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Abstract

Background—The hypothalamus plays an important role in regulating body weight through 

its interactions with multiple brain circuits involved in distinct aspects of feeding behavior. Yet, 

how hypothalamic gray matter volume (GMV) and connectivity may be related to individual 

differences in body weight remains unclear. We tested the hypothesis that the hypothalamus shows 

enhanced resting-state functional connectivity (rsFC) with regions of the reward, motivation, and 

motor circuits in positive correlation with body mass index (BMI) and the opposite with those 

associated with inhibitory control. We further examined the interdependent relationships between 

hypothalamic GMV, connectivity, and body weight.

Methods—Using seed-based rsFC and voxel-based morphometry analyses, we examined the 

relationship between the rsFC and GMV of the hypothalamus and BMI in 105 healthy humans. 

Additionally, we employed mediation analyses to characterize the inter-relationships between 

hypothalamic connectivity, GMV, and BMI.

Results—A whole-brain multiple regression showed that BMI was positively correlated with 

hypothalamic rsFC with the insula, thalamus, globus pallidus, and cerebellum, and negatively 

correlated with hypothalamic rsFC with the superior parietal lobule. Thus, higher BMI was 

associated with enhanced hypothalamic connectivity with regions involved in motivated feeding 

and reduced connectivity with those in support of cognitive control of food intake. A second 

whole-brain multiple regression revealed a positive correlation between hypothalamic GMV and 

the hypothalamus-posterior insula connectivity. Finally, the relationship between hypothalamic 
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GMV and BMI was significantly and bidirectionally mediated by the hypothalamus-posterior 

insula connectivity.

Conclusions—The current findings suggest that the hypothalamus differentially interacts with 

the motivation, motor, and control circuits to regulate BMI. We further found evidence for the 

interdependence of hypothalamic structure, function, and body weight, which provides potential 

insights into the brain mechanisms of obesity.

1. Introduction

The hypothalamus plays a critical role in regulating energy balance and body weight. In 

early rodent studies, lesions of the lateral and ventromedial hypothalamus altered food 

intake, resulting in weight loss and weight gain, respectively [1]. In humans, hypothalamic 

dysfunctions have been implicated in eating disorders including anorexia and obesity [2]. As 

feeding behavior involves multiple neural circuits of motivation and behavioral control [3], it 

is important to examine the cortical and subcortical connectivities with the hypothalamus to 

understand the complex mechanisms of body weight maintenance.

Many studies have employed resting-state functional connectivity (rsFC) to examine 

the roles of hypothalamic circuits in the regulation of energy intake. For instance, the 

hypothalamus is functionally connected with the striatum and orbitofrontal cortex in healthy 

individuals [4] and this rsFC was shown to be elevated in those with obesity [5–7]. The 

hypothalamus exhibited attenuated connectivity with the posterior insula following satiety 

from milkshake consumption [8] but enhanced connectivity with the inferior frontal gyrus 

in correlation with self-reported scores of cognitive restraint [9]. After sucrose ingestion, 

obese relative to lean women exhibited greater hypothalamic connectivity with the putamen 

but weaker connectivity with the nucleus tractus solitarius in the brainstem involved 

in cardiovascular and gastrointestinal control [10]. Obese individuals also demonstrated 

elevated connectivity between the hypothalamus and the occipital and dorsal anterior 

cingulate cortices in response to food cues, indicating enhanced sensitivity to food-related 

saliency [11]. Together, these findings suggested altered hypothalamic connectivity with 

distributed regions implicated in motivation, cognitive control, and saliency as a result of 

food intake or obesity.

Individual differences in body weight have been linked with alterations in the gray matter 

volumes (GMV) of the hypothalamus. For instance, hypothalamic GMV was positively 

correlated with body mass index (BMI) and leptin levels in healthy individuals [12] as 

well as hunger scores in a sample of both normal-weight and overweight subjects [13]. 

