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ABSTRACT: The theory of nuclear spin relaxation in a liquid
permeating a solid structure of irregular geometry is examined. The
effects of restricted diffusion and the demagnetizing field generated
by an inhomogeneous distribution of magnetic susceptibility in the
system are explored. A framework comprising Brownian Dynamics,
average Hamiltonian theory, and Liouville-space spin dynamics is
proposed for simulating nuclear spin relaxation in 3D models of
random structures obtained from CT scans of actual samples.
Simulations results are compared with experimental data. An
analytical solution valid within approximation is also reported.

■ INTRODUCTION
Nuclear spins diffusing in solution experience a variety of
relaxation mechanisms that limit the lifetime of nonequilibrium
spin order.1 Even the most fundamental interaction with a
magnetic field can induce spin relaxation, when the field is
inhomogeneous and the spins are free to diffuse in solution.2,3 At
the basis of this effect, there is a phenomenon well-known to
scientists performing diffusion NMR or MRI experiments, i.e.,
diffusive attenuation. Molecular translational diffusion in a
spatially inhomogeneous magnetic field leads to a phase shift of
the transverse spin order.4 This effect has been long exploited to
measure diffusion coefficients and diffusion tensors.5 Diffusive
attenuation also limits resolution in magnetic resonance imaging
and, more relevant to this work, can lead to an additional source
of relaxation for transverse spin order. The situation is
exacerbated when molecular diffusion takes place in the voids
of porous media. The difference in magnetic susceptibility
between the solid framework and the voids in such systems give
rise to local inhomogeneties in the magnetic field. Once a porous
medium is placed in a static magnetic field, and the molecules
move within and across pores, the nuclear spins carried by such
molecules experience a magnetic field that fluctuates in both
magnitude and direction. The effect of a randomly fluctuating
magnetic field on nuclear magnetization has first been described
by Redfield6 and Abragam;1 Callaghan4 provides a thorough
review of the spin dynamics of molecules undergoing diffusion in
the presence of magnetic field gradients.

For a spin diffusing in a porous system, the statistical
properties of this random field depend both on the dynamics of

diffusion and on the spatial inhomogeneity of the magnetic field,
which are both influenced in a complex manner by the spatial
structure of the pores. Quantitative prediction of the relaxation
caused by this effect poses therefore several challenges:

1. measurement of the random spatial structure of the pores
and representation by an appropriate statistical model;

2. calculation of the resulting inhomogeneous magnetic
fields in the pore space;

3. modeling of the restricted diffusion2 of molecules in the
pores and computation of the fluctuating field as a
function of time;

4. conversion of the fluctuating field’s statistical properties
into a quantum mechanical propagator that describes spin
relaxation.

Various aspects of the effect of susceptibility inhomogeneities on
NMR in porous media have been discussed in the literature,7−15

with most studies driven by the importance of diffusion NMR
and MRI in materials science, in the petroleum industry, or in
medicine.

The phenomenon has become particularly relevant for us in
relation to our interests in long-lived spin order.16 In recent
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studies, we have exploited the long position-encoding time
offered by long-lived spin order in diffusion-NMR applications
to localize spins over long times or long distances in magnetic
resonance imaging,17 measure very slow flow,18 extend the scope
of diffusive-diffraction q-space imaging,19 or measure tortuosity
in porous media.20 The long-lived spin order is created from
single quantum coherences, which are converted by special pulse
sequences. While the long-lived order is unaffected by diffusive
attenuation, this does not apply to the single quantum
coherences it originates from. Creation and observation of
long-lived spin order is severely limited in porous media at high
magnetic fields. The pulse sequences, for example M2S/S2M21

or SLIC,22 must be synchronized to the actual spin system’s
parameters and therefore cannot be kept conveniently short to
minimize the effects of diffusive attenuation. In particular, the
M2S/S2M sequence relies on relatively long and repeated
echoes, while SLIC is based on a long spin lock. In either case,
coherence decay typically results in a less efficient interconver-
sion between long-lived spin order and single quantum
coherence. As a result, when these pulse sequences are run in
certain porous media no conversion of transverse into long-lived
spin order is obtained at all. This is somewhat bizarre
considering the fact that the long-lived spin order itself is
unaffected by field gradients in the sample (unless the field varies
on a molecular length scale). Motivated by the necessity to
characterize this phenomenon, we have developed a simulation
framework that predicts the relaxation of spin states due to
susceptibility inhomogeneities in a porous system of arbitrary
complexity. It relies on microcomputed X-ray tomography scans
(μCT) of the porous structure, from which the position-
dependent field is computed by a discrete Fourier transform
approach. The same structure is used for a Brownian dynamics
simulation of diffusion in the liquid phase. The resulting
trajectories then serve as input to an average Hamiltonian
approach to compute the relaxation propagator. As we discuss in
the following, diffusive attenuation can also be treated
theoretically, but fairly strong assumptions on the stochastic
independence of diffusion and the random magnetic fields must
be made.

We tested the predictions from both simulation and theory
against experimental data taken at three different magnetic fields
on three model porous media made up by randomly packed
polyethylene spheres of different size imbibed with a
tetramethylsilane solution in methanol-d4.

