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Abstract

Background: Single Nucleotide Polymorphisms (SNPs) are one of the largest sources of new data in biology. In most papers,
SNPs between individuals are visualized with Principal Component Analysis (PCA), an older method for this purpose.

Principal Findings: We compare PCA, an aging method for this purpose, with a newer method, t-Distributed Stochastic
Neighbor Embedding (t-SNE) for the visualization of large SNP datasets. We also propose a set of key figures for evaluating
these visualizations; in all of these t-SNE performs better.

Significance: To transform data PCA remains a reasonably good method, but for visualization it should be replaced by a
method from the subfield of dimension reduction. To evaluate the performance of visualization, we propose key figures of
cross-validation with machine learning methods, as well as indices of cluster validity.
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Introduction

SNPs are a major part of the extracted information from

individual genomes. With the vast amount of NGS data, 100.000 s

of SNPs can be found in a population today; naturally these are

somewhat difficult to visualize. The most traditional method is

PCA [1], which is still used in the majority of biology articles (e.g.

[2–4]). PCA is designed for an orthogonal transformation,

resulting in a number of components equal than or less to the

number of original variables. These components are usually sorted

for their explained variance.

At that point the assignment of a causing effect to the first

components is attempted (e.g. [5–7]). For a correct assignment

several constraints should be fulfilled [8].

Another usage is to plot the data with 2–3 higher components

with primarily the first two or three principal components being

plotted [2–4]. Due to the occasionally somewhat unsightly

diagrams, several approaches to improve visualization with PCA

have been developed (e.g. [9]).

In another field, that of machine learning, this problem of data

reduction, often especially for visualization, has developed into its

own subfield, ‘dimension reduction’, which was first outlined with

the introduction of the term ‘the curse of dimensionality’ [10]. In

this field several other methods have been developed since PCA,

such as Sammon mapping [11], Isomap [12], Locally Linear

Embedding [13], Classical multidimensional scaling [14], Lapla-

cian Eigenmap [15], m-SNE [16], t-SNE [17], and others.

In this article we will focus on t-SNE as one of these newer

methods and compare it with PCA in several ways.

The first step in comparing visualizing methods is of course to

take several complex data sets, make diagrams, and discuss them.

Decisions on aesthetic or artistic value may be made, but naturally

more or less solid key figures for contrasting would be desirable.

The question of the quality of a visualization can be split in two

parts: how well is the data structured; and how much (correct)

insight can be obtained from it?

For biological data, the second question can often get out of

hand; we will rather focus here on the first question.

Regarding the question of the structuredness of data, there exist

long-known indices of cluster validity, such as Dunn’s Validity

Index [18], Silhouette Validation Method [19], and others (for an

overview see [20]). But the property of structure can also be

approached from another perspective: How easily may a model be

built for the transformed data?

This question can be answered with splitting the data in two

parts, use one part for constructing a model and the other to test it.

The easier the structure of the data, the higher should be the

validation key figure, assuming the model learning method makes

an equal effort. We choose several machine learning methods for

this purpose and compare their results for the different

transformed data.

Here we show a comparison between the common PCA and the

newer t-SNE on several large SNP datasets with a number of

evaluating key figures.

Results

In Figure 1 and Figure 2 we show the visual results of our

chosen large SNP data sources transformed with PCA and with t-

SNE. In light of the good separation, we should repeat here that

both methods are unsupervised, that is, neither methods received

labels and the colors were added after transformation. Visually,

the t-SNE transformed data looks ‘nicer’ (our opinion and that of

nearly all colleagues). The only mentioned drawback is that no

extra biological information can be seen from the diagrams on the

right. Here we will leave for discussion a final conclusion on the
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amount of biological impact and focus on the structuredness of the

data. For this purpose, Table 1 contains the respective cluster

validity indices for all diagrams, the values of Dunn’s Validity

Index, and the Silhouette Validation Method. The higher these

values, the better the cluster separation, which corresponds to the

structuredness. Both methods rely on the pairwise distances of the

data points. Dunn’s index can be used in different ways: We took

the average function (the diameter of a cluster and the distance of

clusters are defined generically at this method; for both we choose

the average of pairwise distances). It is to mention that a Silhouette

value lower than zero makes not much sense in terms of validation,

as it means a random label assignment would be ‘better’. This

occurs for the rice data (Figure 2b) because several clusters appear

to consist of more than one real cluster, which are surrounding

other clusters. Either the label ( = country) is a too low resolution

or the location is not one of the largest effects in this data.

