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Abstract

Background and Aim: Altered expression of microRNAs (miRNAs) hallmarks many cancer types. The study of the
associations of miRNA expression profile and cancer phenotype could help identify the links between deregulation of
miRNA expression and oncogenic pathways.

Methods: Expression profiling of 866 human miRNAs in 19 colorectal and 17 pancreatic cancers and in matched adjacent
normal tissues was investigated. Classical paired t-test and random forest analyses were applied to identify miRNAs
associated with tissue-specific tumors. Network analysis based on a computational approach to mine associations between
cancer types and miRNAs was performed.

Results: The merge between the two statistical methods used to intersect the miRNAs differentially expressed in colon and
pancreatic cancers allowed the identification of cancer-specific miRNA alterations. By miRNA-network analysis, tissue-
specific patterns of miRNA deregulation were traced: the driving miRNAs were miR-195, miR-1280, miR-140-3p and miR-1246
in colorectal tumors, and miR-103, miR-23a and miR-15b in pancreatic cancers.

Conclusion: MiRNA expression profiles may identify cancer-specific signatures and potentially useful biomarkers for the
diagnosis of tissue specific cancers. miRNA-network analysis help identify altered miRNA regulatory networks that could
play a role in tumor pathogenesis.
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Introduction

MicroRNAs (miRNAs) are small non-protein coding RNA

molecules that regulate gene expression mainly at the level of

protein synthesis [1]. They represent an evolutionary highly

conserved system that controls crucial cellular processes, such as

development, differentiation, proliferation, apoptosis, and metab-

olism [2]. Aberrant expression of miRNAs can arise from deletion,

mutation, and methylation of miRNA-encoding genes, many of

which located at genomic fragile sites or regions frequently deleted

or amplified in cancer [3]. Based on these premises, they have

been proven to interact with potential oncogenes or tumor

suppressors [4]. Many miRNAs are expressed in a tissue-specific

manner, with profiles differentially expressed in either normal and

neoplastic tissues, and in tumors with distinct biological properties.

In addition, some evidences indicate miRNA profiles to allow

reliable identification of the cell-of-origin of tumors [5].

Classically, differential expression of miRNAs has been

evaluated either as single contribution or as predictive signature

[6,7]. However, much of scientific effort is spent currently to

elucidate their functions: most miRNAs control at least one

mRNA, and most mRNAs are controlled by more than one

miRNA [8]. The complexity behind this sophisticated mechanism

can be partly alleviated by the knowledge of the conservation levels

of each miRNA. Indeed, high conservation across wide phyloge-

netic distances helps restricting the range of functions that a
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miRNA can play to regulate the control of species development

and physiology.

In this study, we investigated expression patterns of miRNAs in

colorectal (CRC) and pancreatic cancer (PC) with the intent to

identify miRNA regulatory networks likely involved in oncogenic

pathways by evaluating cancer-specific signatures through the

analysis of the relationship between miRNA expression profile and

cancer lineages.

Materials and Methods

Samples Selection and RNA Extraction
Primary tumor and neighbouring non-tumorous tissues were

obtained from two training cohorts of 19 CRC patients and 17

PC patients, and from two validation cohorts of 14 CRC and 21

PC patients.. The study was performed with the approval of the

Scientific and Ethic committees of the IRCCS ‘‘Casa Sollievo

della Sofferenza’’ Institute, San Giovanni Rotondo, FG (Italy).

The patients gave informed written consent according to the

Italian law on privacy (providing for the protection of personal

data), so individuals can not be identified from data or images

included in this publication, and approved by the Scientific and

Ethic committees of the IRCCS ‘‘Casa Sollievo della Soffer-

enza’’ Institute. All clinical investigations have been conducted

according to the principles expressed in the Declaration of

Helsinki.

Patient clinical data, tumor location, and staging are shown in

Table S1. Tissue samples were flash frozen in liquid nitrogen and

stored at 280uC until nucleic acids extraction. About 150–200 mg

fresh frozen tissues were used to isolate total RNA by phenol

extraction (TRIzol Reagent, Invitrogen Corporation, Carlsbad,

CA, USA). RNA concentration and purity were controlled by

Nano Drop Specthophotometer. The Agilent 2100 Bioanalyzer

was used to measure the quantity, integrity and purity of small

RNAs and total RNA, and only non degraded RNA characterized

by an RNA integrity number .7 with no DNA contamination

signs was processed.

MiRNA Microarrays
MiRNA expression profile was determined by using Gene-

ChipH miRNA Array (www.affymetrix.com). This array contains

46,228 probes comprising 7,815 probe sets, including controls,

and covers 71 organisms such as human, mouse, rat and dog.