In contrast, patients with anorexia nervosa exhibited hypothalamic atrophy [14], the extent 

of which was negatively correlated with BMI [15]. Work in rodents demonstrated that 

food restrictions shortened dendrite length of neurons and reduced the number of orexin-

immunoreactive cells in the ventromedial hypothalamus [16]. Diets rich in saturated fat 

were associated with accumulation of astrocytes and activated microglia as well as saturated 

fatty acids in the hypothalamus [17]. Thus, altered food intake can modify the neuronal 

morphology in the hypothalamus and axonal projections to extranuclear targets, potentially 

impacting hypothalamic volume and connectivity.
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Here, we sought to understand whether or how individual differences in hypothalamic GMV 

and rsFC may be related to BMI in healthy humans. We tested the hypothesis that BMI 

exhibits a positive relationship with hypothalamic connectivity with reward, motivation, 

and motor circuits to support habitual approach to food but a negative relationship with 

hypothalamic connectivity with executive control regions involved in the regulation of 

food intake. Additionally, we examined whether hypothalamic GMV varies in relation to 

BMI and how hypothalamic GMV and connectivity may inter-relate to impact individual 

differences in BMI in a mediation analysis.

2. Methods

2.1 Participants

One hundred and five healthy adults (58 women; age = 31.4 ± 12.6 years; BMI in kg/m2 

= 25.8 ± 4.7, mean ± S.D., range: 18.2 – 40.4) participated in the study. All subjects 

were screened to be free from major medical, including neurological, illnesses and Axis I 

psychiatric disorders according to DSM-IV. No participants were currently on psychotropic 

medications and all tested negative for illicit substances on the study day. Subjects provided 

written informed consent after details of the study were explained, in accordance to institute 

guidelines and procedures approved by the Yale Human Investigation Committee.

2.2 Imaging protocol and data preprocessing

Conventional T1-weighted spin echo sagittal anatomical images were acquired for slice 

localization using a 3T scanner (Siemens Trio). Anatomical images of the functional slice 

locations were next obtained with spin echo imaging in the axial plane parallel to the AC–

PC line with TR = 300ms, TE = 2.5ms, bandwidth = 300 Hz/pixel, flip angle = 60°, FOV 

= 220 × 220mm, matrix = 256 × 256, 32 slices with slice thickness = 4mm and no gap. 

Functional, blood oxygen level-dependent (BOLD) signals were acquired with a single-shot 

gradient echo echoplanar imaging (EPI) sequence. 32 axial slices parallel to the AC–PC line 

covering the whole brain were acquired with TR = 2,000ms, TE = 25ms, bandwidth = 2,004 

Hz/pixel, flip angle = 85°, field of view = 220 × 220mm, matrix = 64 × 64, 32 slices with 

slice thickness = 2.5mm and no gap. One 10-min resting state BOLD scan was obtained for 

each participant with eyes closed.

Data were analyzed with SPM12 (Wellcome Trust Centre for Neuroimaging). Images from 

the first five TRs were discarded to enable the signal to achieve steady-state equilibrium 

between RF pulsing and relaxation. Standard image preprocessing was performed. Images 

were first realigned (motion corrected) and corrected for slice timing. A mean functional 

image volume was constructed for each subject per run from the realigned image volumes. 

These mean images were co-registered with the high-resolution structural image and then 

segmented for normalization with affine registration followed by nonlinear transformation 

with a voxel size of 2-mm isotropic. The normalization parameters determined for the 

structure volume were then applied to the corresponding functional image volumes for each 

subject. Finally, the images were smoothed with a Gaussian kernel of 4-mm FWHM.
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To reduce spurious BOLD variances that were unlikely to reflect neuronal activity, 

additional preprocessing was applied to the data. Signals from the ventricular system, white 

matter, and whole brain were removed through a linear regression in addition to the six 

parameters obtained by rigid body head-motion correction. As BOLD fluctuations below a 

frequency of 0.1Hz may contribute to regionally specific BOLD correlations, we applied a 

temporal band-pass filter (0.009Hz < ƒ < 0.08Hz) to the time course to obtain low-frequency 

fluctuations.