As a more general measure of the structuredness of the

transformed data, we formulate it as a supervised classification

problem. The underlying rationale is that, if the data is well-

structured, it should be easier for any method to construct a good

model for it. We choose here C4.5, PART, Neural Networks, and

naı̈ve Bayes [21–24]. To judge a method’s performance on a

dataset we use the percent correctly classified of the 10-fold cross-

validation. These results are presented in Table 2. Here, the

difference in this key figure between PCA and t-SNE transformed

data of the same source using the same learner should express the

difference in structuredness of the two transformations. Mean

values and standard deviations are only there per population as

these populations are not fully comparable.

For our large SNP data sources we selected the 1001 genomes

project [25], the RegMap panel [26], hapmap3 release 2/3 [27]

and the Rice Haplotype Map Project [28]. We picked a subset

from the 1001 genomes project, firstly because it seemed at the

time of analyzing that the data would not be fully complete in the

near future, and secondly, for the equal class sizes. With very

unequal class sizes, both PCA and t-SNE suffer, as we could see

with different unequal subsampling (not shown), and as also stated

by [29,30]. Class is here and later referring to the labels of the data

records, which are geographic locations in this paper. The next

three datasets are taken as they were released, whereas the last

dataset (Rice) was filtered for wild rice and for available labels

( = country).

The species of the first two datasets is Arabidopsis thaliana, the

species of the next two is human (they are just different releases of

the same effort). The last dataset is from a collection of rice. For all

species a solid assumption seems to be that a large effect in the

genomes is linked with their geographic location [31,32].

As can be seen, all key figures to measure the structuredness of

the transformed data point in the same direction (except for the

RegMap data, where the Dunn Index is the same). A clear answer

to the question of which transformation leads to better structured

data thus materializes: there needs to be a movement away from

PCA.

Discussion

The main purpose of this paper is to show an approach for

testing possible transformations of SNP/biological data to 2

dimensions for visualization. Many more methods exist than t-

SNE and PCA [33], though some do seem theoretically and

practically outperformed by others.

SNPs are one of the largest sources of new data in biology, but

until now none of this data has been in main machine learning

repositories (e.g. [34]). This will change in the future as certain

SNP data generating projects finalize.

We made two attempts to measure structuredness, which

strongly correlates to what most consider the better scatter plot.

The sources here are, on the one hand, merely much discussion

with no exhaustive survey. But our intention, on the other hand,

was to express this in numbers from the start. Our first approach

uses cluster validity key figures, despite their known weaknesses

[35]. Our second approach uses machine learning methods,

following the rationale: if a moderately complex algorithm can

more easily gain some ‘understanding’, and/or build a relatively

better internally validated model, possible human insight should

correlate to that. As measure for the machine learning methods we

use the percent correctly classified.

For machine learning methods themselves, there is of course

only little gain, since other approaches [33] exist to deal with (too)

many dimensions than to transform them to exactly two. Newer

methods of this type are usually able to perform better with the full

data, or with data not more than sufficiently reduced [36].

By performance we mean the result, not the computational

effort, which can sometimes overload the frame. In the context of

machine learning method performance, transformation of the data

to two dimensions can be seen as a loss of information, which

could be described by how much these methods lose in

constructing models. The measure here could again be the

percent correctly classified of the 10-fold cross-validation. The

transformation that lets to the smallest decrease for all methods

eligible for this classification problem should be judged better.

The four machine learning methods were not the only tested

methods; we choose these four because of their high performance.

As mentioned above the structuredness of the transformed data

is merely the first part of the various biological questions, the

second always regarding the biological impact. There are several

systematic attempts to directly translate it into biological informa-

tion [2,5–7]. Some appear quite convincing, while others seem

more tweaks of the transformation. Nonetheless, with these

attempts some insights have been obtained in this manner (e.g.

[5–7]).

There may be other constraints that a dimension reduction

method should fulfill to gain biological insight in other than

standard classification problems. Like clustering in general this

may simply remain ill-defined [37,38].

Materials and Methods

PCA
For PCA, the build-in R function prcomp() is used.

t-SNE
This method is presented in [17].