Content is derived from the Sanger miRBase miRNA database

v.11 (April 15, 2008, http://microrna.sanger.ac.uk). Probe sets

targeting human snoRNAs and scaRNAs are derived from the

snoRNABase (www.snorna.biotoul.fr/coordinates.php) and the

Ensembl (www.ensembl.org/biomart/martview) archives, Briefly,

1.5 mg of total RNA was labeled using the 3DNA Array

Detection FlashTagTM RNA Labeling Kit (http://www.

genisphere.com), according to manufacturer’s recommendations.

First, poly (A) tailing was carried out at 37uC for 15 min in a

volume of 15 ml reaction mix, which contained 1X Reaction

Buffer, 1.5 ml MgCl2 [25 mM], 1 ml ATP Mix diluted 1:500 and

1 ml PAP enzyme. Second, Flash Tag Ligation was performed at

room temperature for 30 min by adding 4 ml of 5X Flash Tag

Ligation Mix Biotin and 2 ml T4 DNA Ligase into the 15 ml of

reaction mix. To stop the reaction, 2.5 ml of Stop Solution was

added. Samples were hybridized, washed and scanned with an

Affymetrix Scanner.

All microarray data are MIAME compliant and the raw data

has been deposited in ArrayExpress (accession number E-MTAB-

752 for colon cancer miRNA expression profiles and E-MTAB-

753 for pancreatic cancer miRNA expression profiles).

Quantitative estimation of miRNA by reverse
transcription Real-Time PCR assay

Quantitative real-time polymerase chain reaction (qPCR) of

miRNAs was performed using TaqMan MicroRNA Assay

(Applied Biosystems, Foster City, CA, USA) with ABI-PRISM

7700 Sequence Detection System. A two-step protocol requires

reverse transcription with a miRNA-specific primer, followed by a

real-time PCR with TaqMan probes. The assays target only

mature miRNAs, not their precursors. In brief, reverse transcrip-

tase reactions contained 10 ng of RNA samples, 50 nM stemloop

RT primer, 10X RT buffer, 0.25 mM each of dNTPs, 3.33 U/ml

MultiScribe RT and 0.25 U/ml RNase inhibitor (all purchased

from cDNA Archive kit of Applied Biosystems) were performed in

final volume of 15 ml and incubated in termal cycler for 30 min at

16uC, 30 min at 42uC, 5 min at 85uC and then held at 4uC. The

20 ml PCR reaction mixture included 1.3 ml RT product (1:15

diluition), 10 ml of TaqMan 2X Universal PCR Master Mix

(NoUmpErase UNG) and 1 ml of TaqMan 20X MicroRNA Assay

(Applied Biosystems, Foster City, CA, USA). Reactions were

incubated in a 96-well optical plate at 95uC for 10 min, followed

by 40 cycles of 95uC for 15 sec and 60uC for 10 min. All assays

were performed in triplicate.

Statistical Analysis
Patients’ baseline characteristics were reported as mean 6

standard deviation (SD) or frequencies and percentages for

continuous and categorical variables, respectively.

For each of the two training cohorts, microRNA chip data were

normalized using Robust Multi-array Average (RMA) algorithm

[9]. In order to identify differentially expressed miRNAs between

paired normal and tumor tissues, two approaches were followed.

Firstly, a classical paired t-test controlling for false discovery rate

(fdr) allowed ranking miRNAs according to their p-values.

Secondly, random forest (RF) analysis [10] was applied to detect

miRNAs with the best capability in discriminating tumor from

paired normal tissues. A RF is a classifier consisting of an ensemble

of tree-structured classifiers. According to this technique, 100,000

trees were built to classify tissues. The learning set used to grow

each tree was a .632+ bootstrap resample of the observations.

Trees were allowed to grow to their full size without pruning. The

best split at each node was selected from a random subset of

miRNAs. The left-out observations (i.e., ‘‘out of bag’’ observations)

were then predicted to obtain the classification error rate of the

considered tree. Predictive ability of the classifier was assessed

aggregating the single tree error rates. Furthermore, the random

forest framework allowed us to estimate the importance of a

variable by looking at how much the classification error increases

when ‘‘out of bag’’ data for that variable are permuted while all

others are left unchanged. The importance metric used was the

Mean Decrease in Accuracy (MDA). The MDA is constructed by

permuting the values of each variable of the test set, recording the

prediction and comparing it with the un-permuted test set

prediction of the variable. Therefore, it is the increase in the

percentage of times a test set is misclassified when the variable is

permuted. We followed Strobl et al. [11] to avoid possible bias in

variable selection: individual classification trees were built using

subsampling without replacement and adopting a conditional

permutation scheme [12]. We obtained a miRNAs ranking in

accordance to the variable importance measure. Finally, the two

miRNA rankings, one from the classical analysis and one from RF

analysis, were merged to obtain a list of differentially expressed

miRNAs. Correlations between miRNA expression were estimated

using Spearman coefficient. A p value,0.05 was considered for

statistical significance. All analyses were performed using SAS

Colon and Pancreatic Cancers: A Network View
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Release 9.1 (SAS Institute, Cary, NC, USA) and R for random

forest analyses (randomForest package).