■ THEORY AND SIMULATION METHODOLOGY
Magnetic Fields in Porous Media. The magnetic field at

each point in the structure of a porous medium can be thought of
as the superposition of the magnetic field generated by the
dipole magnetic moments present at each point in the structure.
In general, the magnetic induction B (which governs the
quantum dynamics of nuclear spins) is related to the magnetic
field H and the magnetization M as

B H M( )0= + (1)

In diamagnetic and paramagnetic materials, the magnetization is
proportional to the magnetic field H0 as in

M H0= (2)

In the present context, χ is a piecewise-constant function of
position. If we assume a porous solid described by the structure
function S(r), the function χ(r) is given by

S Sr r r( ) ( ) (1 ( ))s L= + (3)

where χs and χL are the volume susceptibilities of the solid and
liquid phases, respectively. Obviously, this continuum treatment
is only applicable for structures that are much larger than atomic
sizes. This is adequate in the present context, as we are dealing
with micrometer-sized pores. Without loss of generality, we
assign the z-axis to be aligned with the external magnetic field,
such that H0 = H0ez. The magnetization then becomes

H S SM r e r r( ) ( ) (1 ( ))z s L0= [ + ] (4)

The magnetic field has to satisfy Maxwell’s equations

B 0 and· = (5)

H 0× = (6)

By inserting (1) into (5), we obtain

H M 0· + · = (7)

The magnetic field can be separated into a constant (external)
field, which we assume to be aligned with the z-axis, and a
position dependent field Hd(r) as in

HH e H r( )z d0= + (8)

For historical reasons, Hd is known as the ”demagnetizing field”.
In the presence of piecewise-constant magnetic susceptibility,
Hd varies continuously as a function of position. It is these
variations that cause diffusive attenuation. Introducing (8) into
(7), we obtain

H r M( ) 0d· + · = (9)

With (4), and noting that ∇·= (∂x, ∂y,∂z)·, this becomes

H
z

SH r r( ) ( ) ( )d s L0· =
(10)

Since the structure function S(r) is constant everywhere except
on its boundaries, this differential equation, together with
Ampere’s law (6), represents an inhomogeneous boundary value
problem, which can be solved using the Green’s function

r
r

G r
e r r e

( )
1

4
3( )z z

2

5=
·

(11)

The demagnetizing field is then given by the convolution23,24

H SH r G r r r r( ) ( ) ( ) ( ) dd s L0= (12)

Note that μG(r − r′) represents the magnetic field generated at
position r by a point magnetic dipole μez located at r′. The
demagnetizing field is therefore the result of local magnetic
dipoles that are induced in the paramagnetic or diamagnetic
material by the external field H0.

It will prove convenient to formulate the problem in
dimensionless form. In this way, the results obtained can be
scaled to different pore sizes, diffusion coefficients, and magnetic
susceptibility differences. We therefore introduce a dimension-
less position vector

l
r=

(13)

where l is a length scale which can be chosen freely. It could, for
example, represent the average pore size, or the voxel size of the
CT data. The Green’s function G(r) is homogeneous of degree
−3; i.e., it has the property
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l lG G( ) ( )3= (14)

The convolution (12) can therefore be rewritten as

l H S lH G( ) ( ) ( ) ( ) dd s L0= (15)

This means that the demagnetizing field is length-scale invariant.
Using the Fourier convolution theorem, the demagnetizing field
can be computed as

l H sH r H G( ) ( ) ( ) ( ) ( )d d s L0
1= = [ [ ] [ ]]

(16)

where is the three-dimensional Fourier transform, 1 is its
inverse, and s(ξ) = S(lξ) is the dimensionless (or scale-free)
structure function. This formulation is convenient for numerical
computations, since G( )[ ] need only be computed once, and
results derived for one structure function s(ξ) are valid at any
length scale.
Fluctuating Field Experienced by Diffusing Spins. As

the molecules diffuse in the pore structure, they randomly
sample the demagnetizing field, such that each diffusing
molecule experiences a field that fluctuates randomly as a
function of time. The statistical properties of these fluctuations
arise as a combination of the statistics of the Brownian motion of
the molecules and those of the demagnetizing field. These two
random processes are potentially highly correlated�after all,
the structure S(r) both constrains the diffusion and gives rise to
the demagnetizing field.

The Brownian motion of a diffusing molecule makes its
position a random function of time r(t). If the diffusion is free,
then this function represents a Wiener process with

Dtr 62 = (17)

where Δr = r(t) − r(0), and D is the free diffusion coefficient.
This continues to be valid for the restricted diffusion inside the
pore structure S(r) for diffusion times that are short compared to
a2/6D, where a is a measure of the pore size. For longer times,
collisions with the pore walls cause deviations from free
diffusion, and Δr(t) is no longer a Wiener process. The motion
of the particle inside the pore structure makes the magnetic
induction experienced by the particle a stochastic function of
time:

t tB H r( ) ( ( ))d d0= (18)

Averaged Propagator. As a model system, we consider an
ensemble of molecules containing a single nuclear spin with spin
quantum number 1/2. In addition to the fluctuating demagnet-
izing field Bd(t), the molecules are exposed to an external
magnetic field assumed along the z-direction of the laboratory
frame, H0ez. Since the transverse components of the demagnet-
izing field give rise to terms in the spin Hamiltonian that do not
commute with the Zeeman term arising from H0ez, an average
Hamiltonian approach is required.25

Average Hamiltonian. The total time-dependent Hamil-
tonian Ĥ(t) for a spin-1/2 system diffusing through a
demagnetizing field and in the presence of a large external
field H0ez is given by

H t B I tB I( ) ( )z d0= · (19)

where26

B H1
3
L

0 0 0= +i
k
jjj y

{
zzz (20)

