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Multi-label ℓ2-regularized logistic 
regression for predicting activation/
inhibition relationships in human 
protein-protein interaction 
networks
Suyu Mei1 & Kun Zhang2

Protein-protein interaction (PPI) networks are naturally viewed as infrastructure to infer signalling 
pathways. The descriptors of signal events between two interacting proteins such as upstream/
downstream signal flow, activation/inhibition relationship and protein modification are indispensable 
for inferring signalling pathways from PPI networks. However, such descriptors are not available in 
most cases as most PPI networks are seldom semantically annotated. In this work, we extend ℓ2-
regularized logistic regression to the scenario of multi-label learning for predicting the activation/
inhibition relationships in human PPI networks. The phenomenon that both activation and inhibition 
relationships exist between two interacting proteins is computationally modelled by multi-label 
learning framework. The problem of GO (gene ontology) sparsity is tackled by introducing the homolog 
knowledge as independent homolog instances. ℓ2-regularized logistic regression is accordingly adopted 
here to penalize the homolog noise and to reduce the computational complexity of the double-sized 
training data. Computational results show that the proposed method achieves satisfactory multi-label 
learning performance and outperforms the existing phenotype correlation method on the experimental 
data of Drosophila melanogaster. Several predictions have been validated against recent literature. The 
predicted activation/inhibition relationships in human PPI networks are provided in the supplementary 
file for further biomedical research.

Protein-protein interactions (PPIs) play important roles in mediating gene expression & regulation, cell signalling 
and organismal development. Aberrant protein-protein interactions could lead to diseases1. From a computa-
tional point of view, PPI networks are naturally regarded as essential infrastructure to infer signalling pathways 
in a manner of unsupervised learning2–4. To understand the signal flows in human PPI networks, we need the 
descriptors of signal events between two physically interacting proteins, such as upstream/downstream sig-
nal flow, activation/inhibition relationship, chemical reaction, protein modification, etc. However, the existing 
human PPI networks are seldom semantically annotated.

In recent years, much effort has been made to semantically annotate protein-protein interaction networks. 
For instance, statistical or machine learning methods are proposed to predict the upstream/downstream direc-
tionality between two interacting proteins3–6; data mining or machine learning methods are developed to predict 
the PTM (post-translational protein modification) types of interaction7–9. In10, RNAi screens data are exploited 
to derive a genotype-phenotype matrix to calculate Pearson correlation coefficients of phenotypes between two 
genes, based on which to predict the activation/inhibition relationships in Drosophila melanogaster PPI net-
works. Activation/inhibition relationships play important roles in relaying signals between physically interacting 
proteins and in mediating cross-talks between signalling pathways. Activation of oncogenes and/or inhibition 
of tumor suppressor genes to some extent could lead to serious diseases. To the best of our knowledge, there 
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is to date no computational method developed for predicting the activation/inhibition relationships in human 
PPI networks. The only existing computational method that predicts activation/inhibition relationships focuses 
on relatively small-scale Drosophila melanogaster PPI networks10. The assumption behind the method is that 
activation relationship exists between two interacting genes if they show similar phenotypic patterns; otherwise 
inhibition relationship exists if the phenotypes of these two genes do not occur at the same time. Based on the 
assumption, a phenotype correlation method was developed to predict the activation/inhibition relationships 
in Drosophila melanogaster PPI networks, wherein positive Pearson correlation coefficient between two geno-
types’ phenotypes indicates activation relationship, while negative Pearson correlation coefficient indicates inhi-
bition relationship. The idea behind the method is simple and easy to implement. Nevertheless, there are several 
concerns to be addressed. Firstly, the method needs phenotype data to derive genotype-phenotype matrix. The 
requirement may be practical for small-scale Drosophila melanogaster PPI networks. For large-scale human PPI 
networks, phenotype data may not be available and the requirement imposes demanding data constraint on 
computational modelling. Secondly, the method used indirect phenotype data to predict activation/inhibition 
relationships. Actually the experimental activation/inhibition data that contain more reliable and direct informa-
tion are not exploited at all. Finally, dissimilar phenotypic patterns between two interacting genes (e.g. a, b) do not 
necessarily indicate an inhibition relationship between the two genes. Maybe a third gene c inhibits the signalling 
interaction that gene a activates gene b.