Beside the pseudocode of the simple version (Figure algorithm 1

in [17]), several ‘tricks’ and heuristics are used to make the results

more attractive and/or the computation faster. All parameters for

these ‘tricks’ are set within the method.

In the article ([17]), several other methods are compared and

likely reasons for their worse performance are discussed. Some

weaknesses also remain for t-SNE:

Dimension reduction for more than 3 dimensions: This

was not a topic in designing t-SNE or in first testing, as it is

irrelevant for visualization.

Curse of intrinsic dimensionality: Besides the general

issue that dimension reduction always means that some informa-

tion is lost, this targets the local linearity assumption of the

method.

Visualization of SNPs with t-SNE
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Figure 1. SNP data transformed with PCA and t-SNE 1/2. On the left is a PCA-plot with the first two components, on the right a t-SNE-plot of
the very same data from each data source. Data sources: Panel (a) is from the 1001 genomes project, (b) from the RegMap panel and (c) from
hapmap3 r2.
doi:10.1371/journal.pone.0056883.g001
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Non-convexity of the t-SNE cost function: This is one

reason for the need for heuristics and tricks in the computation

and the risk of not ending in the global optimum.

For t-SNE the matlab reference implementation is used [39].

There are two parameters for this implementation: init_dims and

perplexity. init_dims is a preprocessing reduction with PCA to

eliminate the most likely noise with skipping components with

virtually no variance; it makes the computation faster. perplexity is

used as defined in information theory, for example in [40].

Perplexity can be interpreted in this method as a smooth measure

of the effective number of neighbors.

Unfortunately this version is restricted to 32bit, which entails a

2GB memory limit. There are other reference implementations,

but all are restricted in memory usage at the moment.

Our chosen data sources would have required more total

memory; to still allow the analysis, the data was downsampled to

fit in 2GB memory. The same downsampled data was used also for

the PCA.

Figure 2. SNP data transformed with PCA and t-SNE 2/2. On the left is a PCA-plot with the first two components, on the right a t-SNE-plot of
the very same data from each data source. Data sources: Panel (a) from hapmap3 r3 (compare with Fig. 1c) and (b) from the Rice Haplotype Map
Project (only wild type where the label information was available).
doi:10.1371/journal.pone.0056883.g002

Table 1. Dunn’s Validity Index and Silhouette Validation
Method of the transformed SNP data.

Data Dunn’s Validity Index
Silhouette Validation
Method

PCA t-SNE Diff PCA t-SNE Diff

1001
genomes

0.52 (0.09) 0.61 (0.07) 0.09 0.07 (0.04) 0.22 (0.04) 0.15

RegMap 0.50 (0.06) 0.50 (0.04) 0.00 0.08 (0.02) 0.15 (0.02) 0.07

Hapmap3R2 0.16 (0.01) 0.25 (0.02) 0.09 0.27 (0.02) 0.31 (0.02) 0.04

Hapmap3R3 0.16 (0.01) 0.35 (0.01) 0.19 0.26 (0.02) 0.32 (0.02) 0.06

Rice 0.06 (0.07) 0.10 (0.10) 0.04 20.54 (0.04) 20.46 (0.04) 0.08

The values of two indices of cluster validity as a measure for structuredness of
the different transformed data. As a comparison between PCA and t-SNE the
diff(erence) column is expressive. The number in brackets is the standard
deviation of the index with 1000 permutations of the labels.
doi:10.1371/journal.pone.0056883.t001
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PCA vs. t-SNE
The most notable differences between the methods PCA [1] and

t-SNE [17]:

N PCA splits the data into n components, sorted for variance

(where n is the number of variables), whereas t-SNE squeezes

all information in m components (where m is freely to choose,

in case of plots m = 2)

N PCA is a static transformation: with one input there is always

exactly one output (conditions for ambiguous cases are also

precisely defined) t-SNE is a non-static transformation: with

the same input there are different outputs possible, especially

as the method is till now only feasible as more or less stepwise

optimization; but also if the best value in terms of the cost

function is always found, there will be several results because

the method/optimization-criteria is rotation and scale-invari-

ant

N PCA has several constraints [8], which are tackled in t-SNE

N PCA is an orthogonal linear transformation, whereas t-SNE is

a nonlinear reduction, which ‘components’ are not constrained

to be orthogonal.

