(Supplementary Table 5). Then the prognostic signature 
was established. The risk score of every breast cancer 
patient was calculated according to the formula.

 





Risk score = 0.124 ∗ CD24 + 0.683 ∗ CHEK1+

0.260 ∗HOTAIR− 0.227 ∗ ALOX15B−
0.137 ∗ CA9− 0.331 ∗ FOXM1− 0.236∗

KCNJ11− 0.539 ∗NEDD9 − 0.387 ∗ PSM2





Based on the median values; the patients were divided 
into high risk and low risk groups based on the level of 
risk score. Principal component analysis (PCA) and 
t-distributed stochastic neighbor embedding (t-SNE) 
showed that the distribution of the two group was dif-
ferent (Figure A1A, A1B). The low-risk group demon-
strated a more favorable prognosis than the high-risk 
group with P < 0.001 (Fig. 2A). As the patient’s risk score 
rises, the likelihood of mortality also increases(Fig.  2B 
and C). Heatmaps were applied to illustrate the represen-
tative of these 9 genes in high-risk and low-risk patients 
(Fig.  2E). The signature was double-verified in the test 
set and GSE131769, which implied the robust prediction 
value (P = 0.006 and P = 0.001, Fig. 2D and Supplementary 
Fig. 1).

Fig. 2 Construction of the prognostic signature. (A) Kaplan–Meier Survival curves of the high-risk and low-risk groups in the training set (P < 0.001). (B, C) 
The distributions of the risk score and survival status in the training set. (D) Kaplan–Meier survival curves in the validation set. (E) Heatmap demonstrated 
the expression of nine prognosis-related hypoxia genes in the two groups
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Independent prognostic factors and nomogram 
establishment
Through univariate and multivariate COX regression, age 
and risk-score signatures (the nine hypoxia-related-gene 
signature) were considered independent prognostic fac-
tors (Figure A2A, A2B). A nomogram incorporating age, 
TNM stage and the signature was created to predict 1 
year, 3-year and 5-year survival for breast cancer patients 
(Fig. 3A). The ROC curve was applied to evaluate the pre-
diction performance of the nomogram. It showed that 
1-year-OS AUC was 0.788, 3-year-OS AUC was 0.783, 
and 5-year-OS AUC was 0.817, which implied the excel-
lent predictive performance of the nomogram (Fig. 3B). 
Through calibration curve, it was found that 1-year 
nomogram predicted OS showed the best reliability for 
model prediction (Fig. 3C).

Functional enrichment and tumor immune 
microenvironment analysis
In order to interpret gene products, functional character-
istics, and potential signaling pathways, we conduct the 
analysis of GO, KEGG, and Gene Set Enrichment Analy-
sis (GSEA). TME is closely related to the prognosis and 
treatment response of patients. So, we analyze infiltrating 
immune cells, TME score, and TMB score of TME.

In biological process, “organelle fission” and “nuclear 
division” ranked the top two position. While in the CC 

category, the DEHRGs were enriched in the “chromo-
somal region” and “condensed chromosome”. “Micro-
tubule binding” and “catalytic activity” were the main 
function in the MF category (Supplementary Fig.  2A). 
KEGG analysis showed “cell cycle” and “cellular senes-
cence” were the most critical pathways [25] (Supplemen-
tary Fig. 2B). GSEA analysis revealed the top 5 significant 
pathways in high-risk and low-risk groups (Supplemen-
tary Fig. 2C, 2D).

In the high-risk group, the expression of naive B cells, 
plasma cells, resting memory CD4 T cells, and rest-
ing mast cells were found to be higher than the low-risk 
group in the train set. While follicular helper T cells and 
M0 macrophages were lower (Figure A3A).

In the test set, M0 macrophages were significantly 
lower in the low-risk group; while resting mast cells 
showed the opposite situation (Figure A3B). By calcu-
lateing the score through ESTIMATE algorithm, the 
low-risk group exhibited higher stromal scores, immune 
scores, and ESTIMATE scores (P < 0.01) (Figure A4A-C). 
The high-risk group had a significantly higher burden of 
tumor mutations (Figure A4D). Limma package and esti-
mate package for R language were employed for statistics.