To minimize the effects of micro head motion (>0.1mm) which represents a significant 

source of spurious correlations in rsFC analysis, we implemented the “scrubbing” method 

[18] to remove time points affected by head motions. Briefly, for every time point t, we 

computed the frame-wise displacement given by FD (t) = | ∆dx (t) | + | ∆dy (t) | + | ∆dz (t) | 
+ | ∆α (t) | + | ∆β (t) | + | ∆γ (t) | where (dx, dy, dz) and (α, β, γ) are the translational and 

rotational movements, respectively. The second head movement metric was the root mean 

square variance (DVARS) of the differences in % BOLD intensity I(t) between consecutive 

time points across voxels, computed as follows: DVARS t = I t − I t − 1 2 , where the 

brackets indicate the mean across voxels. Finally, to compute each subject’s correlation map, 

we removed time points that exceeded the head motion limit FD (t) > 0.5mm or DVARS (t) 
>0.5% [18]. On average, 1% of the time points were removed across subjects.

2.3 Seed Based Correlation and Regression Analyses

For seed-based functional connectivity, we obtained the hypothalamus mask from the WFU 

PickAtlas [19] (Fig. 1, inset). For each subject, the correlation coefficient between the 

averaged time course of the seed region and the time courses of every other voxel was 

computed. Correlation maps were then converted to z score maps by Fisher’s z transform: 

z = 0.5loge
1 + r
1 − r . The Z maps were used in group, random effect analyses, in which we 

conducted whole-brain multiple regressions against the normalized BMI score (see below) 

with age and sex as covariates in one model as well as against hypothalamic GMV (see 

below), again controlling for age and sex, in another model. All activations were reported 

in MNI coordinates. Unless otherwise noted, the results of the multiple regressions were 

examined with pvoxel < 0.001 in combination with pcluster < 0.05 with cluster size of 89 

voxels as determined by AFNI’s 3dClustSim with 10,000 Monte Carlo simulations and 

inherent smoothness estimated from the data.

2.4 Voxel-Based Morphometry

We implemented voxel-based morphometry (VBM) to quantify the gray matter volume 

(GMV) of the same hypothalamus mask as used for rsFC with the CAT12 toolbox (http://

dbm.neuro.uni-jena.de/vbm/). VBM analysis identifies differences in the local composition 

of brain tissue, accounting for large-scale variation in gross anatomy and location. 

The analysis includes spatially normalizing individuals’ structural images to the same 

stereotactic space, segmenting the normalized images into distinct brain tissues, and 

smoothing the gray matter (GM) images. T1-images were first co-registered to the MNI 

template space (1.5-mm3 isotropic voxels) using a multiple-stage affine transformation. Co-

registration was performed with a coarse affine registration using mean square differences, 
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followed by a fine affine registration using mutual information. Coefficients of the basis 

functions that minimize the residual square difference (between individual image and the 

template) were estimated. T1 images were then corrected for intensity bias field and a 

local means denoising filter and segmented into cerebrospinal fluid, gray, and white matter. 

The segmented and initially registered tissue class maps were normalized using DARTEL. 

We used the standard DARTEL template in MNI space for the DARTEL normalization. 

Normalized GM maps were modulated to obtain the absolute volume of GM tissue corrected 

for individual brain sizes. Finally, the GM maps were smoothed by convolving with an 

isotropic Gaussian kernel (FWHM = 6mm).

In group analyses, we used BMI as the predictor and age and sex as the covariates 

to examine volumetric correlates of the BMI in a whole-brain regression. As BMI did 

not exhibit a normal distribution (p = .001, Shapiro Shapiro-Wilk test), we applied log 

transformation to the data, which normalized the distribution (p = .11). The log transformed 

BMI was used in subsequent analyses. We conducted a separate set of analyses with the 

non-transformed BMI and found almost identical results. In addition to the whole brain 

analyses, we also used the hypothalamus (same mask used in rsFC) in a region-of-interest 

analysis to determine the relationship between hypothalamic GMV and BMI.