In this work, we extend ℓ2-regularized logistic regression method to multi-label learning scenario for predict-
ing the activation/inhibition relationships in human PPI networks. In this method, the available experimental 
activation/inhibition data are directly exploited as training data. The phenomenon that both activation and inhi-
bition exist between two interacting proteins is computationally modelled by multi-label learning framework. In 
addition, a third class named others is introduced to classify those interacting protein pairs that possess neither 
activation relationship nor inhibition relationship. Here GO (gene ontology) terms are used as features to repre-
sent protein-protein interactions. To address the problems of GO sparsity and null-feature vectors, homolog 
knowledge transfer is conducted by treating the homolog knowledge as independent homolog instances.  
2-regularized logistic regression is accordingly adopted here to counteract the homolog noise and to reduce the 
computational complexity caused by the homolog-augmented training data. To demonstrate the efficacies of the 
proposed method, we conduct ten-fold cross validation &independent test on human activation/inhibition data 
and performance comparison with the existing phenotype correlation method on Drosophila melanogaster acti-
vation/inhibition data. Lastly, we apply the trained model to annotate human PPI networks with activation/inhi-
bition relationships for further biomedical research.

Data and Methods
Data and materials.  To our knowledge, several major databases including STRING11, Reactome12 and 
KEGG13 have collected a certain amount of activation/inhibition data. In14, functional PPIs are also annotated 
with activation/inhibition relationships. In this study, those activation/inhibition relationships annotated to func-
tional PPIs are removed, as we primarily focus on signal transduction via physical protein-protein interactions. 
To date, there are several databases that collect human physical protein-protein interactions such as HPRD15 
and HitPredict16. We use these two databases to choose from STRING, Reactome and KEGG those physical pro-
tein-protein interactions that have been annotated with activation/inhibition relationships (see Table 1).

As shown in Table 1, the training set is collected from the STRING database11. After filtering those duplicate 
PPIs and those functional PPIs, we obtain 4,504 activation relationships and 1,015 inhibition relationships. To 
construct the third class others, we randomly sample in the physical PPI space that is generated by combining the 
PPIs in HPRD and HitPredict and then excluding those activation/inhibition relationships that already occur in 
the training set. The size of class others is the same as that of the class activation to reduce the risk of predictive 
bias toward the large class activation. The physical PPI space minus the training set yields the prediction set that 
contains 151,201 PPIs.

As shown in Table 1, two independent test sets are constructed from the Reactome database and the KEGG 
database, respectively. For each database, those functional PPIs are filtered out and those PPIs that already occur 
in the training set are removed. The remaining PPIs are used as the independent test sets. The independent 
test set from the Reactome database contains 1,727 activation relationships and 457 inhibition relationships, 
while the independent test set from the KEGG database contains 339 activation relationships and 126 inhibition 
relationships.

Feature construction.  Gene ontology (GO) is a hierarchically organized and controlled vocabulary to char-
acterize gene products17. It is composed of three aspects, i.e. biological processes (BP), cellular components (CC) 
and molecular functions (MF). The annotations of these three aspects of genes or gene products are provided in 

Training set Independent test set

Prediction setSTRING Reactome KEGG

Activation 4,504 1,727 339

151,201Inhibition 1,015 457 126

Others 4,504 — —

Table 1.   Data distributions in the STRING, Reactome and KEGG databases.
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terms of GO terms in the GOA database18. Recently GO terms have been successfully used as features to predict 
protein-protein interactions19–23. There are two effective approaches to exploit GO terms for representing protein 
pairs. One approach is to exploit the shared GO terms between two proteins and construct explicit binary fea-
ture vectors as the inputs of machine learning methods20–23, and the other approach is to measure the similarity 
between GO terms in GO DAG (directed acyclic graph) and construct an implicit kernel matrix as the input of 
kernel methods19.

As regards explicit binary feature representation, there are also two methods to exploit GO terms. One method 
is to directly use the GO terms extracted from the GOA database alone21–23, and the other method is to incor-
porate the ancestor GO terms of each GO term concerned20. Incorporation of ancestor GO terms surely adds 
useful information to the training data and thus improves the model performance. Nevertheless, considering the 
relationships between GO terms into feature construction also has its adverse effects. On one hand, the ancestor 
GO terms are correlated with the GO term concerned, if treated as feature components, the artificially introduced 
correlation could make it more difficult to satisfy the rule of independence and identical distributions between 
feature components, so as to decrease the generalization ability of machine learning method. On the other hand, 
since there is generally more than one path from the GO term concerned to the root GO term, improper choice 
of the traversal path could introduce noise. If the relationships between the ancestors and the GO term concerned 
need to be considered, kernel method might as well be a better choice, because kernel method is convenient to 
incorporate the information of semantic similarity between the GO terms and their ancestors.

