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Distinct tumor signatures 
using deep learning‑based 
characterization of the peritumoral 
microenvironment in glioblastomas 
and brain metastases
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Tumor types are classically distinguished based on biopsies of the tumor itself, as well as a radiological 
interpretation using diverse MRI modalities. In the current study, the overarching goal is to 
demonstrate that primary (glioblastomas) and secondary (brain metastases) malignancies can be 
differentiated based on the microstructure of the peritumoral region. This is achieved by exploiting 
the extracellular water differences between vasogenic edema and infiltrative tissue and training a 
convolutional neural network (CNN) on the Diffusion Tensor Imaging (DTI)‑derived free water volume 
fraction. We obtained 85% accuracy in discriminating extracellular water differences between local 
patches in the peritumoral area of 66 glioblastomas and 40 metastatic patients in a cross‑validation 
setting. On an independent test cohort consisting of 20 glioblastomas and 10 metastases, we got 
93% accuracy in discriminating metastases from glioblastomas using majority voting on patches. This 
level of accuracy surpasses CNNs trained on other conventional DTI‑based measures such as fractional 
anisotropy (FA) and mean diffusivity (MD), that have been used in other studies. Additionally, the CNN 
captures the peritumoral heterogeneity better than conventional texture features, including Gabor 
and radiomic features. Our results demonstrate that the extracellular water content of the peritumoral 
tissue, as captured by the free water volume fraction, is best able to characterize the differences 
between infiltrative and vasogenic peritumoral regions, paving the way for its use in classifying and 
benchmarking peritumoral tissue with varying degrees of infiltration.

Discriminating tumor types is undertaken by neuroradiologists, trained to recognize imaging patterns, and 
is confirmed by a surgical biopsy of the tumor. There has been growing interest in developing computational 
methods to distinguish tumor types using diverse MRI  modalities1, different parts of the  tumors2, characteristics 
of the peritumoral  region3, or a combination of all the  aforementioned4. In this paper, we exploit the differences 
in extracellular water content of the peritumoral region to distinguish tumor types, specifically, brain metastases 
and glioblastomas.

Diffusion Tensor Imaging (DTI) provides an insight into the extracellular water content of tissue. Recent 
studies have attempted to use DTI to discriminate metastases and  glioblastomas2. The metrics commonly used 
include DTI-derived measures of mean diffusivity (MD) and fractional anisotropy (FA)5 from both the tumor and 
peritumoral regions. They applied thresholding on the metrics or performed machine learning  techniques3,6–11 
(e.g., texture  analysis12,13) to characterize the tumor differences. Multiparametric approaches combining different 
modalities of MR imaging have also been used to discriminate between brain metastases and  glioblastomas1,4,14,15, 
however, using a single modality would reduce the complexity of analysis and total imaging time needed for 
multiparametric acquisitions.
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There are known differences in the microstructural tissue characteristics of brain metastases and 
 glioblastomas1. Fundamental to the biology and clinical management of glioblastomas is their propensity to 
invade the peritumoral tissue, so that the peritumoral area consists of edema but also invasive cells. By contrast, 
the peritumoral region of metastases consists mainly of acellular  fluid2. These variations in tissue composition are 
reflected in DTI-derived measures of FA and  MD2,16, but would benefit from superior modeling of microstructure 
that can be achieved by multi-compartment models.  FERNET17 is a multi-compartment modeling technique 
that extracts free water volume fractions (FW-VF) representative of extracellular water content from diffusion 
MR data. FW-VF can aid in exploiting the differences in extracellular water within the peri-tumoral  area17–19 of 
infiltrative or vasogenic edema. Our aim is to use this information to differentiate tumor types.

Deep learning tools, especially convolutional neural networks (CNNs), are particularly effective in elucidating 
local  patterns20,21. They learn the underlying features of importance as well as the discrimination algorithm. We 
use CNNs to extract patterns from free water volume fraction maps and capture deep visual features in extracel-
lular water content of brain metastases and glioblastomas and discriminate them.

We compare the performance of the CNN trained on the FW-VF map with the one trained with radiomics 
and texture  features1. We also evaluate the performance of free water corrected fractional anisotropy, and axial 
and radial diffusivity in discriminating tumor type to demonstrate how the distinction performs after removing 
extracellular water from the peritumoral microenvironment.