Quantitative real-time PCR (qPCR) assay was used on external

validation cohorts to confirm microRNA array results, which were

assessed using the Comparative Threshold cycle (CT) method and

default threshold settings. Relative expressions of miRNA were

computed by 22DDCt formula [13] using U6 small nuclear RNA

(RNU6B) as normalization control. Since the 22DDCt transformed

values were not normally distributed, comparisons were made

using the non-parametric Wilcoxon signed rank test in order to

assess the statistical significance of the up or down regulation. For

the qPCR validation analyses, we considered a sample size of 14

subjects to provide a 90% power (with a two-sided alpha = 0.05) to

detect an up-regulation of at least 2 or a down-regulation of at

most 0.5 of each miRNA’s expression in terms of 22DDCt using the

non-parametric Wilcoxon signed rank test and 1 as the null

hypothesis.

Network analysis
For each of the two training cohorts an undirected and weighted

network was built, where nodes and edges represent miRNAs and

their correlations (when significant), respectively. Thus, edges are

not oriented since correlation is symmetric, and weighted with the

Spearman coefficient. The thickness of edges mirrors the

magnitude of the weights. In order to dig critical nodes out of

both CRC and PC networks, we borrowed some methods from

the social sciences, and evaluated the following centrality measures:

degree, betweenness and clustering coefficient [14,15] for each network.

Finally, miRNAs have been ranked accordingly.

All these measures (or metrics) are based on enumeration of

links or shortest paths. In details, let us define a path from s [V to

t [V , with V the set of nodes, as an alternating sequence of nodes

and edges, beginning with s and ending with t, such that each edge

connects its preceding with its succeeding vertex. We set the length

of a path as to be the sum of the inverse weights of its edges. The

idea is that highly correlated miRNAs minimize the distance

between nodes or, from another perspective, the closer two nodes

are the more they are correlated. Therefore, we compute the

distance between two nodes s and t, written dG(s,t), as the

minimum length of any path connecting s and t in G. By

definition, dG(s,s)~0 for every s [V .

Degree centrality is based on the idea that important nodes are

those with the largest number of ties to other nodes in the graph. It

is often interpreted in terms of the immediate involvement of

nodes in relationships established through the network. Let wus be

the weight of the edge, which connects the node u with the node s,

the degree centrality of a node u is Cd (u)~
P

u,s[E

wus, with E the set

of edges, according to which the higher is the degree value, the

more important (globally correlated) is the node.

Betweenness centrality measures the influence a node has over the

indirect correlation between not neighbor nodes. Betweenness, in its

basic version, is computed as the fraction of shortest paths between

node pairs that pass through the node of interest. Its mathematical

expression is Cb(u)~
P

s=u=t[V

ss,t(u)

ss,t
, where ss,t is the number of

shortest paths from s to t, and ss,t(u) is the number of shortest paths

from s to t that pass through a vertex u. Vertices that occur on many

shortest paths between other vertices have higher betweenness, and

then higher relevance in indirect correlations.

The Clustering coefficient is a measure of degree to which nodes in

a graph tend to cluster together, or in other terms, it quantifies

nodes because of the extent to which their neighbors are to being a

clique (complete graph) with it. The clustering coefficient of a node

is then given by the proportion of links between the nodes within

its neighbourhood divided by the number of links that

could possibly exist between them. Succinctly, it is expressed

as C(u)~
2 ejk

� ��� ��
ku(ku{1)

: vj ,vk [Nu,ejk [E, where Nu defines the

immediately connected neighbours set of u and ku~ Nuj j. Its

‘weighted’ formulation builds on the weights of the triangles centered

on the nodes of a network. It is defined by Horvath and Zhang [16]

as CHZ(u)~

P
i=u

P
j=i,j=u

wuiwijwju

P
i=u

wui

� �2

{
P

i=u
w2

ui

: where wij is the weight over

Figure 1. Hierarchical clustering of miRNA expression. miRNA profiles of 36 paired tissue specimens from 19 colorectal cancer (orange box)
and 17 pancreatic cancer (green box) patients were clustered. The 36 paired specimens are in rows (coloured bars) and the 866 miRNAs are in
columns. T, tumor tissue; N, adjacent normal tissue.
doi:10.1371/journal.pone.0033663.g001
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the edge eij , and thus wuiwijwju the product of the weights of the

edges which form a closed triangle (u?i?j?u) of nodes. Starting

from the local definition of the clustering coefficient, we report its

averaged formulation by Schank and Wagner [17] for the whole

network as the ratio between the sum of the products of the clustering

coefficients and a general weight function, and the weight function

itself, namely CSW~

P
v

w vð Þc vð ÞP
v

w(v)
,where w(v) is the general weight

function. The weight function is usually chosen among the metrics

that better capture the topology of the network under examination. A

lower Average Weighted Clustering Coefficient measure indicates a more

important node in relationship to the network robustness.