As mentioned above, the two terms in eq 19 do not commute
with each other. However, in many cases of interest, the
fluctuations of Bd are on a much slower time scale than the
period of the Larmor precession. Formally, this can be expressed
by the condition

B Bd0 (21)

In this case, it makes sense to work with the average Hamiltonian
over a full Larmor precession. To do so, we transform the
Hamiltonian into the interaction frame of the Zeeman term of
the Hamiltonian, Ĥz, as in

H tB Ie ( ( ) )ei I t
d

i I tz z0 0= ·Ù
(22)

where ω0 = −γ B0 is the Larmor frequency. Equation 22 can be
expanded by explicitly solving the frame rotation to obtain

H t t t I t I

t t I t I t I

( ) ( ) cos( ) sin( )

( ) sin( ) cos( ) ( )

x x y

y x y z z

0 0

0 0

= [ + ]

+ [ + ] +

Ù

(23)

with ωx(t) = −γBd,x(t), ωy(t) = −γBd,y(t), and ωz(t) = −γBd,z(t).
Assuming the time dependence of the fluctuating field to be slow
compared to the Larmor period, the time-dependent Hamil-
tonian above can be averaged over a Larmor period to give rise to
the Magnus series:27

H H H ...
(1) (2)

= + + (24)

where the terms on the right-hand-side are the first, second,
third, and so on orders of the expansion. The first two orders are
given by25

H
t

H t t1
( ) d

t(1)

0
1 1=

(25)

H i
t

t H t H t t
2

d ( ), ( ) d
t t(2)

0
2

0
2 1 1

2
= [ ]

(26)

And, for the current case we obtain

H t I( )z z
(1)

= (27)

H
t I t I t I t t2 ( )( ( ) ( )) ( ( ) ( ))

2
z x x y y z x y

(2)

2 2

0
=

+ + +

(28)

In the context of this paper, only the first-order averaged
Hamiltonian will be considered. This is because in diamagnetic
and paramagnetic systems |χs − χL| ≪ 1. Since ωx, ωy, and ωz
scale linearly with the susceptibility difference χs − χL, the
second order term is proportional to (χs− χL)2 and can therefore
be neglected.

Single Spin−Echo Propagator. The central task of our
simulation framework is to numerically compute the averaged
propagator for a spin-1/2 system, subjected to the first-order
truncated averaged Hamiltonian in eq 27, during a single spin−
echo pulse sequence consisting of a πx pulse separated by equal
time delays τ (see Figure 1). The propagator for such a sequence
is given by
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U T(0, 2 ) e e ee
iH i I iHx= (29)

where Ĥ̂ is the commutator superoperator of the Hamiltonian
and T̂̂ is the Dyson time-ordering superoperator. The first-order
truncated average Hamiltonian Ĥ̂(1)(t) commutes with itself at
all times. Introducing the following notation for rotation
superoperators:

R ( ) ex
i Ix= (30)

the propagator in eq 29 can be expanded to first order as

U

i H t t R i H t t

i H t t R i H t t R

R i H t H t t R

U R

(0, 2 )

exp ( ) d ( ) exp ( ) d

exp ( ) d ( ) exp ( ) d

( ) ( ) exp ( ) ( ) d ( )

(0, 2 ) ( )

e

x

x x

x x

x

0

(1) 2 (1)

0

(1) 2 (1)

0

(1) (1)

=

= [ + ]

=

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

(31)

where Û̂(0, 2τ) is the part of the echo propagator associated with
the decay of transverse magnetization during the time interval
2τ. Using the explicit form of the average Hamiltonian in eq 27
and recalling the definition ωz(t) = −γBd,z(r(t)), we obtain

U i I B t B t tr r(0, 2 ) exp ( ( ( )) ( ( )) dz d z d z
0

, ,= +i
k
jjj y

{
zzz

(32)

with Bd,z = μ0Hd,z as calculated in eq 16. It can already be
appreciated that the propagator Û̂(0, 2τ) will approach unity in
the limit of echo times that are short compared to the correlation
time of the fluctuating Larmor frequency ωz(t). The effects of
the random field experienced by the diffusing spins can therefore
be arbitrarily scaled down by applying π pulses separated by
short enough time intervals. In practice, however, the available
(and tolerable) RF power impose limits to how fast these π
pulses can be repeated. Moreover, in several situations, such as in
the case of pulse sequences that prepare singlet spin order, the
echo time cannot be chosen arbitrarily short but it is rather
dictated by the spin system parameters.

In an ensemble of molecules containing nuclear spins in a fluid
phase permeating a porous solid, ωz(t) becomes a random
variable, due to the diffusion of the particle within the pores.
Hence, in order to describe the global evolution of the system,
we need the ensemble average of eq 32, formally given by

P U

i I B t B t tr r

(0, 2 )

exp ( ( ( )) ( ( )) dz d z d z
0

, ,

=

= +i
k
jjj y

{
zzz

(33)

Relaxation of Longitudinal and Transverse Spin
Order. The averaged propagator in eq 33 can be used to
study the dynamics of the density operator during the pulse
sequence in Figure 1. Still in the case of a single spin-1/2 system,
assuming thermal equilibrium at the beginning of the experi-
ment, the density operator immediately after the first 90 deg
pulse is

I

I I

(0)

1
2

( )

x=

= ++

(34)

containing the transverse spin order, i.e., single quantum
coherences. If we adopt the following basis set for the Liouville
space: {I−̂, Iẑ, 1̂, I+̂}, then the density operator at time t = 0 is
represented by the following column vector:

1
2

1
0
0
1

=

i

k

jjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzz (35)

The density operator at time 2τ is then calculated from

P R(2 ) ( ) (0)x= (36)

In the same basis, the propagator Û̂e(0, 2τ) is represented by the
matrix

P

P

P

0 0 0

0 1 0 0
0 0 1 0

0 0 0

11

11

=

*

i

k

jjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzz
(37)

with

P ei B t B t tr r
11

( ( ( )) ( ( )) dd z d z0 , ,= +
(38)

and, R̂̂x(π) is represented by

R ( )

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

x =

i

k

jjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzz (39)

Hence, we find

P I P I(2 )
1
2

( )11 11= + * +

(40)

Giving the fact that in quadrature detection we only observe the
−1Q coherence we can restrict our attention to the term

P I(2 )
1
2obs 11=

(41)

The ensemble averaged exponential coefficient describes the
decay of the transverse magnetization as the spins diffuse in the
inhomogeneous magnetic field. The factor can be numerically
calculated as explained below. Incidentally, it is easy to see that
this phenomenon applies to transverse but not to longitudinal
spin order, and therefore, it contributes to T2 but not to T1
relaxation. In the basis adopted, the longitudinal spin order is
represented by the column vector

Figure 1. Spin echo pulse sequence used for single echo experiments (n
= 1 and variable τ) or measurements of T2 (τ fixed as specified and
variable n).
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I
1
2

0
1
0
0

z =

i

k

jjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzz (42)

which is clearly left unaltered by the averaged propagator in eq
37 and simply switched in sign by the propagator in eq 39.
Indeed, a signature of the presence of susceptibility
inhomogeneities induced relaxation is the experimental
observation that T1 remains unaffected, unlike T2. Note that
this fact is not dependent on the length scale of the susceptibility
inhomogeneities, but follows purely from the average Hamil-
tonian (27) and (28).2

Analytical Solution. Let us consider the propagator
element P11 in eq 38, which governs the evolution of observable
transverse spin order. For small enough diffusion displacements
one can use a first-order Taylor expansion. It is convenient to
choose the middle of the spin echo interval (the time of the
inversion pulse) as the expansion point and the time origin t = 0.
This gives

B t B B t Or r r r( ( )) ( (0)) ( ) ( )z z z
2= + · + (43)

where ∇Bz is the field gradient experienced by the diffusing spin
at time t = 0. This leads to

P

i B t t i B t tr rexp ( ) d exp ( ) dz z

11

0

0
= · ·i

k
jjj y

{
zzz i

k
jjj y

{
zzz

(44)

i B t t i B t tr rexp ( ) d exp ( ) dz z
0 0

= · ·i
k
jjj y

{
zzz i

k
jjj y

{
zzz
(45)

Since the diffusion displacements Δr before and after t = 0 are
statistically independent, this may be simplified to

P i B t t

i B t t

i B t t

r

r

r

exp ( ) d

exp ( ) d

(46)

exp ( ) d (47)

z

z

z

11
0

0

0

2

= ·

·

= ·

i
k
jjj y

{
zzz

i
k
jjj y

{
zzz

i
k
jjj y

{
zzz

The integral in eq 47 is the average diffusion displacement:

t tR r( )
1

( ) d
0

=
(48)

With this substitution, we obtain

P i B Rexp( ( ))z11
2= · (49)

To compute the ensemble average, we write the joint
distribution function of the magnetic field gradient and the
average diffusion displacement as

B BR R( , ; ) d dz z (50)

The ensemble average of any quantityA can then be expressed as
the integral

A A B B BR R R( , ) ( , ; ) d dz z z= (51)

As outlined before, the distribution function Φ(∇Bz, R; τ) is
unknown, and in general, it contains complex information on the
interplay between the fluctuating field and restricted diffusion. A
numerical approach to sample the distribution function Φ is
described below. An analytical solution requires some
simplifying assumptions, which will have to be justified in view
of experimental results. If we assume the average diffusion
displacement and the magnetic field gradients to be uncorre-
lated, the distribution function factorizes into

B BR R( , ; ) ( ) ( ; )z z= (52)

This is a rather drastic assumption, which is only valid if the
diffusive attenuation is so efficient that relaxation is essentially
complete on the time scale that is needed for the molecules to
reach the walls of the pores. We would therefore expect this
assumption to be valid at high magnetic fields, where the
magnetic field variations are large, and for large pore sizes. R is
given by the integral (48). If we further assume that over short
enough times τ the diffusion remains unrestricted by the pore
walls, Δr is a three-dimensional Wiener process, with
components

r D W2x t= (53)

whereWt is the standard Wiener process with variance σ2(Wt) =
t, and likewise for the other two components. The integral (48)
can therefore be evaluated as

R D W t D N N D2
d

2
0,

3
0,

2
3x t

0

3
= = =

i
k
jjjj

y
{
zzzz i

k
jjj y

{
zzz

(54)

where N(0,1) represents a Gaussian random process with zero
mean and unity variance. We therefore have

D
D

R R
( ; )

4
3

exp
3
4

3/2 2
= i

k
jjj y

{
zzz (55)

The matrix element P11 can therefore be expressed as

P
D

B B
D

i B

R

R R

4
3

d( ) ( ) exp
3
4

exp( ) d

z z

z

11

3/2 2

2

=

·

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
i
k
jjj y

{
zzz

i
k
jjjj

y
{
zzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
(56)