In this work, we use GO term as feature and represent protein pair in the form of flat binary feature vector, 
such that the shared GO terms and the distinct GO terms between two interacting proteins are easily represented. 
The GO terms are simply retrieved from the GOA database18. Here we do not exploit the relationships between 
the GO term concerned and its ancestors to avoid introducing correlations between feature components. To 
address the problems of GO-sparsity and null-feature vectors, each protein pair is represented with two instances, 
namely target instance and homolog instance. The target instance is constructed using the GO terms of the pro-
tein itself, while the homolog instance is constructed using the GO terms of the homologs. The homologs are 
extracted from the SwissProt database24 using PSI-BLast25 against all species (E-value =​ 10). To formally define 
the two instances, we introduce the following notations. Let ST

i  denote the GO term set of protein i and SH
i  denote 

the GO term set of the homologs. The GO term set of the training set U is defined as follows.
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Based on these notations, the target instance and the homolog instance for each protein pair i i( , )1 2  are formally 
defined as follows.
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where B g[ ]T
i i( , )1 2  denotes the value of component g of the target instance BT

i i( , )1 2  and B g[ ]H
i i( , )1 2  denotes the value of 

component g of the homolog instance BH
i i( , )1 2 . Formula (2) indicates that if protein i1 and protein i2 share the same 

GO term g, then the corresponding component in the feature vector BT
i i( , )1 2  or BH

i i( , )1 2  is set 2; if neither protein in 
the protein pair is annotated with the GO term g, then the component is set 0; otherwise, the component is set 1. 
If either ST

i1 S( )H
i1  or ST

i2 S( )H
i2  is empty, the feature vector of the target instance (homolog instance) is defined as null 

and should be removed.

Multi-label ℓ2-regularized logistic regression.  Activation/inhibition relationships between two inter-
acting proteins actually need to embrace upstream/downstream directionality. Since prediction of signal direc-
tionality is often treated as an independent computational problem5,6, we nether consider the directionality of 
activation/inhibition relationships for simplicity as10. In reality, both activation relationship and inhibition rela-
tionship probably exist between two interacting proteins. For instance, protein A activates protein B (A->​B) and 
protein B inhibits protein A (B-|A). Without considering the signal directionality, the protein pair (A, B) belongs 
to two classes, i.e. class activation and class inhibition. In the field of machine learning, the phenomenon that 
protein pair (A, B) possesses two class labels (activation and inhibition) is fit to be computationally modelled by 
multi-label learning framework.

Multi-label learning is easily converted to traditional supervised learning by two approaches, namely label 
combination method and binary method26. Label combination method converts to new label encodings all possi-
ble label combinations that occur in the training data. For example, the label combination {1, 2} is encoded as {1}, 
the label combination {1, 2, 4} is encoded as {2}, etc. Binary method trains one binary classifier for each class label 
by treating the data associated with the class label as positive and treating the data associated with all the other 
class labels as negative. For the sake of lower computational complexity, we choose label combination method so 
that only one classifier is needed to be trained for multi-class classification problems.

In the scenario of multi-label learning, three metrics, i.e. exact match ratio, macro-average F-measure and 
micro-average F-measure, are commonly used to measure model performance. Exact match ratio is used to meas-
ure the model performance of correctly recognizing all the associated class labels. The demerit of exact match 
ratio is that it does not count partial label matches that also provide useful information. To take partial label 
matches into account, macro-average F-measure and micro-average F-measure are especially proposed for per-
formance estimation in the scenario of multi-label learning26. Assume that there are l test instances, yi denotes the 



www.nature.com/scientificreports/

4Scientific Reports | 6:36453 | DOI: 10.1038/srep36453

true label vector of the ith instance and ў i denotes the predicted label vector, exact match ratio is formally defined 
as follows.

∑ =
=

ў
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I y1 [ ]
(3)i

l
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where I denotes an indicator function as defined below.
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dicted label set is denoted as Ĺi, then the true class label and the predicted class label for the ith instance are for-
mally defined by d-dimensional binary vectors as follows.
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For label j, the performance metrics precision (P) and recall (R) are defined as follows.
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Similar to the definition of = × × +‑F measure P R P R2 / , the F-measure for label j is formally defined as 
follows.
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Macro-average F-measure is defined as the unweighted mean of the F-measures of all class labels.
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Micro-average F-measure considers the predictions from all instances and calculates the F-measure across all 
class labels.
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Homolog knowledge transfer via homolog instances is an effective way to tackle the problems of GO term sparsity 
and null-feature vectors. However, homolog instances also have two adverse effects. First, the homolog instances 
double the size of training data and according increase the computational complexity. For large training data, 
things will become much worse. Second, the homolog instances could introduce a certain level of noise. As such, 
a noise-tolerant machine learning framework that can handle large-scale training data is needed for the homolog 
knowledge transfer. To the best of our knowledge, 2-regularized logistic regression27 is a robust method that 
handle large-scale data via fast data fitting and penalize noise via regularization technique. Given a set of 
instance-label pairs = ... ∈ ∈ − +x y i l x R y( , ), 1, 2, , ; ; { 1, 1}i i i