Networks have been drawn and analyzed by a custom

standalone tool written in C# and built over the library NodeXL

1.0.1.174 [18].

Table 1. MicroRNAs selected by t-test in CRC.

MiRNA p-value Ratio1 Fold-Change

hsa-miR-1246 6.90E-13 12.019 12.0189

hsa-miR-378 4.16E-09 0.320 23.12036

hsa-miR-28-3p 1.48E-07 0.361 22.7707

hsa-miR-139-5p 5.74E-07 0.154 26.50147

hsa-miR-21* 1.10E-06 3.363 3.36277

hsa-miR-140-3p 2.04E-06 0.475 22.10544

hsa-miR-21 1.38E-05 3.440 3.43984

hsa-miR-145 1.48E-05 0.449 22.22598

hsa-miR-30c 2.02E-05 0.599 21.67026

hsa-miR-106a 2.38E-05 1.622 1.62216

hsa-miR-17 2.42E-05 1.733 1.73316

hsa-miR-30d 2.53E-05 0.717 21.39392

hsa-miR-486-5p 2.58E-05 0.224 24.46696

hsa-miR-503 2.84E-05 3.357 3.35674

hsa-miR-1290t 5.52E-05 2.296 2.29618

hsa-miR-31 5.58E-05 11.485 11.4851

hsa-miR-342-3p 5.89E-05 0.591 21.69151

hsa-miR-1826 7.99E-05 2.478 2.47797

hsa-miR-182 8.38E-05 3.694 3.69436

hsa-miR-28-5p 0.000122245 0.487 22.05143

hsa-miR-429 0.000163538 2.012 2.0116

hsa-miR-10b 0.000179917 0.358 22.79048

hsa-miR-196b 0.000254369 2.119 2.11937

hsa-miR-1280 0.000286619 2.145 2.14475

hsa-miR-18a 0.000294119 3.826 3.82618

hsa-miR-720 0.000300471 4.459 4.45944

hsa-miR-708 0.000311099 3.459 3.45926

hsa-miR-224 0.000329656 2.320 2.3199

hsa-miR-143 0.000408223 0.512 21.95475

hsa-miR-183 0.000474118 3.064 3.06428

hsa-miR-138 0.000528794 0.302 23.31458

hsa-miR-422a 0.000533316 0.306 23.26738

hsa-miR-99 a 0.000577088 0.340 22.94193

hsa-miR-18b 0.000690552 2.521 2.52109

hsa-miR-195 0.000701403 0.436 22.2921

hsa-miR-149 0.000758911 0.494 22.02318

hsa-miR-92a-1* 0.000766587 1.905 1.90481

hsa-miR-339-5p 0.000883788 3.056 3.0557

hsa-miR-19a 0.0009656 2.268 2.26773

hsa-miR-19b 0.00103109 1.914 1.91352

hsa-miR-130b 0.00104793 2.053 2.05348

hsa-miR-92a 0.00105709 2.322 2.32229

Forty-two miRs deregulated in tumoral compared to matched normal tissue
and selected by p,0.001. Twenty-five overexpressed miRs in cancer are
indicated by positive fold-change; seventeen down-regulated miRs are
indicated by negative fold-change.
1: Tumour vs Normal tissue.
doi:10.1371/journal.pone.0033663.t001

Table 2. MicroRNAs selected by t-test in PC.