The spatial integral is in fact the three-dimensional Fourier
transform of a Gaussian function, and can be evaluated
analytically. This leads to
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This expression can be used to compute the propagator if the
field gradient ∇Bz is known. In the special case of ∇Bz = G =
const., this reduces to
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which is the well-known echo attenuation coefficient derived by
Carr and Purcell for a particle diffusing in a constant magnetic
field gradient.4,28

The ensemble average can be evaluated numerically as a
volume average over the liquid phase. Using our earlier
definition of the structure function S(r), which is unity in the
solid and vanishes in the liquid, we obtain
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where ϕL is the volume fraction of the liquid. The exponential in
eq 57 can be expanded in a Taylor series. To leading order, this
yields
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(60)

The field gradient scales proportionally to the susceptibility
difference. Since the demagnetizing field is independent of
length scale for a given spatial structure, the field gradient is
inversely proportional to the pore size a. We can therefore set
⟨∇Bz2⟩ ≈ B0

2(χL − χs)2/a2, and arrive at the scaling law
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which remains valid under the assumptions discussed above, as
long as the right-hand side is much smaller than unity. The
characteristic attenuation time is given by
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■ NUMERICAL SIMULATION FRAMEWORK
To numerically evaluate the propagator element P11 in eq 38, we
have set up a simulation framework (available in Mathematica29

and Julia30 languages) which consists of the following steps:
1. Digital rendering of the porous structure. A microcomputed

tomography 3D image of the porous medium is acquired
and binarized to obtain the structure function, s(ξ). This
function contains information about the structural nature
of the porous structure at each position ξ, namely s(ξ) = 1
if ξ falls within the solid matrix and s(ξ) = 0 if ξ falls within
a pore. Note that such knowledge of the structure is
discrete and has the same resolution of the CT scan (see
Figure 2a) . The digitized CT structure is then Fourier
transformed to yield s( )[ ] which is required in eq 16 to
calculate the field Hd(r).

2. Compute the magnetic f ield within the porous medium. The
demagnetizing field Hd(r) is computed on a 5123 mesh of
the CT image (taken at the center of the original image)
using a discrete version of eq 16. The demagnetizing field
is then linearly interpolated to create a finer resolution.

3. Simulate Brownian dif fusion. Using Brownian dynamics,
the discrete translational trajectory resulting from the
molecular random walk within and across the pores of the
structure is calculated as follows:

(a) An initial point ξ0 = {x0, y0, z0} is randomly chosen
to fall within a pore in the structure, i.e., s(ξ0) = 0
and a step counter j is set to 1.

(b) A random step is attempted by setting ξj = {xj−1 +
δxj, yj−1 + δyj, zj−1 + δzj}, with the step increments
δxj, δyj andδzj chosen randomly from a Gaussian
distribution of zero mean and standard deviation

Dt2 s= , where D indicates the isotropic self-
diffusion coefficient of the molecule carrying the
spin and ts is the time increment.

(c) The point ξj is checked such that if s(ξj) = 0, then
the new point is still in the pore space, the position
ξj is stored in the trajectory array p = {ξj}, and j is
incremented by 1. If s(ξj) = 1, a new random step is
attempted by returning to step b.

(d) Steps b and c are repeatedN times. This produces a
discrete trajectory ofNs entries (in general,Ns ≤N,
due to the rejection of steps colliding with the solid
phase). To produce a statistically accurate
description of spins randomly diffusing in porous
media, the procedure above must be repeated for a
(large) number of initial positions so as to simulate
the different translational trajectories accessible to
the different molecules. The total time for each
trajectory Nsts must be on the order of the
experimental time of interest, typically in the
range between tens and hundreds of milliseconds
in a liquid-state NMR experiment. In this paper, we
have adopted the alternative approach consisting of
simulating a very long trajectory (hundreds of
seconds) for a single molecule and dividing this into
many shorter subtrajectories. The two approaches
produce statistically equivalent results if the pore
structure is sufficiently interconnected as we
believe it is the case of our test samples below.
The result of a typical random walk simulation

Figure 2. Typical results of a numerical simulation on a sample of
packed PE beads showing (a) a 200 × 200 expansion of the binarized
μCT image (1 px = 5.56 μm), (b) the dimensionless demagnetization
field Bd(ξ) calculated over the same region as in a, (c) the positions
covered by a single molecule during a random walk through the pores of
the structure, and (d) the demagnetizing field experienced by the
molecule as a function of time, Bd(t). Simulation parameters are
collected in Table 1.
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performed on the test samples described below is
shown in Figure 2c.

4. Compute f luctuating f ield experienced by dif fusing spins.
Once the field map is generated (step 2) and molecular
positions as a function of the time are computed (step 3),
the fluctuating magnetic field experienced by the spins
along their translational trajectory becomes available. The
field experienced by the spin at the jth step of its random
diffusion through the porous medium is

p pB H( ) ( )d j d j0= (63)

Since each point in the trajectory is spaced in time by ts,
the field experienced by the spin at the time t = nsts (i.e.,
after ns steps) is given by

p

t n tB B
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( )

d d d s
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=

= (64)

The function Bd(t) is a fluctuating function and is
required in the calculation of the propagator element P11
in eq 38. The fluctuating field experienced by molecules
during their walk in a simulation using the test samples
described below is shown in Figure 2d.