n
i , 2-regularized logistic regression solves the 

following unconstrained optimization problem.
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where ω denotes the weight vector and C denotes the penalty parameter or regularizer. The second term could 
penalize noise/outlier fitting. The optimization of the objective function (10) can be solved via its dual form:
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Results
Cross validation performance estimation.  Ten-fold cross validation is first conducted on the training 
data collected from the STRING database11 (see Table 1). The multi-label performance is provided in Table 2. In 
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the scenario of traditional supervised learning, both the target instance and the homolog instance are predicted 
to one class label. The predicted class labels of the two instances can be easily combined into a final label by com-
paring their decision values23,28. For instance, the target instance is predicted to the label = = ...L {l }, i 1, 2, , mT i , 
while the homolog instance is predicted to the label = = ...L {l }, i 1, 2, , njH . If the decision value of li is larger 
than that of lj, then the combined label is LT; otherwise, the combined label is LH. However, it is more complicated 
to yield the final class labels in the scenario of multi-label learning, because both the target instance and the 
homolog instance are predicted to multiple class labels. For example, the target instance is predicted to the labels 
= ...L {l , l , l }mT 1 2 , while the homolog instance is predicted to the labels = ′ ′ ... ′L {l , l , l }H n1 2 . The problem is 

which label pair ′ = ... = ...(l , l ), i 1, 2 , m; j 1, 2, ni j  should be chosen to compare their decision values. What’s 
more, it is a hard problem to determine how many class labels the final combined label set should contain. A 
proper solution is to report the label set = ...L {l , l , l }mT 1 2  for the target instance and the label set 
= ′ ′ ... ′L {l , l , l }H n1 2  for the homolog instance, respectively. Whether to choose ∩L LHT  or to choose ∪L LHT  

depends on the desire to obtain more reliable predictions or to obtain more informative predictions. As shown in 
Table 2, the proposed multi-label 2-regularized logistic regression method achieves satisfactory target-instance 
exact match ratio (0.7684) and homolog-instance exact match ratio (0.7677), implying that this method can rec-
ognize the complete set of class labels with high accuracy. The label-level macro-average F-measure (target-in-
stance: 0.7587; homolog-instance: 0.7600) and the instance-level micro-average F-measure (target-instance: 
0.7930; homolog-instance: 0.7913) show that this method achieves acceptable rates of partial label match.

Next we further check whether the proposed method yields predictive bias. As shown in Table 1, the training 
data are unevenly distributed among the three classes, wherein the class inhibition (1,015) is much smaller than 
the other two classes (4,504). The performance on each class is provided in Table 3. The three performance met-
rics, i.e. F-measure, precision and recall, show that the proposed method performs well on the two larger classes 
(activation and others), but demonstrates relatively poor performance on the smallest class (inhibition). Take the 
target-instance performance as an example, the class inhibition achieves 61.04% recall rate, much lower than the 
84.33% recall rate of the class activation. The poor performance on the class inhibition largely results from less 
experimental training data. Similarly, the phenotype correlation method also demonstrates poor performance on 
the class inhibition, achieving 41% recall rate10.

Validation against Reactome, KEGG and NetPath.  Independent test is further conducted here to 
study how well the proposed method generalizes to unseen data. The independent test sets are provided in Table 1. 
The performance metrics (i.e. F-measure, precision and recall) for the class activation and the class inhibition are 
provided in Table 4. We can see that the proposed method achieves satisfactory predictive performance on the 
class activation of both Reactome and KEGG data. Take the target-instance performance as an example, the 
proposed method correctly recognizes 79.73% (recall rate) activation relationships from the Reactome database 
and 80.24% (recall rate) activation relationships from the KEGG database. Comparatively, the homolog-instance 
performance is generally better than the target-instance performance, partly because the homolog instance con-
tains more abundant GO information. However, the predictive performance on the small class inhibition is much 
lower than that on the class activation, which is similar to the cross validation performance of this method and 
the performance of the phenotype correlation method10. Take the target-instance performance as an example, 
the recall rates are 0.3260 and 0.3095 on Reactome and KEGG, respectively. Similarly, the homolog-instance 
performance is much better than the target-instance performance. With the accumulation of experimental inhi-
bition relationships, the proposed method promises to achieve a certain performance improvement. The correctly 
recognized activation/inhibition relationships in the Reactome database and the KEGG database are provided in 
the supplementary file.

NetPath29 manually curates 35 human immune/cancer signalling pathways and about 430 activation/inhi-
bition relationships between physically interacting proteins. Interestingly, the activation/inhibition annota-
tions seem to have little connection with the PPIs of the 35 signalling pathways. After removing those PPIs that 
are already used as training data, we obtain 29 activation/inhibition relationships as independent test set. The 

Exact match 
ratio

Macro-average 
F-measure

Micro-average 
F-measure

Target instance 0.7684 0.7587 0.7930

Homolog instance 0.7677 0.7600 0.7913

Table 2.   Multi-label learning performance estimation by 10-fold cross validation.