MiRNA p-value Ratio1 Fold-Change

hsa-miR-23a 0.000215491 9.37178 9.37178

hsa-miR-1254 0.000567431 0.578601 21.72831

hsa-miR-103 0.00116796 5.22503 5.22503

hsa-miR-107 0.0015613 6.83561 6.83561

hsa-miR-1207-5p 0.00156319 2.27566 2.27566

hsa-miR-125a-5p 0.00173021 6.55499 6.55499

hsa-miR-221 0.00175528 3.74587 3.74587

hsa-miR-140-5p 0.00181141 1.47229 1.47229

hsa-miR-143 0.00201799 6.38038 6.38038

hsa-let-7d 0.00221191 5.26385 5.26385

hsa-miR-146u 0.00221576 3.06742 3.06742

hsa-miR-145 0.00236652 5.76811 5.76811

hsa-let-7e 0.00265301 7.05982 7.05982

hsa-miR-199b-3p 0.00275494 4.79528 4.79528

hsa-miR-138-1* 0.00294212 1.71977 1.71977

hsa-miR-92b 0.00306909 1.75529 1.75529

hsa-miR-199a-3p 0.00333868 4.63266 4.63266

hsa-miR-29b-1* 0.00372484 1.34857 1.34857

hsa-miR-92u 0.00391816 5.19232 5.19232

hsa-let-7f-1* 0.00402756 0.669364 21.49396

hsa-miR-559 0.00419118 0.499458 22.00217

hsa-miR-181u 0.00473953 4.4176 4.4176

hsa-miR-1246 0.00499233 2.37905 2.37905

hsa-miR-31 0.00534964 4.1793 4.1793

hsa-let-7u 0.0057542 5.60946 5.60946

hsa-miR-331-3p 0.00587375 1.91755 1.91755

hsa-miR-155 0.00659337 3.93778 3.93778

hsa-miR-1274a 0.0072345 0.74278 21.34629

hsa-miR-26a 0.0075564 5.1572 5.1572

hsa-miR-17 0.00851766 3.07585 3.07585

hsa-miR-23b 0.00916704 5.8671 5.8671

hsa-miR-24 0.00928757 4.58821 4.58821

hsa-miR-939 0.0093498 1.52377 1.52377

hsa-miR-500* 0.00996664 2.34195 2.34195

Thirty-four miRs deregulated in tumoral compared to matched normal tissue
and selected by p,0.01. Thirty overexpressed miRNAs in cancer are indicated
by positive fold-change; four down-regulated miRNAs are indicated by negative
fold-change.
1: Tumour vs Normal tissue.
doi:10.1371/journal.pone.0033663.t002
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Results

Altered miRNA expression in patients with CRC and PC
We compared miRNA profiles of 36 pairs of solid tumors and

adjacent nontumorous tissues in the training cohorts (19 CRC and

17 PC) by means of microRNA microarrays. Human miRNAs

(has-miR-) and tissues were grouped by a hierarchical clustering

analysis (Figure 1). Each plotted probe was color-coded to equate

the level of expression of the miRNA relative to its median

expression level across the entire tissue samples set (blue, low; red,

high) (Figure 1).

Differentially expressed miRNA in CRC and PC
In order to identify miRNAs differentially expressed in

paired normal and tumor tissues, two approaches were

followed: a classical paired t-test controlling for false discovery

rate (fdr) and a RF analysis. By the first analysis, 42 miRNAs

were differentially expressed in CRC (Table 1). Twenty-five of

them were overexpressed, with hsa-miR1246 showing the

highest fold-change value (12.0-fold). In PC, 128 miRNAs

were differentially expressed (see Table S2). In particular, of 34

miRNAs with a p,0.01, 30 showed higher expression levels in

tumor tissue, with hsa-miR-23a displaying the highest fold-

change value (9.3-fold), whereas 4 more miRNAs were down-

regulated (Table 2).

To ascertain the eventual existence of orthologues in other

species, and to use them as internal methodological control, the

human miRNAs found altered in the two solid tumors were

checked in 71 other organisms present in the array: all de-

regulated orthologues of human miRNAs (from now on, has-

miR- will be referred to as miR-) showed a significant differential

expression with similar fold-change in these organisms (Table

S3).

To check the accuracy of the RF, classification performances in

discriminating tumor from normal tissue were reported in

multidimensional scaling of the estimated proximity matrix plots

(Figure 2) displaying similarities or dissimilarities in data. For each

tumor type, the ranks of the most important miRNAs, according

to MDA, were derived (Figure 3, panels A and B).

Comparison of miRNA signature detection methods
When the results with the t-test and RF were merged, a

significant overlap among miRNAs detected in either CRC and

PC tissues was found. By intersecting the miRNAs with p,0.001

at t-test analysis (Table 1) with those with the highest MDA at RF

analysis (Figure 3A), the expression of 24 miRNAs was

significantly altered in CRC (Figure 4). By a similar analytical

approach (Table S2, and Figure 3B), 23 miRNAs were

significantly altered in PC (Figure 4).

As shown in Figure 4, miRNA expression was heavily tissue

specific; indeed, most miRNAs with altered expression in CRC

were not differentiallly expressed in pancreatic tumoral tissue. The

altered expression of only two miRNA was shared by CRC and

PC: miR-145 appeared 2.2-fold down-regulated (p,0.001) in

CRC, and 5.7-fold up-regulated (p,0.01) in PC, while miR-1280

was 2.1-fold up-regulated (p,0.001) and 2.3-fold down-regulated

(p,0.05) in the former and latter cancers, respectively (see Table 1,

Table 2 and Table S2).

miRNA correlations and cancer-miR network
Next we tried to verify the inter-relationship of previously

selected miRNAs expressed in either CRC and PC tissues by

means of the Spearman correlation coefficient method.