5. Compute the averaged propagator element. The propagator
in eq 38 is averaged over a large number of individual
trajectories to accurately reflect the dynamics in a
macroscopic ensemble of spins. To do so we have divided
the whole trajectory made byNs points and total duration
Nsts in a number of subtrajectories, Nst = Ns/np, each
containing the number of points np = τ/ts. In a typical
calculation, Ns is set to 10 million points and ts to 20 μs;
thus np = 50 and Nst = 2 × 105.

The required propagator element is then calculated as
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where only the real part of the complex exponential function
appearing in eq 38 needs to be calculated since the imaginary
part vanishes due to the detailed balance.

All parameters used in the simulations are collected in Table 1.

■ EXPERIMENTAL MATERIALS AND METHODS
In order to compare numerical predictions with experiments so
to validate our simulation framework we have measured the

signal area as a function of the echo time τ using the pulse
sequence in Figure 1 with n = 1 and in a number of model porous
media made up by polyethylene beads of different size. These
measurements have been done at three different values of the
static magnetic field. For completeness, we also measuredT1 and
T2 decay times in all samples described below.
Samples. The model porous media samples used in this

work were made by random packs of polyethylene beads. All
samples were prepared in a 5 mm NMR tube sourced from
Wilmad LabGlass. The total packing height was 5 cm in order to
fully encompass the probe coil region with sufficient excess to
ensure that the packing was as uniform as possible across the
region of interest. The packing was done by weighing out ca. 1.2
g (bead size dependent) of the polyethylene beads and adding
this to the NMR tube in between 2 and 4 aliquots, depending on
the bead size. Between each aliquot gentle manual tapping was
undertaken to aid in packing. Polyethylene microspheres were
purchased from Cospheric’s CMPS products in sizes 212−250,
500−600, 710−850, and 1000−1180 μm and were used without
further purification. The bead packings were imbibed with a
0.193 M stock solution of tetramethylsilane (TMS) in
deuterated methanol (MeOD). Both solvent and solute were
purchased from Sigma-Aldrich and used without further
purification. Where required, gentle manual shaking was utilized
to remove any visible air bubbles. Table 2 summarizes the
sample composition and nomenclature.

NMR. NMR data were collected at three different values of
the static magnetic field, namely 7.05, 9.4, and 16.45 T. Data at
7.05 T was collected in a Bruker Avance III 300 MHz
spectrometer running topspin 3.5 and equipped with a 10 mm
MICWB40 Bruker probe. Data at 9.4 T was collected on a
Bruker Avance Neo 400 MHz spectrometer running topspin
4.0.8 and equipped with a 10 mm BBO Bruker probe. Data at
16.45 T was collected on a Bruker Avance Neo 700 MHz
spectrometer running topspin 4.0.7 and equipped with a Bruker
CPP TCI 700S3 probe. For all data collected, a single shim file
was saved based on shimming the beads-free BLK sample (see
Table 2). The same sample was also used to optimize the 90 and
180 deg pulses at all fields. Data fitting and relaxation values were
calculated using a custom-made palette running within the
Wolfram Mathematica software. In the following, we will refer to
T1, T2, and single echo experiments. T1 measurements use a
standard saturation recovery pulse sequence.T2 experiments use
a standard CPMG pulse sequence like the one reported in Figure
1 run with fixed τ and variable n. Single echo experiments are
also based on the pulse sequence in Figure 1 but are run with n =
1 and at variable τ values.

μCT. To obtain the digitized structure function S(r), we used
microcomputed tomography (μCT). CT images of the three
model porous media in Table 2 were collected using a modified
225 kVp Nikon/Xtek HMX scanner. To improve contrast, the
sample packings were prepared as described above but in

Table 1. Simulation Parameters

parameter symbol value

CT image resolution l 5.56 μma

9.31 μmb

diffusion coefficient TMS in MeOD D 2.4 × 10−9 m2 s−1

magnetic susceptibility MeOD χMe −6.96 ppmc

magnetic susceptibility PE χPE −9.67 ppmd

susceptibility difference Δχ = χMe − χPE 2.71 ppm
number of steps in the walk Ns 107

step duration ts 20 μs
total walk duration Ts = Ns*ts 200 s
average step distance ds = √(2Dts) 0.253 μm
average total distance Ds = √(2DTs) 800 μm

aSample PES. bSamples PEM and PEL. cReference 31. dReference 32.

Table 2. Sample Composition and Nomenclature

sample
name bead material bead size/μm imbibing solution/M

PES polyethylene
(PE)

212−250 (S) 0.19M TMS in MeOD

PEM 500−600 (M) 0.193M TMS in MeOD
PEL 1000−1180 (L) 0.193M TMS in MeOD
BLK − − 0.193M TMS in MeOD
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custom-made 10 mm poly(carbonate) tubes formed from a cut
section of 10 mm outer diameter and 1.5 mm wall-thickness
tubing (Clear Plastic Supplies, U.K.). For all samples, 3 g of
microspheres was added to the tube in a number of small
aliquots. At each addition, the sample was gently tapped to
improve the packing. The packed beads were imbibed with a
0.193 M solution of TMS in MeOD and manually shaken to
remove any visible air bubbles. The tube was sealed and left
overnight before imaging. μCT images were processed using the
ImageJ software. Raw data comprising the whole sample where
cut to manageable sizes for simulations (512 × 512 × 512 pixels
taken from the center of the reconstructed volume). These
reduced-volume images were filtered and binarized. A slice of
each data set is shown in Figure 3. Binarization was achieved

using ImageJ’s automatic threshold tool with thresholds
calculated for each slice and manually checked after binary
conversion. A median filter of 3 pixels was applied to the volume
before binarization in order to minimize noise and remove
artifacts. A further median filter of 2 pixels was applied following
binarization.