Target instance Homolog instance

F-measure Precision Recall F-measure Precision Recall

Activation 0.8129 0.7846 0.8433 0.8083 0.7859 0.8320

Inhibition 0.6544 0.7053 0.6104 0.6624 0.6792 0.6465

Others 0.8089 0.8265 0.7920 0.8093 0.8272 0.7921

Table 3.   Per class performance estimation by 10-fold cross validation.
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proposed method correctly recognizes 93.33% activation relationships and 15.38% inhibition relationships. The 
independent test performance is similar to that on the Reactome database and the KEGG database. We need more 
experimental inhibition relationships in the training data to reduce predictive bias.

Performance comparison with the existing phenotype correlation method.  To further demon-
strate the efficacies of the proposed method, we need to further compare it with the existing methods. To our 
knowledge, there are to date no other methods developed to predict the activation/inhibition relationships in 
human PPI networks. The only comparable method is the phenotype correlation method that is developed to 
predict the activation/inhibition relationships in Drosophila melanogaster PPI networks10. However, the phe-
notype correlation method did not predict the activation/inhibition relationships in human PPI networks, and 
it is infeasible to find the phenotype data for large human PPI networks. For the reason, we attempt to con-
duct performance comparison on the Drosophila melanogaster PPI networks instead of the human PPI net-
works. The phenotype correlation method exploits 49 phenotype data of Drosophila melanogaster to construct a 
genotype-phenotype matrix, and then calculates the Pearson correlation coefficient of the phenotypes between 
two genes to predict activation/inhibition relationships. In the method, activation is treated as positive class and 
inhibition is treated as negative class. On the independent test data that contain 69 activation relationships and 37 
inhibition relationships, the method achieves 97.2% true positive rate (recall rate on the class activation) and 41% 
true negative rate (recall rate on the class inhibition). This independent test performance is used as the baseline 
for model comparison.

Before performance estimation on the independent test data of Drosophila melanogaster (69 activation rela-
tionships and 37 inhibition relationships), we need to first collect experimental data to train a predictive model. 
Since the training data of 49 phenotypes used as training data10 are not publicly available and the proposed 
method actually does not need the phenotype data, we need to resort to other data sources for model training. 
Fortunately, from the supplementary file 6 in10, we extract 270 experimental activation relationships and 111 
experimental inhibition relationships of Drosophila melanogaster PPI networks, which are disjoint with the inde-
pendent test set. This data source is used as training data. The 10-fold cross validation performance on this data 
set is provided in Table 5. The results show that the proposed method achieves satisfactory overall multi-label 
performance and per class performance on the class activation and the class others. Similarly, the performance on 
the small class inhibition is still not satisfactory.

Next we use the trained model to evaluate the performance on the independent test data used in10. As shown 
in Table 6, the proposed method achieves fairly promising performance, especially on the small class inhibition. 
For instance, the homolog-instance recall rate on the class inhibition is 0.8621, significantly outperforming the 
phenotype correlation method, whose recall rate on the class inhibition is 0.41.

Interactome-wide predictions of activation/inhibition relationships and validation.  Before 
interactome-wide predictions, we have attempted to train a more robust model on a larger training set by merg-
ing the training set from the STRING database with the independent test sets from the Reactome database and 
the KEGG database (see Table 1). However, no substantial performance gain is obtained. As such, we still use 
the model trained on the original training data for the interactome-wide activation/inhibition predictions. As 
shown in Table 1, the prediction set contains 151,201 physical PPIs from the HPRD database and the HitPredict 
database. The computational results show that 34,453 PPIs among the 151,201 physical PPIs are predicted to the 

Target instance Homolog instance

F-measure Precision Recall F-measure Precision Recall

Reactome

  Activation 0.8338 0.8737 0.7973 0.8560 0.8693 0.8431

  Inhibition 0.4180 0.5820 0.3260 0.4627 0.5479 0.4004

KEGG

  Activation 0.7988 0.7953 0.8024 0.8350 0.7880 0.8879

  Inhibition 0.4063 0.5909 0.3095 0.5167 0.5439 0.4921

Table 4.   Independent test performance on the Reactome and KEGG databases.