For CRC, different degrees of correlation were found for the

24 miRNAs exhibiting altered expression: miR-106a was not

Figure 2. Multidimensional scaling plot. Proximity matrices from random forest analysis, where x- and y- axes are the multidimensional scaling
coordinates. Subjects with similar miRNA expressions are represented by points close one to the other, whereas subjects with dissimilar miRNA
expressions are represented by separated points. Red = tumor tissue, Black = adjacent normal tissue.
doi:10.1371/journal.pone.0033663.g002
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correlated at all, while miR-195 exhibited the largest number of ties

and was taken as a root node with 9 edges (degree 15.86); 8 links were

detected for miR-28-3p (degree 15.66), and 7 links for miR-1280 (degree

13.79), miR-1246 (degree 13.05), and miR-140-3p (degree 12.12)

(Figure 5, panel A). The latter 3 nodes were also interconnected

with miR-28-3p, which showed a high betweenness value. For this

last measure, the highest value was observed for miR-1246 node on

which many shortest paths between other vertices occur (Table S4).

Another important node was represented by miR-18a with 6

relationships, 3 of them established with several miRNAs belonging

to the miRNA 17-92a cluster. When we measured the degree of

nodal clustering (clustering coefficient), the miR-378, miR-10b and miR-

31 appeared to be a clique with vertice in miR-28-3p. To verify the

robustness of the network, we calculated the average weighted clustering

coefficient, and evaluated the contribution of a miRNA to the overall

compactness of the network. The lowest scores were observed for

miR-1280, miR-195 and miR-140-3p which were the vertices of

complete graph (Figures 5, panel A and Table S4).

Twenty out of 23 miRNAs with a significant deregulation in PC

tissues were linked to others vertices of the network by a number of

edges varying from one to five (degree: from 8.88 to 1.92); for only 3

miRNAs (i.e. miR-30d*, miR-1280 and miR-493*) no significant

correlation was observed (degree: 0), (Figure 5, panel B). In

particular, the maximum number of ties was found for miR-103

(degree: 8.88), miR-23a (degree: 8.84) and miR-15b (degree: 8.38). These

3 main nodes were all linked to miR-199a-3p (degree: 6.03) and

these four miRNA appeared inter-crossed to constitute a four-

node clique. The highest betweenness centrality measure was

observed for miR-384 (betweenness: 0.31), found to be critically

positioned in between (thus, responsible of many) medium-range

correlations. We verified the essentiality of the four-node clique by

measuring the overall robustness of the network (in terms of paths

redundancy) after removing it. We computed the average weighted

clustering coefficient for the whole network by removing in turn a

node. In particular, after excluding the nodes of the clique (miR-

103, miR-15b, miR-199a-3p and miR-23a) the lowest ranks, namely

Figure 3. Variable Importance table. Mean Decrease in Accuracy (MDA) as a measure of miRNA importance in classifying tumor tissues from
normal ones estimated by random forest analysis. The first 42 most important miRNAs in colorectal cancer (panel A) and 50 miRNAs in pancreatic
cancer (panel B) are shown.
doi:10.1371/journal.pone.0033663.g003

Figure 4. Merged results. For both tissues a significant overlap among detected miRNAs was found by merging t-test and RF results. A group of 24
miRNAs, whose expression was significantly altered in colorectal tumors, were obtained intersecting the list of first 42 miRNAs with best p-values,
from t-test analysis, with those at highest MDA, from RF analysis. In the same fashion, 23 miRNAs with altered expression were selected in pancreatic
tumors. * p,0.001; 1 RF.4.3; **p,0.05; # RF.0.94.
doi:10.1371/journal.pone.0033663.g004
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5.78, 5.85, 6.05 and 6.14 were obtained, respectively. This finding

pinpoints to these nodes as functionally relevant and as

considerable constituent of the cohesiveness of the network

(Figure 5, panel B and in Table S4).

Validation qPCR
Among significantly deregulated miRNAs in the microarray

study, 18 were selected for further validation by quantitative real-

time PCR (qPCR). Selection of these miRNAs was based on two

criteria: the outcome of the previously described intersection

analysis, and/or their involvement in colon or pancreas tumor-

igenesis (according to literature data). Quantitative PCR was

applied to analyse altered expression of the selected miRNAs, as

well as that of the RNAU6 control, in the tumor and normal

tissues taken from a new validation cohorts of 14 patients with

CRC and 21 PC patients.