Fig. 3 Establishment and evaluation of the nomogram. (A) The nomogram was applied to predict the OS for breast cancer patients. (B) ROC curve analy-
sis was used to predict accuracy for 1-year, 3-year, and 5-year OS. (C) Calibration curves for 1-year, 3-year, and 5-year OS
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Knockdown of PSME2 represses cell growth and clone 
formation in MDA-MB-231 cells and MCF-7 cells
Among these nine screened genes, most of them 
were well-studied in breast cancer, except PSME2 and 
KCNJ11. To investigate whether PSME2 and KCNJ11 
played roles in breast cancer development. Here, we 
knock-downed of PSME2 and KCNJ11 in two breast 
cancer cell lines, MDA-MB-231 and MCF-7 cells. In 
MDA-MB-231 cells, knockdown of PSME2 significantly 
promoted the of expression of cell cycle inhibitor P21 
(Fig.  4A-B). While, CDKs (cylcine-dependent kinase), 
the key regulators of cell cycle, such as, CDK2, CDK4 
and CDK6 had little changes after knockdown of PSME2 
(Fig. 4A-B). The CCK8 assay showed that knockdown of 
PSME2 repressed the cell viability of MDA-MB-231 cells 
(Fig. 4C). Consistently, the clone assay also showed that 
deficiency of PSME2 suppressed the clone formation 

(Fig.  4D-E). Thus, we wondered whether PSME2 regu-
lated the cell proliferation of MDA-MB-231 cells. EDU 
staining was used to measurement the cell prolifera-
tion. We found that knockdown of PSME2 significantly 
reduced the EDU positive cells (Fig.  4F-G), indicating 
that knockdown of PSME2 repressed cell proliferation in 
MDA-MB-231 cells.

To further conform that deficiency of PSME2 repressed 
breast cancer proliferation, we used another breast can-
cer cell line, MCF-7. Consistent with MDA-MB-231, 
knockdown of PSME2 also significantly increased the 
expression of P21 (Fig.  1A-B). Compared to the control 
group (pLKO.1), the expression levels of CDK2, CDK4, 
and CDK6 were reduced in PSME2-shRNA-1# (Fig. 5A-
B). While the expression of CDK4 and CDK6 did not 
change in PSME2-shRNA-2#, only the CDK2 showed 
a mild increase (Fig.  5A-B). We also found that the 

Fig. 4 Knockdown of PSME2 represses cell growth and clone formation in MDA-MB-231 cells. (A-B) Western blots and quantitative results of PSME2 
and the indicated proteins in MCF-7 cells. (C) Cell viability measurement by CCK8. (D-E) Images and quantitative results of cell clone. (F-G) Images of 
EDU staining and the quantitative results. pLKO.1: the normal control cells; PSME-shRNA1/2: two PSME2 knockdown cell lines. (**: p < 0.01; ***: p < 0.001). 
(Western blot results in Fig. 4A were cropped from the raw data in Supplementary Info File)
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knockdown of PSME2 significantly repressed cell viabil-
ity and clone formation in MCF-7 (Fig. 5C-E). Similarly, 
the EDU staining results demonstrated that the knock-
down of PSME2 suppressed the cell proliferation of 
MCF-7 (Fig.  5F-G). Together, these data indicated that 
the knockdown of PSME2 repressed cell proliferation 
and clone formation in breast cancer cell lines.

Knockdown of KCNJ11 does not affect cell growth and 
migration in MCF-7 cells
Next, to investigate whether KCNJ11 influenced the cell 
viability, clone formation, or migration of breast can-
cer cells, KCNJ11 was knockdown in MCF-7. It was 
found that the knockdown of KCNJ11 had no effects on 
the expression of cell cycle proteins (CDK4, P21, and 
Cyclin D3), as well as apoptosis proteins (Bcl-2 and Bax) 
(Fig.  6A). The cell growth cure showed no difference 
between the control group (pLKO.1) and KCNJ11knock-
down groups (KCNJ11-sh1 and KCNJ11-sh2) (Fig.  6B), 
indicating that knockdown of KCNJ11 had no roles on 

the cell viability of MCF-7. The clone formation and 
EDU staining results showed that the knockdown of 
KCNJ11 did not affect the clone formation and prolifera-
tion of MCF-7 (Fig.  6C-D). Additionally, we performed 
the wound healing assay and found that the knockdown 
of KCNJ11 also did not affect the rate of wound heal-
ing (Fig.  6E); it appeared that KCNJ11 did not regulate 
MCF-7 migration. The data presented here indicated that 
KCNJ11 played no role in the breast cancer cell’s growth 
and migrate.

Discussion
Our research successfully established a nine hypoxia-
related gene signature through TCGA database. The 
robust of the signature was validated by external data-
set GSE131769. Through in vitro experiment, we found 
PSME2 played an anti-tumor role in breast cancer.