2.5 Mediation analysis

To examine the potential inter-relationships of hypothalamic connectivity, GMV, and BMI, 

we conducted mediation analyses using a single-mediator model [20,21]. Specifically, in a 

mediation analysis, the relation between the independent variable X and dependent variable 

Y (i.e., X → Y) is tested to determine whether it is significantly mediated by a variable M. 

The mediation test is performed using the following three regression equations:

Y = i1 + cX + e1

Y = i2 + c′X + bM + e2

M = i3 + aX + e3

where a represents X → M, b represents M → Y (controlling for X), c' represents X → 
Y (controlling for M), and c represents X → Y. a, b, c, and c' are commonly referred to as 

“path coefficients” or simply “paths”. Variable M is said to be a mediator of connection X 

→ Y, if (c – c'), which is mathematically equivalent to the product of the paths a × b, is 

significantly different from zero [20]. If (c – c') is different from zero and the paths a and 

b are significant, then one concludes that X → Y is mediated by M. In addition, if path c' 
is not significant, it indicates that there is no direct connection from X to Y and that X → 
Y is completely mediated by M. Significant correlations between X and Y and between X 

and M are required to perform the mediation test. The analysis was performed with package 

Lavaan [22] in R (https://www.r-project.org). To test the significance of the mediation effect, 
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we used the bootstrapping method as it is generally considered advantageous to the Sobel 

test [20].

Specifically, we evaluated the inter-relationships between hypothalamic GMV, 

hypothalamus-insula connectivity strength (see Results), and BMI. We considered all six 

models (see Results). In Model 1, hypothalamic GMV served as the independent variable 

(X), hypothalamus-insula connectivity as the dependent variable (Y), and BMI as the 

mediator (M): GMV → BMI → connectivity. In Model 2, GMV, BMI, and connectivity 

served as X, Y, and M, respectively. In Model 3, GMV, BMI, and connectivity served as X, 

Y, and M, respectively. In Model 4, BMI, connectivity, and GMV served as X, Y, and M, 

respectively. In Model 5 connectivity, BMI, and GMV served as X, Y, and M, respectively. 

Finally, in Model 6 connectivity, GMV, and BMI served as X, Y, and M, respectively.

3. Results

3.1. BMI and hypothalamic connectivity

A whole-brain multiple regression of hypothalamic connectivity with BMI as the predictor 

and age and sex as the covariates showed that BMI was positively correlated with 

hypothalamic connectivity with the left insula, cerebellum, and a cluster containing both 

the bilateral thalamus and right globus pallidus. BMI also exhibited a negative correlation 

with hypothalamic connectivity with a cluster containing the left superior parietal lobule 

(SPL) and dorsal precuneus (Fig. 1, Table 1).

3.2. BMI and hypothalamic GMV

A whole-brain regression of GMV with BMI as the predictor revealed no significant results. 

In a region-of-interest analysis, the hypothalamic GMV was significantly and positively 

correlated with BMI after controlling for age (r = .2, p = .04).

3.3. Hypothalamic GMV and functional connectivity

We examined hypothalamic connectivity in a whole-brain analysis with the GMV as a 

predictor and age and sex as covariates. The GMV of the hypothalamus showed a significant 

negative relationship with the hypothalamic connectivity with the gray matter along bilateral 

parieto-occipital fissure and anterior calcarine sulcus (Fig. 2). At a slightly more liberal 

threshold (cluster size = 84), hypothalamic GMV was also positively correlated with 

hypothalamic connectivity with the left posterior insula.