Compared to normal tissue with an expression profile

normalized to 1, in tumor samples of the 14 CRC patients we

observed a significant up-regulation for 3 miRNAs (miR-31,

miR-21 and miR-708), and under expression in 7 others (miR-145,

miR-139-5p, miR-486-5p, miR-378, miR-140-3p, miR-143 and miR-

30c) (Table 3). The remaining 8 miRNAs (miR-151-5p, miR-155*,

miR-17, miR-199a-5p, miR-23a, miR-30a-5p, miR-455-3p, and miR-

let-7i) did not exhibit significantly altered expression.

In the cohort of 21 PC patients, 13 out of 18 miRNAs were

analyzed by qPCR in tumoral tissue compared to normal samples.

Down-expression was observed only for miR-21, whereas over-

expression was observed in 12 miRNA (miR-143, miR-145, miR-

151-5p, miR-155*, miR-199a-5p, miR-23a, miR-30a, miR,30c,

miR-21, miR-455-3p, miR-708 and miR-let-7i) and only two were

not deregulated in a statistically significant way (miR-30a and miR-

30c) (Table 3).

Discussion

MiRNAs that are differentially expressed in various cancers

may participate in common altered regulatory pathways [19].

Thus, the knowledge of their interacting network can provide a

perspective of altered miRNAs and their pattern of deregulation

(i.e., up- or down-regulation). In this study, we profiled miRNAs in

two different solid cancer tissues, the CRC and PC, to test whether

any plausible ‘‘signatures’’ was detectable. To this purpose, we

initially looked for miRNAs differentially expressed in tumors and

normal tissue of the two different lineages, and subsequently

identified ‘‘tissue-specific’’ miRNAs by using a novel statistical

approach, i.e. the RF classifier. For each cancer tissue we were

able to generate a list of the most specific and significantly

deregulated miRNAs. Interestingly, in the two lists only two

miRNAs recurred but with opposite patterns of expression: miR-

145 and miR-1280. However, while different patterns of the

expression of miR-145 are recognized [20], nothing is known about

miR-1280 and its behavior in solid tumor.

A comprehensive analysis of interactive networks of these

miRNAs showed that their deregulation patterns are tissue

specific, as dissimilar connections (i.e., different correlation

patterns) were observed between them in the two lineages.

Moreover, we determined the most critical miRNAs and verified

that they were different in CRC and in PC networks.

To understand the regulatory mechanisms of the miRNAs

linked with significant connections in both networks, we conducted

a three-step in-silico analysis. First, we ranked nodes by means of

well-known centrality indices: weighted degree and betweenness.

While the former index provided insights of the direct effect

exerted by each node to its neighborhood (in our case, their

correlation), the latter identified nodes essential for indirect

Figure 5. CRC and PC network. Green points depict the nodes corresponding to 24 miRNAs of CRC network and 23 miRNAs of PC network. The
edges characterize the significant correlations, whose thickness reflects Spearman Correlation Coefficients (blue and green edges are used for
positive and negative correlations respectively). In CRC network, as shown in panel A, miR-195, miR-28-3p, miR-1280, miR-18a and miR-1246 exhibit
the highest weighted degree rank. No correlation is found for miR-106a. MiR-1246 has also the highest betweenness rank. In PC network, as shown in
panel B, miR-103, miR-23a and miR-15b have the highest degrees and are all linked to miR-199a-3p as well as to each other forming a four nodes
clique. In addition, the removal of these nodes causes the deepest drop of the average clustering coefficient rank. MiR-384 exhibits the highest
betweenness centrality measure.
doi:10.1371/journal.pone.0033663.g005

Table 3. Differentially regulated miRs in CRC and in PC vs.
matched respective normal tissues.