Overall performance Exact match ratio
Macro-average 

F-measure
Micro-average 

F-measure

Target instance 0.7940 0.7230 0.7980

Homolog instance 0.7611 0.7198 0.7641

Per class performance
Target instance Homolog instance

F-measure Precision Recall F-measure Precision Recall

Activation 0.8164 0.7842 0.8514 0.7598 0.7452 0.7751

Inhibition 0.4954 0.5094 0.4821 0.5327 0.5534 0.5135

Others 0.8780 0.9057 0.8521 0.8668 0.8651 0.8685

Table 5.   10-fold cross validation performance on the experimental data of Drosophila melanogaster.
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two classes (activation and inhibition), and the remaining PPIs are predicted to the class others. The physical PPIs 
that are predicted to the class activation and/or the class inhibition are provided in the supplementary file. Here 
we take the human cancer/immune signalling pathways in the NetPath database29 as examples and illustrate the 
predicted activation/inhibition relationships as follows, wherein seven predictions have been validated against the 
latest database and recent literature.

BDNF (Brain-derived neurotrophic factor) signalling pathway. Brain-derived neurotrophic factor (BDNF) is a 
member of family of neurotrophins that plays a major role in the growth, differentiation, plasticity and survival of 
neurons. BDNF is also involved in the biological processes such as energy metabolism, mental health, behavior, 
learning, memory, stress, pain and apoptosis29,30. The predicted activation/inhibition relationships in the BDNF 
signalling pathway are illustrated in Fig. 1 (those PPIs that are not predicted to the class activation and/or the 
class inhibition are omitted). As shown in Fig. 1, both activation and inhibition relationships are predicted to exist 
between PTPN11 and {NTRK2, FRS3, FRS2, SIRPA}. According to the Uniprot database (http://www.uniprot.
org/uniprot/Q06124), PTPN11 mediates cross-talk in multiple signalling pathways, e.g. fibroblast growth factor 
receptor signalling pathway, epidermal growth factor receptor signalling pathway, FRS2-mediated cascade, brain 
development, etc. These results may suggest that PTPN11 plays important roles in coordinating the activation/
inhibition of multiple cross-talk pathways.

AR (Androgen receptor) signalling pathway. The androgen receptor is a member of nuclear receptor family of 
ligand activated transcription factors, stimulation of which activates the SMAD signalling module29. The pre-
dicted activation/inhibition relationships in AR signalling pathway are illustrated in Fig. 2, where the hub gene 
AR is predicted to activate or to be activated by most of the other genes. The activation relationships between AR 
and {NR3C1, PXN, ESR1} have been experimentally verified29. As shown in Fig. 2, inhibition relationships are 
predicted to exist between gene AR and the genes {CTNNB1, PIAS1}. In31, it has been experimentally verified that 
there is a significant positive correlation between PIAS1 and AR expression in the malignant tissues of prostate 
cancer, while the Pearson’s correlation between the expressions of these two genes is low in the benign tissues, 
indicating that the predicted inhibition relationship between AR and PIAS1 is consistent with the experimental 
evidence.

IL (Interleukin) signalling pathways. Interleukin are a group of cytokines (secreted proteins and signal mole-
cules) that were first seen to be expressed by white blood cells (leukocytes), and the function of immune system 
depends in a large part on interleukins32. The predicted activation/inhibition relationships in IL signalling path-
ways are illustrated in Fig. 3. As compared to other signalling pathways, much more inhibition relationships are 

Multi-label l2-regularized 
regression method

Target instance Homolog instance

F-measure Precision Recall F-measure Precision Recall

Activation 0.7778 0.7778 0.7778 0.8167 0.7424 0.9074

Inhibition 0.6333 0.6129 0.6552 0.6944 0.5814 0.8621

Genotype-phenotype 
correlation method10 Precision Recall

Activation — 0.972

Inhibition — 0.41

Table 6.   Comparison with the existing phenotype correlation method on the independent test set of 
Drosophila melanogaster.

Figure 1.  BDNF (Brain-derived neurotrophic factor) signalling pathway. Only the PPIs that are predicted 
with novel activation/inhibition relationships are illustrated, and the other PPIs in BDNF signalling pathway are 
omitted. The green line stands for activation and the red line stands for inhibition.

http://www.uniprot.org/uniprot/Q06124
http://www.uniprot.org/uniprot/Q06124
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predicted in these pathways. Among the predicted inhibition relationships, the inhibition relationships between 
gene IL7R and the genes {IL2RG, JAK1, JAK3} have been experimentally validated in33. IL7 receptor is a receptor 
complex that consists of the IL7 receptor alpha chain (IL7R) and the common gamma chain (IL2RG). In33, it has 
been claimed that the binding of IL7 to IL7R could activate the receptor complex and further activate Janus kinase 
1 (JAK1) and JAK3. In addition, the mutation in IL7R, IL2RG, JAK1, or JAK3 could also activate the receptor com-
plex, which would lead to impaired B & T cell development, phosphorylation of STAT proteins, and thus cause 
the activation of survival and proliferation pathways. This statement suggests that the activation of receptor com-
plex {IL7R, IL2RG} may activate {JAK1, JAK3} to cause immunodeficiency disease. According to this evidence, 
the receptor complex {IL7R, IL2RG} can be inferred to keep inactivated with {JAK1, JAK3} in normal cells, which 
validates our predictions.