The first of these points is the main convincing reason why PCA

should not be the only plot in case of high dimensional data. As

long as the number of dimensions is not too high, it is more likely

that the first few (for a plot = 2 or 3) PCA components explain a lot

of the data variance. If the first few components explain only little

variance, then there is a big gain if a method integrates the rest of

the data well, or put it in a different way: in a PCA plot there is

always the information of n-2 components left out, where in t-SNE

all information is tried to be combined.

Of course, if one of the largest effects in the data is perfectly

correlating with the first two PCA components, then this

transformation would be ‘better’ in terms of this effect. In SNP

data this is usually not the case, otherwise a lot of published plots

would look different and also the conclusion of this paper would be

the opposite.

Data sources
The 1001 genomes project [25] is one of the largest sources of

SNP/genomic data for Arabidopsis thaliana, even though the data

generation of this project is not finished. We used a subset of 99

individuals, selected for equal class sizes.

The Regional Mapping Project is another source for Arabidopsis

thaliana. Though it has a lower resolution of SNPs, it is already

finished. We have taken the same 1090 individuals as in the

article’s [26] PCA-plot.

The HapMap Project [27] is a large source of human genetic

variation. We used the data from the second release of phase III,

988 individuals’ sets of SNPs. We used also the third release of

phase III as own dataset, because it was not sure at last if all issues

were already resolved within (1198 individuals, should be a

superset of the second release).

The Rice Haplotype Map Project [28] is the largest source of

SNP/genomic data for rice. We have filtered here for the wild rice

(species Oryza rufipogon) where the country of origin was

available in the database (305 individuals).

Indices of cluster validity
The transformed and labeled data can be seen as a result of a

clustering method, although it is not gained in that manner: As

result from clustering the labels would be assigned through the

clustering method, whereas in our case the labels are the true

(external) classes and the values of the variables are ‘generated’

( = transformed original values). That means that the problem of

judging the structuredness of our transformed data with the true

classes is similar to judging the result of a clustering. For this

reason we are able to use internal evaluation methods, although it

is an external validation.

We choose Dunn’s Validity Index [18] and the Silhouette

Validation Method [19] for this purpose.

Dunn’s Validity Index and Silhouette Validation Method
A good short description of both methods can be found in

Wikipedia ([41,42]). Both methods rely on the pairwise distances

of the data points within a cluster in comparison with distances

within different clusters. Beside the chosen distance/dissimilarity,

the main difference is that the Dunn Index looks for the worst

combination (the maximal intra-cluster distance to the minimal

inter-cluster distance), whereas the Silhouette Validation Method

is taking the average of all cluster combinations (more precisely,

the Silhouette Validation Method is originally defined for two

clusters and we (/our chosen implementation) took the arithmetic

mean of all combinations).

For Dunn’s Validity Index we used the R package ‘clv’ [43] and

for the Silhouette Validation Method we used the R package

‘cluster’ [44].

Classification methods
For constructing models for classification we use four standard

machine learning methods:

Table 2. Percent correctly classified with various machine learning methods acting on transformed SNP data.

1001 genomes project RegMap hapmap3 r2 hapmap3 r3 Rice

% PCA t-SNE PCA t-SNE PCA t-SNE PCA t-SNE PCA t-SNE

C4.5 55.6 72.7 79.2 89.7 72.9 90.5 72.9 87.5 41.3 66.6

PART 60.6 76.8 77.6 89.1 72.7 90.9 73.3 87.6 39.7 64.9

Perceptron 67.7 76.8 80.7 85.8 70.3 85.1 72.2 84.8 50.5 56.4

Naive Bayes 62.6 75.8 75.2 80.3 74.6 87.2 71.8 84.1 40.7 42.3

Mean diff. 13.9 8.1 15.8 13.5 14.5

St.dev. 3.6 3.4 2.6 1.2 12.5

The percent correctly classified as a measure how easy a model can be learned. As comparison between PCA and t-SNE, the respectively difference between these two
columns is expressive. All models are better than random.
doi:10.1371/journal.pone.0056883.t002
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N The well-known tree learner C4.5 [21] and the not very widely

used method PART [23] relying on C4.5.

N A Neural Network [22] with one hidden layer (5–7 hidden

nodes).

N Naı̈ve Bayes [24]

The analysis with these classification methods was performed

with WEKA [45].
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