This paper proposes a new method based on free water that can differentiate tumor types based on the tissue 
characteristics of the peritumoral region. The microstructure is captured by learning the patterns of extracellular 
water content between the infiltrated tissue and vasogenic edema with CNNs. This method is tested on metastases 
and glioblastomas and performs better than those created using the traditional measures of FA and MD. It can 
be used in classifying and characterizing peri-tumoral tissue with varying degrees of infiltration.

Method
Overview. The aim of this paper is to characterize two major types of brain tumors, metastases and glioblas-
tomas, based on microstructural characteristics of peritumoral edema derived from their DTI-based free water 
volume fraction (FW-VF) map. We create a 2D CNN-based classifier trained on FW-VF patches located in the 
peritumoral edema to distinguish brain metastases and glioblastomas. We first describe the patient data and 
then the details of the CNN-based classifier. The performance of the CNN trained on the FW-VF map is then 
compared to those trained on: i) standard fractional anisotropy (FA), ii) mean diffusivity (MD), iii) combination 
of FA and MD, iv) free water corrected fractional anisotropy (FW- FA), v) axial (FW-AX), vi) radial (FW-RAD) 
diffusivity, and vii) combination of FW-FV and FW-FA. Lastly, the CNN is compared with texture and radiomic 
features.

Patient data and creation of free water volume fraction (FW‑VF). This study was approved by the 
institutional review board of University of Pennsylvania. Informed consent was obtained from all participants 
or their legally authorized representative. All methods were carried out in accordance with relevant guidelines 
and regulations.

The baseline demographics, clinical and molecular characteristics of the patients were as follows. The train-
ing cohort consisted of 106 patients (66 glioblastomas and 40 metastases) with a mean age of 61.1 years ± 12.1 
(standard deviation), (range, 23–87 years), including 55 men and 51 women. The most common primary cancer 
that metastasized was lung cancer (21), followed by melanoma (5), breast (4), and others (10) and we had two 
patients with multi-focal metastatic lesion. GBM patients were all IDH-1 non-mutants (wild-types), and we had 
13 patients with history of prior resection. The test cohort comprised 30 patients, including 20 glioblastomas 
and 10 patients with metastasis who had a mean age of 64.3 years ± 10.4 (range, 42–84 years), with 16 men and 
14 women. The most common primary cancer of metastasis was lung cancer (6), followed by melanoma (2), 
breast (1), and others (1) and we had one patient with multi-focal metastatic lesion in our test cohort. GBM 
patients were all IDH-1 non-mutants (wild-types), and we had 3 patients with history of prior resection in our 
test cohort. There was no significant difference in age between patients with glioblastomas and metastases in 
either the training or test cohort (p = 0.53, p = 0.14 respectively). Furthermore, there was no significant difference 
in the proportion of metastases and glioblastomas (p = 0.69) and lung versus non-lung proportion (p = 0.65) of 
metastases primary cancer between the training and test cohorts.

dMRI/DTI data was acquired on two types of scanners, 118 patients with the Siemens 3 T TrioTim and 18 
patients with the Siemens 3 T Verio, both with TR/TE = 5000/86 ms, resolution = 1.72 × 1.72 × 3 mm, 3 b = 0 s/
mm2 volumes, and 30 diffusion weighted volumes with b = 1000 s/mm2. The dMRI data was pre-processed using 
local PCA  denoising22, eddy current and motion correction performed using FSL  EDDY23, and skull-stripping 
with  BET24. FA and MD maps were computed after DTI fitting with DIPY using weighted least  squares25.

Masks of the tumor and edema for each patient were created using  GLISTR26,27, a semi-automated tumor 
segmentation tool that uses structural data (T1, T1-CE, T2, T2-FLAIR) to make the segmentation. GLISTR 
produces regions of enhancing, non-enhancing and necrotic tumor, which we combined to form the tumor 
region, and produces a region of edema, which is hyperintense in FLAIR and T2. It is independent of location 
and number of tumors. Therefore, in case there were more than one lesion per tumor, GLISTR would produce 
tumor and edema masks for all lesions. Mask of tumor and edema were then registered to DTI  data26. Details 
are presented in Fig. 1.

For estimating the free water volume fraction from single shell DTI, we used Freewater EstimatoR using 
Interpolated Initialization (FERNET)17, a free water elimination paradigm using a novel interpolated initialization 
approach, that estimates the free water compartment in single-shell diffusion MRI data. FERNET provides a free 
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water volume fraction map (FW-VF), and free water corrected fractional anisotropy (FW-FA), axial diffusivity 
(FW-AX) and radial diffusivity (FW-RAD), for every patient from their pre-processed dMRI  data28.