Discussion
Computationally annotating protein-protein interaction (PPI) networks has drawn much attention in recent 
years. Assignment of semantic annotations to the interactions of PPI networks facilitates the derivation of sig-
nalling pathways. At present, most existing computational methods focus on predicting the descriptors of sig-
nal events between two interacting proteins, such as upstream/downstream directionality, activation/inhibition 
relationship, chemical reaction, protein modification, etc. Among these signal events, activation/inhibition rela-
tionships are significant to reveal the spatiotemporal relay of signalling events in biological processes and to 
understand the cross-talk mechanism between signalling pathways. Activation of oncogenes and/or inhibition 
of tumor suppressor genes to some extent cause diseases. To our knowledge, there is only one computational 
method developed to predict the activation/inhibition relationships in the PPI networks of Drosophila melano-
gaster. There is to date no computational method that focuses on predicting activation/inhibition relationships 
in human PPI networks.

In this work, we extend 2-regularized logistic regression to multi-label learning scenario for predicting the 
activation/inhibition relationships in human PPI networks. This method exploits the available experimental acti-
vation/inhibition relationships as training data and thus is comparatively more reliable than the indirect pheno-
type data based method10. In our solution, three major concerns are explicitly addressed. First, activation/
inhibition relationships are usually accompanied with the information of directionality. Since prediction of signal 
directionality is often treated as an independent research topic, we neither consider the directionality of activa-
tion/inhibition relationships to make things simple as10. If the information of directionality is ignored, both acti-
vation relationship and inhibition relationship would co-exist between two interacting proteins. In the field of 
machine learning, the phenomenon that an instance belongs to more than one class label is fit to be modelled by 
multi-label learning framework. Second, gene ontology, especially the shared GO terms, has been proven effective 
to represent protein-protein interactions. Nevertheless, the sparsity of GO terms is the major constraint of GO 
feature construction method, and in an extreme case it would yield null feature vectors. Here we tackle this prob-
lem via homolog knowledge transfer. The homolog knowledge is treated as independent homolog instances to 
enrich the feature information of the target instances. When the target instance is degenerated into a null feature 
vector, the homolog instance serves as a substitute for the target instance. Last, the homolog instances double the 
size of the training data. For large training data, the computational complexity will become a major concern of 

Figure 2.  AR (Androgen receptor) signalling pathway. Only the PPIs that are predicted with novel activation/
inhibition relationships are illustrated, and the other PPIs in AR signalling pathway are omitted. The green 
line stands for activation and the red line stands for inhibition. The sinewave green line stands for the verified 
activations.
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computational modelling. Furthermore, homolog instances will also introduce a certain level of noise that results 
from evolutionary divergence. To our knowledge, logistic regression is a classic method to fast fit large data and 
its latest 2-regularization version27 could make the model more robust against noise/outlier. For the reasons, here 
we choose 2-regularized logistic regression to reduce the computational complexity and meanwhile to counteract 
the impact of noise. As a whole, the combination of several existing techniques rationally addresses the three 
major concerns, so as to provide a novel solution to the problem of predicting activation/inhibition relationships 
in human PPI networks. From the aspect of computational contribution, there are some points that need to be 
pointed out. This work does not attempt to develop a completely novel computational method, and the logistic 
regression method is a classic method that seemingly introduces little novelty. Actually, the latest version of logis-
tic regression 2-regularized logistic regression is well built on the statistic learning theory, where regularization 
technique is introduced to make the model more robust against noise. In fact, the 2-regularized logistic regres-
sion method27 is rarely used to solve biological problems. Nevertheless, this work to some extent computationally 
contributes to the methodology of bioinformatics from these major aspects: (1) we extend 2-regularized logistic 
regression to multi-label learning scenario; (2) homolog knowledge transfer is conducted via homolog instances 
to enrich the feature information and address the problem of GO sparsity; (3) fast data fitting of logistic regression 
reduces the computational complexity that is increased by homolog instances; (4) homolog noise is counteracted 
by the regularization technique of 2-regularized logistic regression; (5) this work first computationally solves the 
problem of predicting activation/inhibition relationships in human PPI networks.