■ RESULTS AND DISCUSSION
1D NMR Spectra. 1D NMR spectra of the four samples in

Table 2 have been recorded at 16.45 T to examine the effect of
the susceptibility inhomogeneities on the spectral line width.
The spectra are compared in Figure 4. The peak at 0 ppm is due
to TMS while the peak at 4.8 ppm is due to the residual
protonated methanol. As expected, the presence of the PE beads
in the sample severely compromises the spectral resolution. The
effect is more severe for the sample with small beads (PES) and
lessens as the bead size increases. Clearly, the line width is
dominated by the field inhomogeneity due to the susceptibility
differences between the beads and the solvent. However, the
magnetic field is scale-invariant, as discussed above. The fact that
the line width does depend on the length scale, if only weakly,
already suggests that there must be a contribution to the line
width from a T2 relaxation mechanism that becomes more
effective at smaller length scales.
Relaxation Measurements. The T1 relaxation decay

constants of all samples were measured, at each magnetic field,
using a conventional saturation recovery pulse sequence with the
relaxation variable delay time ranging from 0.1 ms to 32 s. The
results of these experiments are reported in Table 3.

As expected, the beads and resulting susceptibility inhomo-
geneities do not alterT1. Conversely, as established in the theory
section above, the relaxation decay constant of transverse spin
order, T2, measured using a train of spin echoes (Figure 1 with

fixed τ and variable n�a.k.a. the Carr−Purcell−Meiboom−Gill
method) must depend on the actual echo time chosen in the
experiment. To highlight this effect, we have measured the T2
decay constants in the PEM sample, at the three different
magnetic fields and for a series of echo times, as indicated in
Table 4.

The data in Table 4 show how the measured T2 value gets
shorter and shorter as the echo time is increased. This is because
the spins can diffuse further away from their original positions
during an increased echo time. The values of T2 also become
consistently smaller as the static magnetic field is increased as the
effect is directly proportional to the magnetic field (see eq 41).
Diffusion Experiments. The value of the unrestricted

diffusion coefficient of TMS in MeOD is required in the random
walk part of the simulation framework. This coefficient has been
experimentally measured at 7.05 T using sample BLK (see Table
2) and a conventional pulsed gradient stimulated echo
(PGSTE) sequence that used bipolar gradients and one spoiler

Figure 3. Central xy-plane slice of the μCT images taken on the three
polyethylene beads packings studied in this work: (a) bead size 212−
250 μm, resolution 9.31 μm/pixel; (b) bead size 500−600 μm,
resolution 5.56 μm/pixel; and (c) bead size 1000−1180 μm, resolution
5.56 μm/pixel.

Figure 4. 1D NMR spectra of sample (a) BLK, (b) PES, (c) PEM, and
(d) PEL taken at 16.45 T (see Table 2). Spectra b, c, and d are
normalized to the same intensity scale for comparison.

Table 3. T1 Relaxation Decay Constants for All Samples in
This Work

T1 (s)

sample name 7.05 T 9.4 T 16.45 T

BLK 4.7 ± 0.1 5.4 ± 0.1 5.7 ± 0.1
PES 4.5 ± 0.1 5.0 ± 0.1 5.6 ± 0.1
PEM 4.8 ± 0.2 5.0 ± 0.1 5.7 ± 0.1
PEL 4.6 ± 0.1 5.1 ± 0.1 5.6 ± 0.1

Table 4. T2 Relaxation Decay Constants for Sample PEM
Using Different Echo Times

T2 (s)

τ (ms) 7.05 T 9.4 T 16.45 T

0.5 1.93 ± 0.02 1.84 ± 0.02 1.18 ± 0.02
1 1.30 ± 0.03 1.29 ± 0.03 0.61 ± 0.02
2 0.64 ± 0.03 0.60 ± 0.01 0.25 ± 0.01
4 0.29 ± 0.02 0.23 ± 0.01 0.09 ± 0.01
8 0.13 ± 0.01 0.09 ± 0.01 0.05 ± 0.01

16 0.10 ± 0.01 0.06 ± 0.01 0.04 ± 0.01
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gradient. The measurement returned D = (2.37 ± 0.03) × 10−9

m2 s−1.
Single-Echo Experiments. The results of single-echo

experiments, using the pulse sequence shown in Figure 1 with
n = 1, are compiled in Figure 5a for different magnetic fields and

Figure 5b for different bead sizes. All decay curves exhibit a
similar shape, reminiscent of a Gaussian function. At short echo
times, the normalized signal area is constant, and starts to decay
only once the echo time reaches several milliseconds. Clearly,
smaller beads and larger magnetic fields lead to faster decay.

The scaling law, eq 61, predicts a decay with 1 − P∼ τ3. Figure
6 shows a doubly logarithmic plot of the experimental results. In

close agreement with the theoretical prediction, the data present
as an initial straight line with a slope close to 3. At longer echo
times, the decay slows down with P approximating zero.

Agreement with the theory developed above is further
corroborated by plotting all available data as a function of the
reduced echo time

att
. The characteristic attenuation time has

been calculated according to eq 62, with the bead diameter used
for the characteristic length scale a. This is shown in Figure 7. All
data points, taken with different bead sizes and different
magnetic fields, collapse onto a single master curve. This
behavior is directly predicted by eq 57. The experimental data
therefore directly validate the assumptions made in developing
the theory, first and foremost the stochastic independence of the
diffusion process and the irregular magnetic field distribution.