CNN based classifier using FW‑VF for discriminating metastatic tumors from glioblasto‑
mas. We created a CNN classifier trained on patches derived from the peritumoral region to assign a label 
of metastasis or glioblastoma. Figure 2 shows the pipeline of our approach. We automatically extracted input 
patches for our CNN in the peritumoral area of metastatic and glioblastoma subjects. Random seed generators 
were used to choose location of patches. A set of (16 × 16) patches from peritumoral edema was extracted for 
every subject. This was the largest patch we could fit into peritumoral edema without overlapping into the tumor 
and was large enough for the CNN classifier to capture specific patterns. We iteratively chose patches in random 
locations in edema, and toward random coordinates, and discarded patches that included the tumor itself. In the 

Figure 1.  The pre-processing steps of our method. Segmentation was done using GLISTR on structural MRI 
(T1, T1-CE, T2, T2-FLAIR). Freewater EstimatoR using Interpolated Initialization (FERNET) was used for 
estimating the free water volume fraction. Mask of tumor and edema were then registered to DTI data.

Figure 2.  The pipeline of our classifier: input to the classifier were patches (boxes) extracted from the free water 
volume fraction map in peritumoral area from both glioblastoma (red) and metastases (blue) which were used 
to train the CNN. In test phase, the results of CNN on patches were combined by majority voting to get the final 
label of metastasis or glioblastoma for each patient.
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case it was more than one tumor in a patient, we selected patches from the peritumoral areas of all of the tumors. 
The number of patches in every subject was estimated based on the number of edema voxels in that subject 
divided by the number of voxels in the patch (16 × 16 = 256). All patches extracted from a subject were assigned 
the tumor label of the subject, that is, metastasis or glioblastoma.

The classifier was based on convolutional neural networks (CNNs)29, which are a special kind of neural 
network, composed of a set of convolutional and pooling layers in their architecture. Our convolutional (conv) 
layers were connected to local parts of input patches to detect local features from them. We put 6 convolutional 
layers followed by pooling (pool) layers that reduced the dimension of the features. We put a max pooling and 
a global average pooling layer that calculated the average of each feature map and prepared the feature vector 
for the classification layer. We put a softmax layer (soft) at the end that produced a probability value for every 
input patch which indicated its membership to each class (metastases or glioblastomas, in our case)30. As we 
trained our classifier on patches with different patterns of extracellular water, this number illustrated the local 
signature of extracellular water for each patch. The label for each patch was assigned to a class with maximum 
probability value.

Data augmentation was done on the patches by shifting them in different directions, allowing up to 20% 
overlap with healthy brain. This was to avoid overfitting of the classifier. We created ~ 6300 patches (~ 3000 
metastases and ~ 3300 glioblastomas) from the training subjects. CNN training was done for 100 epochs using 
the rmsprop optimizer and a cross entropy loss function. More details on CNN hyperparameters are provided 
in supplementary material S.1.

For testing, a set of patches were automatically extracted in the peritumoral region of test subjects using 
random seed generators. The number of patches in every subject was estimated based on the number of edema 
voxels in that subject divided by the number of voxels in the patch (16 × 16 = 256). The CNN classifier assigned 
labels to all patches and the final label of a subject was calculated using majority voting among the classification 
on patches.

Evaluation of the classifier performance. The following measures were used to evaluate the perfor-
mance of the CNN classifier:

With glioblastoma standing for our positive class, true positive (TP) represents the number of cases correctly 
recognized as glioblastoma, false positive (FP) represents the number of cases incorrectly recognized as glioblas-
toma, true negative (TN) represents the number of cases correctly recognized as metastasis and false negative 
(FN) represents the number of cases incorrectly recognized as metastasis. Thus, sensitivity represents the recall 
value for glioblastoma class and specificity represent recall the values for metastases class.

Cross validation and test results. We evaluated our CNN classifier in 5-fold cross-validation, and a test setting. 
For cross-validation, the patches from all the trainings were shuffled and randomly partitioned into 5 equally 
sized subsamples. For each run, a single subsample was retained as validation data while the remaining 4 sub-
samples were used as training data, and this process was repeated for all 5 subsamples. The reported measures 
were averaged among all folds which represented the performance of 2D CNN classifier over the patches.