The incidence of breast cancer has increased dra-
matically in the past decade [26]. As a marker of TME, 
hypoxia was involved in various aspects of tumor 

Fig. 5 Knockdown of PSME2 represses cell growth and clone formation in MCF-7 cells. (A-B) Western blots and quantitative results of PSME2 and the 
indicated proteins in MCF-7 cells. (C) Cell viability measurement by CCK8. (D-E) Images and quantitative results of cell clones. (F-G) Images of EDU stain-
ing and the quantitative results. pLKO.1: the normal control cells; PSME-shRNA1/2: two PSME2 knockdown cell lines. (**: p < 0.01; ***: p < 0.001). (Western 
blot results in Fig. 5A were cropped from the raw data in Supplementary Info File)
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progression [9, 27–28]. Moreover, hypoxia was associ-
ated with drug resistance in the treatment of breast can-
cer [29–30]. According to our findings, hypoxia-related 
genes might be useful as biomarkers in predicting the 
long-term prognosis of breast cancer patients. Some sci-
entists have tried to create risk models to elucidate the 
outcome of breast cancer patients [31–33]. Nonetheless, 
these models either lacked clinical validation or experi-
mental validation. As a result, a robust signature was 
urgently needed.

This study constructed a hypoxia-related signature 
containing nine genes in the TCGA training set. This sig-
nature could distinguish the outcome of high-risk and 
low-risk patients. It revealed excellent performance in 
the training set. The robustness of the model was double-
validated by the test and external independent validation 
set (GSE131769).

To explore the function of DEGs. GO enrichment 
analysis was utilized. As a result, the DEGs were mainly 
involved in the nuclear division, chromosomal region, 
and division organelle fission, providing further insight 

into the main underlying mechanisms. KEGG pathway 
analysis indicated that the most significant pathway was 
the cell cycle and cellular senescence. According to Druk-
er’s research, hypoxia played an essential role on the cell 
cycle at the transcriptome level [34]. Protein synthesis 
could also be modified in the hypoxia environment [34]. 
Thus, hypoxia-induced changes in the cell cycle were 
influenced by several factors.

Among the nine prognostic hypoxia genes, most of 
them were widely reported in previous studies, except 
KCNJ11 and PSME2. CD24, CHEK1, and HOTAIR were 
possibly oncogenic genes. Cluster of differentiation 24 
(CD24) was a glycosyl-phosphatidyl-inositol-anchored 
glycoprotein [35]. Barkal et al. demonstrated that a role 
for tumor-expressed CD24 in promoting immune eva-
sion through its interaction with the inhibitory receptor 
sialic-acid-binding Ig-like lectin 10 [36]. In a meta-anal-
ysis, Wang et al. revealed that the putative stem cell 
marker CD24 was significantly associated with worse 
survival based on 5697 BC cases [37]. In conclusion, the 
negative role of CD24 in breast cancer was evident.

Fig. 6 Knockdown of KCNJ11 does not affect cell growth and migration in MCF-7 cells. (A) Western blots of KCNJ11 and the indicated proteins in MCF-7 
cells. (B) Cell viability measurement by CCK8. (C-D) Images of cell clones and EDU staining. (E) Images of wound healing assay to evaluate migration rate 
at 24 and 48 h. pLKO.1: the normal control cells; KCNJ11-sh1/2: KCNJ11 knockdown cells used KCNJ11 shRNA1 and KCNJ11-shRNA2

 



Page 10 of 12Qiu et al. BMC Cancer          (2024) 24:402 

CHEK1 was a checkpoint kinase. Previous studies 
reported that CHEK1 played a critical role in maintain-
ing genomic stability and preventing the accumulation 
of DNA damage during cell division [38]. Xu et al. found 
that CHK1 inhibition would enhance adriamycin (ADR) 
chemosensitivity [39]. In addition, lncRNA HOTAIR was 
engaged in cellular metastasis in various cancers, such as 
colorectal cancer, hepatocellular cancer, and non-small-
cell lung cancer [40–42]. Notably, HOTAIR could serve 
as a molecular sponge for miR-20a-5p, promoting breast 
cancer progression and tumorigenesis by activating 
the expression of the HMGA2 protein [43]. As a result, 
CHEK1 and HOTAIR also served as oncogenic roles in 
breast cancer.

ALOX15B, CA9, FOXM1, KCNJ11, NEDD9, and 
PSME2 might be protective factors in the hypoxia sig-
nature. Evidence has shown that carbonic anhydrase 9 
(CA9), a glycoprotein of the zinc-containing enzyme 
family, was an inducible expressed gene in response to 
hypoxia in cancers [44–45]. The exterior cellular acidity 
of CA9 has a supportive effect on carcinoma cells [46].