Variable mean fold-change (Q1-Q3) P value Cancer type

miR-31 28.01 (5.75–68.59) ,0.0001 Colon

12.29 (3.03–29.14) ,0.0001 Pancreas

miR-21 2.88 (1.20–4.70) ,0.05 Colon

0.80 (0.19–2.94) ns Pancreas

miR-708 1.93 (0.65–3.53) ,0.05 Colon

3.62 (1.16–11.24) ,0.05 Pancreas

miR-143 0.30 (0.18–1.18) ,0.05 Colon

3.52 (0.95–9.55) ,0.0001 Pancreas

miR-30c 0.36 (0.14–0.77) ,0.05 Colon

1.36 (0.38–3.44) ns Pancreas

miR-151-5p 0.77 (0.41–1.58) ns Colon

1.12 (0.76–2.68) ,0.05 Pancreas

miR-155* 1.34 (0.46–3.91) ns Colon

4.07 (1.15–38.17) ,0.05 Pancreas

miR-199a-5p 0.65 (0.30–1.34) ns Colon

2.14 (0.34–15.13) ,0.05 Pancreas

miR-23a 1.44 (0.88–2.26) ns Colon

2.91 (0.81–13.63) ,0.05 Pancreas

miR-455-3p 1.03 (0.65–2.47) ns Colon

1.62 (0.69–4.95) ns Pancreas

miR-30a-5p 0.71 (0.29–1.34) ns Colon

1.24 (0.07–2.26) ns Pancreas

Let-7i 1.07 (1.03–1.86) ns Colon

1.77 (0.68–7.07) ,0.05 Pancreas

miR-145 0.20 (0.08–0.26) 0.0001 Colon

2.72 (0.64–6.89) ,0.05 Pancreas

miR-486-5p* 0.43 (0.25–0.83) ,0.0001 Colon

miR-378 0.23 (0.11–0.60) ,0.05 Colon

miR-140-3p 0.46 (0.14–0.96) ,0.05 Colon

miR-139-5p 0.10 (0.04–0.14) ,0.05 Colon

miR-17 0.97 (0.36–2.13) ns Colon

doi:10.1371/journal.pone.0033663.t003
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correlations, namely nodes that lie in paths of correlation and that

somehow contributes to long range correlations. Consequently, we

ranked nodes with the clustering coefficient index, in order to measure

their degree of cohesiveness with the immediate neighbors. The

aim was to quantify the robustness of the networks, by looking for

the nodes that would otherwise disrupt the networks architecture

when not taken into account. To this purpose, we computed the

cluster coefficient for the whole networks by cyclically removing

one node with corresponding edges, and by employing the weighted

degree as weight function. Generally, networks lacking nodes

essential to the overall robustness exhibited lower scores.

As last step, we validated our in-silico estimations by manually

inspecting target genes and their signaling pathways. With these

approaches, we observed that the majority of miRNAs with similar

deregulation patterns were associated with common target genes

and/or regulatory pathways (see Table S5). In particular, in CRC

three principal nodes were found: miR-195, miR-18a, and miR-

1246. The first node had a high relationship with miRNAs

involved in MAPK signaling pathway, as shown in-silico analysis by

using DIANA-mirPath (http://diana.cslab.ece.ntua.gr/pathways/

index_multiple.php), except miR-31 and miR-28-3p, which belong

to the EGF pathway. The second node, the miR-18a, included

several miRNAs (miR-17, miR-19b, miR-92a) belonging to the same

cluster: the miRNA 17-92a. This cluster plays an important role in

carcinogenesis and embryogenesis by regulating the proliferation

process through E2F1 gene under-expression [21]. The other

three correlations (miR-145, miR-21 and miR-182) were found

associated with IGF1R [22], EGFR [23] and AKT [24] signaling

pathway. The last relationship has miR-1246 as principal node.

Recently, Zhang et al. [25] have shown that miR-1246 is a new

target of p53 family members. TP53 induces the expression of

miR-1246 which, in turn, reduces the level of DYRK1A, a Down

syndrome-associated protein kinase. Overexpression of miR-1246

reduces DYRK1A levels and decreases the induction of apoptosis

[25].

Focusing on the principal nodes detected in PC network, miR-

103 was associated with alteration of TGF-b signaling pathway,

and miR-23a with KRAS-mediated signaling pathway, while for

miR-15b a number of biological relevant associations with cellular

signaling pathways were observed [26]. On the other hand, the

commonly correlated node miR-199a-3p, which form a complete

graph with the three main vertices of the network, was associated

with MAPK signaling pathway. It is to note that both TFG-b and

KRAS pathways belong to the ‘‘core signaling pathways’’ and

processes reported to be altered in many PC [26]. In addition,

considering that a lower Average Weighted Clustering Coefficient

measure indicates a more important node in relationship to the

network robustness, the low value obtained for miR-103 underlines

the central role for TGF-b signaling in PC, in agreement with

previous observations [27]. Moreover, when we performed in-silico

analysis of these four miRNAs inter-crossed to form a clique by

using DIANA-mirPath, (http://diana.cslab.ece.ntua.gr/pathways/

index_multiple.php), a previously undescribed link with Focal

Adhesion pathway was put in evidence.

The approaches used in this study allowed us to connect

deregulation of miRNA expression to oncogenic pathways and

identify links undescribed up until now between altered specific

miRNA expression and pathways involved in organ-specific

cancer: even though the oncogenic pathways identified in both

cancers were similar, the miRNAs linked to them were specific for

CRC or PC highlighting the organ-specificity of miRNA networks.

In conclusion, our observations highlight network connections

between miRNAs in CRC and PC, and suggest that the regulatory

miRNAs, as network nodes, might have combinatorial effects on

driving specific cellular regulatory pathways involved in cancer

development and progression. Data obtained in our study

encourage to further investigate details of miRNA involvement

in signaling pathways deregulated in CRC and PC, and to

understand whether correlations between specific miRNAs might

be in turn accompanied by connections between the respective

influenced signaling pathways.
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