In addition to our cross-validation settings, the CNN classifier was evaluated on a set of 30 independent test 
subjects that were kept out of the training process. We applied our CNN to all patches in peritumoral area of test 
subjects and the subject class label was calculated by majority voting among patches.

Comparison of efficacy of FW‑VF classifier with those created from the other dMRI‑derived maps. In order to 
demonstrate the superiority of FW-VF in discriminating metastases and glioblastomas, we retrained the CNN 
using patches derived from free-water-corrected fractional anisotropy (FW-FA), axial diffusivity (FW-AX), and 
radial diffusivity (FW-RAD), as well as the traditional mean diffusivity (MD) and fractional anisotropy (FA) 
maps. The results were compared based on accuracy, sensitivity, and specificity. We also created combination 
classifiers (FW-VF map and FW-FA) and compared the performance with the single feature classifiers. A com-
bination classifier was also created for FA and MD maps.

Comparison of CNN with radiomic and texture‑based classifiers. Finally, we compared our CNN classifier with 
those trained on traditional texture features and classifiers. We applied Gabor feature extractors and radiomic 
 features31 in combination with random forest classifiers. Gabor features were constructed from the response of 
applying Gabor filters made on several frequencies (scales) and  orientations32. We applied Gabor filters with 4 
directions and 4 scales. Radiomic features included size and shape-based features, descriptors of image intensity 
histogram, descriptors of the relationships between image voxels, textures extracted from filtered images, and 

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP
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fractal  features33. We used the  PyRadiomics34 package to extract radiomic features followed by principal compo-
nent analysis which reduced feature dimensions to cover 98% of variation in the data.

Ethics declarations. This study was approved by the institutional review board of University of Pennsylva-
nia. Informed consent was obtained from all participants or their legally authorized representative. All methods 
were carried out in accordance with relevant guidelines and regulations.

Results
Cross‑validation and test results. Table 1 shows the cross-validation and test results for our CNN-based 
classifier with free water volume fraction (FW-VF). We obtained 85% accuracy in our cross-validation result 
with a sensitivity and specificity of 87% and 81%, respectively. Our test accuracy was 93% with using majority 
voting on patches of test subjects and sensitivity and specificity were 95% and 90%, respectively.

Comparison of efficacy of FW‑VF classifier with those created from other maps. Table 2 shows 
the cross-validation result of our CNN using different input maps, including the free water volume fraction (FW-
VF), FW corrected fractional anisotropy (FW-FA), FW corrected axial (FW-AX) and radial diffusivity (FW-
RAD) maps, a combination of FW-VF and FW-FA (FW-VF + FW-FA), conventional mean diffusivity (MD), 
fractional anisotropy (FA) maps, and a combination of MD and FA (MD + FA). As seen, FW-VF outperformed 
the MD and FA maps as well as FW-FA, FW-AX and FW-RAD measures. The combination of FW-VF and 
FW-FA did not increase the result of free water volume fraction. The results for the test set are provided in 
Table 3, comparing the FW-VF based classifier with those created using conventional MD and FA maps and free 
water corrected measures. As seen, free water volume fraction performed better than both MD and FA as well 
as free water corrected measures.

Comparison of CNN with radiomic and texture‑based classifiers. Table  4 shows the cross-vali-
dation comparison of the CNN with Gabor and radiomic features in combination with random forest classi-

Table 1.  Performance of the FW-VF map.

Accuracy Sensitivity Specificity

Cross-validation results (patches from 106 training subject) 85 87 81

Test result using majority voting (30 test subjects) 93 95 90

Table 2.  The cross-validation (patch-wise) comparison of FW-VF with different input maps.

Input map Accuracy Sensitivity Specificity

FW-VF 85 87 81

FW-FA 81 82 79

FW-AX 74 78 70

FW-RAD 70 75 64

FW-VF + FW-FA 85 88 81

MD 77 75 83

FA 76 74 82

FA + MD 79 78 84

Table 3.  The test result (subject-wise) comparison of FW-VF with different input maps.