For FOXM1 (forkhead box protein M1), previous 
research articles showed it played a fundamental role in 
tumorigenesis, which was mainly related to the regula-
tion of cell cycle progression [47–48]. For NEDD9, Hu 
et al. discovered histone deacetylase inhibitors promoted 
breast cancer metastasis by elevating NEDD9 expression 
[49]. Also, NEDD9 over-expression caused hyper-prolif-
eration of luminal cells and cooperated with the HER2 
oncogene in tumor initiation [50]. So, both CA9 and 
FOXM1 were novel markers of poor prognosis for breast 
cancer patients.

Proteasome activator subunit 2 (PSME2) was a protein 
involved in the regulation of the proteasome [51–52]. 
According to prior research, PSME2 served as an indi-
cator of the metastasis of tumors [53]. In breast cancer, 
PSME2 had the potential to identify immune hot tumors 
and predict the response to immunotherapy [54]. But the 
function of PSME2 in breast cancer cell lines was still 
unclear. When searching in Pubmed, the research about 
KCNJ11 and breast cancer was rare. To further investi-
gate the function of PSME2 and KCNJ11 in breast can-
cer, cell line experiment was performed. MDA-MB-231 
and MCF7 breast cancer cell lines were introduced. Our 
study demonstrated that reducing PSME2 expression 
with siRNA could inhibited cell viability, weakened col-
ony formation, and suppressed invasion in BC cells. The 
cell line experiment further validated the tumor suppres-
sion role of PSME2. Nonetheless, the decrease in KCNJ11 
expression had no notable impact on the survival of the 
cells. Multiple factors influenced the result. Cell experi-
ments could not fully reflect the situation of KCNJ11 
in the human, as the human body was a sophisticated 
system. The formation and progression of cancer was a 

complicated procedure that involved numerous genes 
and environmental factors. Also, the alterations in cancer 
cells were not solely caused by a single gene variation.

By analyzing the prognostic-related hypoxia genes 
mentioned above, it was found that these genes could 
affect tumor behavior in terms of causing changes and 
regulating immune response in tumor microenviron-
ment, which would lead to drug resistance of tumor cells. 
Thus, the expression of hypoxia-related genes could pre-
dict the prognosis of breast cancer patients. Similarly, 
Jianxin wang et al. also successfully constructed a diag-
nostic signature with hypoxia related genes in the TCGA 
and GEO databases [55]. However, they did not confirm 
their results or elucidate the molecular mechanisms 
through cell experiments. Interestingly, they also found 
that the HIF-1 signaling pathway was involved in the acti-
vation of cancer stem cells during tumor occurrence and 
development. Currently, more and more research tried to 
target the cellular response to hypoxia in human cancers. 
It appeared that inhibiting HIF-1 alpha activation was 
the primary approach and might enhance chemotherapy 
response. Xia Yang et al [56] developed a signature by 
combining hypoxa and immune genes to predict progno-
sis of breast cancer. But they just focused on triple-neg-
ative breast cancer subtype. Also this research lacked of 
wet experiment.

There were some limitations of this study. Firstly, some 
important clinical factors, such as chemotherapy regime 
and duration of endocrine therapy were missing, which 
would lower the accuracy of the signature. Chemother-
apy and endocrine therapy regimens were important 
factors affecting the therapeutic efficacy of patients. 
Secondly, the signature was established based on retro-
spective data. The fundamental flaw of retrospective data 
was the existence of various biases. These bias may led 
to a decrease in the authority of the model. A prospec-
tive study will be needed to verify the model. Thirdly, 
further exploration of the function of hypoxia genes in 
vivo is needed. Animal experiment could better simulate 
the internal environment of human body. Nonetheless, 
our research successfully developed a robust prognostic 
signature. In clinical practice, oncologist would face a 
dilemma whether the patient should offer intensive treat-
ment. With the help of this signature to predict the risk 
of recurrence, oncologist could offer personalized treat-
ment strategies according to the risk score. What’s more, 
PSME2 would be an indicator of good prognosis for 
breast cancer patients. Through further research, PSME2 
may develop a kit to identify breast cancer patients with 
good prognosis and avoid over-treatment in the future.
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Conclusion
To conclude, we have successfully developed a risk-score 
signature based on nine hypoxia-related genes to predict 
the prognosis of breast cancer patients. The robustness of 
the signature was double-validated. Cell line experiment 
demonstrated that PSME2 played a protective role in 
breast cancer. We hoped this study would provide useful 
knowledge for improving the accuracy of predicting the 
prognosis of breast cancer patients.
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