However, the theory only provides the scaling behavior of the
propagator, not its absolute values, since the length scale a is not
uniquely defined. For this reason, numerical simulations have

been performed on all model porous media samples in Table 2
and at each magnetic field for which experiments were available.
The results of simulations done for a field of 7.05 T on the three
model sample consisting of beads packing of different sizes are
compared with experimental measurements in Figure 8a−c.

The agreement between simulations and experiments is quite
good considering that we do not know the exact magnetic
susceptibilities of the samples. The deviation from experimental
measurements increases at large value of τ. This can be related to
a gradually more important contribution of other relaxation
mechanisms that appreciably contribute to T2 at larger τ. It is
also noteworthy that the diffusive attenuation effects are less
severe as the beads sizes (and therefore the pore size) is
increased. This is due to the fact that for large pore size the spin
have to diffuse much further before to appreciate the fluctuation
nature of the demagnetizing magnetic field due to susceptibility
inhomogeneities. In parts d−f of Figure 8, we have compared
simulations and experiments for the model porous media sample
containing the smallest beads (and therefore the smallest pore
sizes) for three values of the magnetic field, namely 7.05, 9.4, and
16.45 T, from parts d to f, respectively.

Once again, we note a very good agreement between
simulations and experiments which confirm the good quality
of our simulation approach. As expected, the diffusive
attenuation effects are more severe as the field is increased
because the demagnetizing field depends linearly on the static
magnetic field.

In order to estimate at which magnetic field these effect
becomes negligible at long echo times that would be required,
for example, in a M2S/S2M experiment, we have simulated the
effects of diffusive attenuation for the PES sample at 3 smaller
values of the static magnetic field, namely 1, 0.5, and 0.1 T. The
results of these simulations are reported in Figure 9.

It becomes clear that the diffusive attenuation at echo time
duration of, say 30 ms, requires the experiments to be taken at
magnetic fields of 0.1 T or lower when molecules are diffusing
between the pores resulting from the packing of 212−250 μm
plastic spheres, for which a susceptibility mismatch of 2.71 ppm
exists between the structure and the solvent. The simulation
framework is therefore very useful in estimating these properties
for any actual porous structure providing that the involved
magnetic susceptibilities are known and an accurate image of the
sample can be acquired either through CT scan, as in this work,
or via MRI and indeed any other available techniques.

Figure 5. Experimental data from single-echo experiments for (a)
samples PES (squares), PEM (triangles), and PEL (pentagons) at 7.05
T and (b) sample PES at 16.45 T (diamonds), 9.4 T (circles), and 7.05
T (squares) (see Table 2). The signal area has been plotted so that the
shortest time point has intensity 1.

Figure 6. Log−log plot of experimental data from single-echo
experiments (Se) for sample PES at 16.45 T (diamonds), 9.4 T
(circles), and 7.05 T (squares). The dotted gray line is the plot of τ3 and
is meant to guide the eyes to a slope of 3. Experimental data refers to the
peaks’ signal area normalized so that the shortest time point has unitary
area.

Figure 7. Experimental signal area from single-echo experiments for
sample PES at 16.45 T (diamonds), 9.4 T (circles), and 7.05 T
(squares) and samples PEM (triangles) and PEL (pentagons) at 7.05 T
(see Table 2). The signal area has been normalized so that the shortest
time point has unitary area.
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■ CONCLUSIONS
A theoretical framework has been developed to predict the
diffusive attenuation of transverse nuclear spin order in liquids
imbibed into random media. Experimental measurements have
been performed on densely packed polyethylene beads of
varying size and at a variety of magnetic fields. The scaling of the
resulting attenuation with bead size as well as with the magnetic
field agrees closely with theoretical predictions derived by
neglecting correlations between the susceptibility inhomogene-
ities and molecular diffusion.

In order to provide a quantitatively accurate prediction, a
simulation framework has been developed that departs from CT
images of the 3D structure of the sample. The CT data is used to
compute the inhomogeneous demagnetizing field, and as a
framework for Brownian dynamics simulation of molecular
diffusion. This provides time-series data for the magnetic field
experienced by a diffusing molecule, from which the required
ensemble averages can be computed. The predictions were
found to be in excellent agreement with experimental
observations. The theoretical and simulation framework
presented here enables systematic predictions of the diffusive
attenuation behavior of more complex spin states. In turn, this is
of great importance in the design of experimental strategies for
magnetic resonance techniques based on long-lived spin states
and their applications to study random media. As the simulation
framework does not neglect correlations between magnetic field

and diffusion, it may also be applied to low and intermediate
field regimes where such effects are expected to be relevant.
Actually, such experiments are currently underway in our
laboratory and will be reported separately.
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Figure 8. Simulated diffusion propagator calculations (solid lines) and experimental signal area (symbols) in samples (a) PES, (b) PEM, and (c) PEL
at 7.05 T and for sample PES at (d) 7.05 T, (e) 9.4 T, and (f) 16.45 T (see Table 2). The signal area has been normalized so that the shortest time point
has unitary area. Simulations use the parameters in Table 1 and are the result of eq 65.

Figure 9. Simulated diffusion propagator calculations for sample PES at
1 T (diamonds), 0.5 T (squares), and 0.1 T (spheres). Simulations use
the parameters in Table 1 and are the result of eq 65.
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