Input map Accuracy Sensitivity Specificity

FW-VF 93 95 90

FW-FA 87 90 80

FW-AX 77 80 70

FW-RAD 74 75 70

FW-VF + FW-FA 93 95 90

MD 83 85 80

FA 80 80 80

FA + MD 83 85 80
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fiers. ROC curves are also provided in Fig. 3. Area Under the Curves (AUCs) were statistically compared using 
DeLong et al.  method35. As seen, CNN outperformed both Gabor and radiomic features significantly. Table 5 
shows the result for 30 test subjects calculated by majority voting among patches. CNN outperformed both 
Gabor and radiomic features with random forest classifiers in the test result as well.

Discussion
dMRI, especially with the recent advances in multi-compartment modeling, provides an insight into tissue micro-
structure, that is able to characterize peritumoral area due to the differential water diffusion between pure edema 
and the one affected by the presence of infiltrative patterns. Free water volume correction applies multicompart-
ment modeling to tease apart tissue fraction and free water volume fraction representative of extracellular water 
and infiltration. In this paper, we created a classifier for discriminating tumor type based on the characterization 
of the microstructure of the peritumoral microenvironment, using a DTI-based free water volume fraction map. 
We used convolutional neural networks to characterize peritumoral area and demonstrated the ability of the 
CNN and free water volume fraction to distinguish between metastases and glioblastomas.

Our method successfully classified metastatic versus glioblastoma tumors, indicating that there was sufficient 
information in the microstructure of the peritumoral area to discriminate tumor type and, furthermore, that the 
information was captured in a DTI-based measurement of extracellular free water content in the peritumoral 
regions. Metastases and glioblastomas have different underlying microstructures of vasogenic versus infiltrative 
edema, and we were able to capture the heterogeneity within this area using free water map in conjunction with 
deep learning. This highlights the importance of multicompartment modeling based approaches on DTI that is 
able to disentangle the extracellular water from the underlying tissue.

Table 4.  The cross-validation (patch-wise) comparison of the CNN to Gabor and Radiomic features.

Classification/feature extraction Accuracy Sensitivity Specificity

CNN 85 87 81

Gabor Filters/RF 70 76 67

Radiomic/ RF 76 79 74

Figure 3.  ROC Curves: Comparison between CNN (A) and Radiomic features (B) on free water volume 
fraction map. CNN outperformed Radiomics significantly, comparing AUC for mean ROCs (P < 0.0001).

Table 5.  The test result (subject-wise) comparison of the CNN to Gabor and Radiomic features.

Classification/feature extraction Accuracy Sensitivity Specificity

CNN 93 95 90

Gabor Filters/RF 77 80 70

Radiomic/RF 80 80 80
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We picked random patches in the peritumoral region of metastases and glioblastomas to train our classifier 
and achieved 85% accuracy in our cross-validation result. This result indicates that the volume fraction classifier 
could detect local signatures of glioblastomas which might correspond to such biological processes as infiltra-
tion and extracellular matrix damage. It implies that that free water volume fraction could not only discriminate 
tumor type but also could assess the spatial pattern of extracellular water to characterize the peritumoral area of 
two tumors and quantify the heterogeneity within the peritumoral region. Those spatial patterns were extracted 
by a CNN suggesting that the information existed as imperceptible features inside the peritumoral area that was 
not detected by only using free water map and the best-performing traditional machine learning classifiers. Our 
CNN, however, was able to capture those features.

Using majority voting on the classification of patches, we achieved 93% accuracy on 30 patients left out from 
the training. It shows that majority voting among the results of patches boosted the performance and improved 
the underlying classification accuracy, suggesting that while some patches in the peritumoral area might be 
individually misclassified, when the peritumoral area was assessed as a whole, such misclassifications tended to 
be in the minority. This is consistent with the fact that majority of patches in peritumoral area of glioblastomas 
show infiltrative pattern and vice versa for metastases.

FW-FA had the second-best performance. The fact that FW-VF performed better than FW-FA led us to the 
conclusion that the most discriminative feature was present in the extracellular water compartment, more than 
the intracellular or tissue compartment. Free water corrected fractional anisotropy performed better than FW-AX 
and FW-RAD, suggesting that the relevant feature within the tissue compartment to discriminate heterogeneity 
in peritumoral area was captured by the overall degree of anisotropy in the diffusion of the tissue compartment, 
and not axial and radial diffusivity individually.