From the aspect of state-of-art computational modelling, we should choose the best one that could achieve the 
highest performance from a variety of machine learning methods, such as support vector machine (SVM), neural 
networks and random forest, etc. SVM26 is a theoretically established method that is robust against noise/outlier 
via regularization technique. Unfortunately, SVM is not an effective solution to large-scale training data with time 
complexity ο n( )2 . In this work, the training data contain 2x(4,504 +​ 1,015 +​ 4,504) instances. Faced up with so 
large a data, SVM is obviously not a rational choice. Comparatively, 2-regularized logistic regression could fast fit 
so large a data effectively in a linear time. Besides the concern of time complexity, noise tolerance is the other 

Figure 3.  IL (Interleukin) signalling pathway. Only the PPIs that are predicted with novel activation/inhibition 
relationships are illustrated, and the other PPIs in IL signalling pathway are omitted. The green line stands for 
activation and the red line stands for inhibition.
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major concern in choosing a proper machine learning method. To our knowledge, neural networks and random 
forest focus on data fitting without introducing noise-penalty mechanism, e.g. regularization technique, such that 
the two methods are prone to yield overfitting to noise and could not generalize well to unseen data. For the two 
concerns, SVM, neural networks and random forest are not applicable to this task and so we choose the 2
-regularized version of classic logistic regression as the base classifier. Furthermore, because the methods SVM, 
neural networks and random forest have not been used to predict the activation/inhibition relationships in PPI 
networks, we do not choose these methods as baseline to compare. Instead, we choose the phenotype correlation 
method10 as comparison baseline, though it predicts the activation/inhibition relationships in Drosophila melano-
gaster PPI networks.

As regards the feature construction method using GO terms, there is still a problem that is worth further 
discussing. As mentioned in the section of feature construction, we adopt the simple method of using the GO 
terms from the GOA database directly or taking the most specific annotated GO terms. This method has its 
demerit. As the GO knowledge is unevenly distributed between well-studied proteins and less-studied pro-
teins, the less-studied proteins would lack lower-level or more specific GO terms, so that no shared GO terms 
are found between these two kinds of proteins even though they are functionally correlated. The method of 
lowest-common-ancestor34 could enrich the information of shared GO terms between two proteins, so that the 
functional relationships between two GO terms at different levels of GO DAG could to some extent be recovered. 
Accordingly there are two major concerns for the method of lowest-common-ancestor to be addressed: (1) we 
need to search the lowest common ancestors in GO DAG for every pair of GO terms, so that the time complexity 
is increased. Although a portion of informative GO terms have been pre-calculated35, the coverage of GO terms 
is still limited; (2) the lowest common ancestors introduce correlations between feature components into feature 
construction, so that the independence requirement between feature components is more difficult to satisfy.

Homolog knowledge transfer is another effective way to recover the functional relationships between two GO 
terms at different levels of GO DAG23,28,36. For instance, a well-studied protein a is annotated with a GO term 
Termi at the ith level, and a less-studied protein b is only annotated to the jth level with a GO term Termj that is 
ancestor to Termi. As Termi is distinct from Termj, it would be taken for granted that the set of shared GO terms is 
empty and protein a is little functionally correlated with protein b. Fortunately, the homologs of protein b could 
increase the coverage of well-studied proteins. If protein a is functionally related with protein b, there is a large 
chance that a homolog c of protein b is annotated with Termi. As shown in Tables 4 and 6, the homolog instance 
achieves better independent test performance than the target instance, especially on the Drosophila melanogaster 
PPI networks the homolog instance correctly recognizes 86.21% inhibition relationships, while the homolog 
instance correctly recognizes only 65.52% inhibition relationships. The results show that the homolog knowledge 
transfer enriches the feature information and to some extent recovers the functional relationships between two 
GO terms at different levels of GO DAG. Similarly, homolog knowledge transfer also has its demerit, that’s, a 
certain level of noise could be introduced via homolog instances. This is the reason why we introduce 2
-regularized version of logistic regression to counteract noise.

Imbalanced distribution of training data among multiple classes is a hard computational problem in the fields 
of bioinformatics and machine learning. In this work, the larger classes {activation, others} possess much more 
training instances than the small class inhibition. As a result, the performance on the class inhibition is much 
lower than that on the class activation and the class others. We have attempted to sample the training data to create 
approximately even class distributions, for instances, oversampling the small class inhibition, undersampling the 
larger classes {activation, others}, or developing ensemble of classifiers on the larger classes {activation, others}. 
Unfortunately, no substantial performance gain is obtained. Maybe accumulation of more training data for the 
class inhibition is the ultimate way to achieve balanced performance among the three classes.

Computational results show that the proposed method achieves excellent performance on the two large classes 
{activation, others} and relatively poor performance on the small class inhibition. Nevertheless, the performance 
on the class inhibition is still quite promising as compared to that of the phenotype correlation method10. With 
the accumulation of experimental data, especially the inhibition relationships, the proposed method promises to 
achieve less biased predictions. We use the proposed method to conduct interactome-wide predictions and the 
predictions are provided in the supplementary file to provide insights into signal transduction and tumorigenesis. 
Especially, we map the predicted activation/inhibition relationships onto human immune/cancer signalling path-
ways from the NetPath database, and seven predictions are found to be consistent with recent literature.
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