We compared our FW-VF based classifier with the one trained on traditional FA and MD maps that were the 
conventional metrics used in previous work to discriminate metastases and  glioblastomas3,6–13. Glioblastomas 
exhibit higher diffusivity of water molecules representing destruction of the extracellular matrix ultrastructure 
by malignant cell infiltration. Thus, mean diffusivity representative of the magnitude of diffusion and fractional 
anisotropy representative of disorganized diffusion were effective features for the discrimination of glioblastoma 
and metastases. However, those two maps do not use multicompartment modeling and FW-VF consequently 
performed better than standard mean diffusivity and fractional anisotropy measures. Our finding showed that 
the information captured by multicompartment modeling representative of free water could better characterize 
peritumoral microstructure and discriminate tumor type.

Radiomics and texture features have also been extensively applied in cancer  research36, most notability in 
central nervous system  malignancies37. Radiomics describe intensity, frequency and geometrical characteristics 
and texture features quantify intrinsic heterogeneous properties from the visual data. Several studies attempted to 
examine the differentiation of various brain tumor types, including glioblastomas and brain metastases, by Gabor 
filters as conventional texture  features6,12,32,38–40 and radiomic  features1,37,41. The CNN classifier in this paper, was 
able to capture the pattern of heterogeneity better than the radiomic and Gabor texture features. While Gabor 
and radiomic features extracted meaningful features like shape, size, histogram, frequency content and other 
texture-related features, CNN used consecutive layers of convolution and pooling, with each successive layer 
detecting features at a more abstract level than the layer before. As a result, the CNN extracted imperceptible 
features which were not constrained to the specific designs of the radiomic or Gabor texture features (shape, 
size, etc.), and performed better than them.

Our study has a few limitations. First, our dataset was unbalanced in terms of the number of patients. How-
ever, we constructed a balanced sample of patches for metastases and glioblastomas which included ~ 6300 
patches (~ 3000 metastases and ~ 3300 glioblastomas) from the 106 training subjects to make a balanced train-
ing set for our classifier. We also reported sensitivity and specificity for metastases and glioblastomas in which 
our sensitivity determined the number of glioblastoma patients retrieved correctly and vice versa for specificity 
and metastases. Second, our data was acquired at a single institution, however, it included different acquisition 
protocols and we used an independent test cohort to make sure that our method is generalizable.

Our study opens horizons for future work. First, majority of our metastases class were from lung cancer fol-
lowed by breast and melanoma and our glioblastoma patients all were IDH1-wildtype. While our sample size 
after breaking down by original cancer type and IDH mutations was not large enough to do analyses on these 
subdivisions, in the future, our imaging signature can be applied to imaging data of different metastases and 
molecular sub-types of tumors. Second, our model only used extracellular water differences between metastases 
and glioblastomas to diagnose tumor types. Our contribution was to introduce new imaging signature based on 
extracellular water differences in peritumoral area which outperforms other diffusion measures like mean dif-
fusivity and fractional anisotropy. In future, it can potentially be improved by integrating multi-model imaging 
data (such as structural imaging, other diffusion tensor measures, or perfusion imaging).

We proposed a deep learning-based approach for discriminating brain tumor types using patterns of free 
water volume fraction map in the peritumoral microenvironment. Free water volume fraction emerged as an 
encouraging tool for better characterization of the peritumoral edema and tumor type distinction. We achieved 
superior performance with respect to pattern recognition methods and conventional MD and FA approaches. 
This will encourage existing frameworks using DTI measures for characterizing peritumoral environment to 
replace their maps with free water volume fraction maps and can further be combined with other modalities like 
structural MRI to provide deeper insight into tissue microstructure and the detection of other type of tumors.
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Conclusion
We propose an approach based on free water volume fraction map to characterize the peritumoral microenvi-
ronment. Due to differences in microstructural patterns of extracellular water in peritumoral regions reflecting 
the characteristics of the underlying tumor, free water volume fraction is a successful compartment for dis-
criminating tumor types with CNN. It reflects pattern of extracellular water and infiltration which is not visible 
in conventional imaging metrics and therefore reveals important information in combination with CNN. Our 
method provides further non-overlapping information about the peritumoral microstructure that can be used to 
characterize peritumoral area and discriminate tumor type. This novel approach potentially could complement, 
or even replace, standard DTI indices, such as fractional anisotropy, or mean diffusivity to provide an integrated, 
biologically relevant characterization of the peritumoral microenvironment.

Data availability
The datasets generated during the current study are not publicly available due to the IRB requirements of the 
Hospital of University of Pennsylvania. The datasets can be made available on request to the corresponding 
author, after required data transfer and IRB paperwork is completed.
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