Hypothalamic connectivity with the posterior insula was positively correlated with both BMI 

and hypothalamic GMV. Indeed, the results of the two regressions (i.e., with BMI as well 

as with hypothalamic GMV as the predictor, as shown in Fig. 1 and Fig. 2) overlapped in 

the left posterior insula (Fig. 3A). We extracted the connectivity Z values for the overlapping 

voxels in the posterior insula for each subject and verified that the connectivity Z values 

were significantly and positively correlated both with BMI and hypothalamic GMV across 

subjects (Fig. 3B, C).
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3.4. Mediation analysis

As the left posterior insula connectivity with hypothalamus was significantly correlated with 

both BMI and hypothalamic GMV, we examined their inter-relationships in a mediation 

analysis (Fig. 4; Table 2). In Model 1, BMI contributed to hypothalamic GMV, which in 

turn contributed to hypothalamic-insula connectivity: BMI → GMV → connectivity. That 

is, BMI and hypothalamus-insula connectivity served as the independent and dependent 

variable, respectively, whereas hypothalamic GMV served as the mediator. The model was 

not significant (mediation effect p = .076). In Model 2, GMV → BMI→ connectivity, there 

was no significant mediation effect (p = .068). Model 3, GMV → connectivity → BMI, 

showed a significant mediation effect (c - c' = 13.79, p = .009, 95% confidence interval 

= [5.20 25.87]). Specifically, the path coefficient c (i.e., GMV → BMI before accounting 

for the mediating effect of hypothalamus-insula connectivity) was significant (p = .02) and 

the path coefficient c' (i.e., after accounting for the mediating effect) was not significant (p 
= .35). Thus, the hypothalamus-insula connectivity fully mediated the relationship between 

hypothalamic GMV and BMI. Model 4, BMI → connectivity → GMV, also showed a 

significant mediation effect (c - c' = .001, p = .014, 95% confidence interval = [.001 .002]). 

The path coefficient c (i.e., BMI → GMV before accounting for the mediating effect of 

hypothalamus-insula connectivity) was significant (p = .016) and the path coefficient c' (i.e., 

after accounting for the mediating effect) was not significant (p = .32), indicating a full 

mediation. In Model 5, connectivity → BMI → GMV, and Model 6, connectivity → GMV 

→ BMI, the mediation effect was not significant (p’s > .38). Both Model 3 and 4 remained 

significant after correction for false discovery rate.

4. Discussion

We found that the hypothalamus exhibited contrasting connectivity patterns with distinct 

brain regions in relation to BMI. Specifically, higher BMI was associated with greater 

hypothalamic rsFC with brain regions involved in interoception and motivation, including 

the insula and thalamus, as well as regions in the motor circuit, including the globus pallidus 

and cerebellum. In contrast, BMI was negatively associated with hypothalamic rsFC with the 

superior parietal lobule, a region implicated in executive control. BMI was also positively 

correlated with hypothalamic GMV, both of which were positively predictive of the strength 

of hypothalamic connectivity with the left posterior insula. Mediation models revealed 

that hypothalamic connectivity with the left posterior insula mediated the bidirectional 

influence between the hypothalamic GMV and BMI. Together, the findings characterized the 

relationships between BMI and hypothalamic morphology as well as functional connectivity.

4.1 Hypothalamus circuits in regulation of body weight

Food intake is regulated by interconnected brain circuits in which the hypothalamus interacts 

with various cortical and subcortical regions implicated in reward, cognitive, and motor 

functions [3]. Within this system, regions associated with reward processing including the 

orbitofrontal cortex and ventral striatum and with interoception including the posterior 

insula have been shown to respond to the appetitive characteristics of food, potentially 

promoting feeding behavior. Indeed, studies reported increased hypothalamic rsFC with 

the insula, medial orbitofrontal cortex, and ventral striatum in obese individuals [5–7] and 
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decreased connectivity with the posterior insula during satiety [8]. In contrast, activity and 

connectivity in the frontal and parietal cortices have been associated with inhibitory control 

of eating behavior [23]. Yet, the evidence that supports hypothalamic connectivity with these 

regions in the regulation of energy balance and body weight remains sparse.

The finding of hypothalamic connectivity with the insula in correlation with BMI is 

supported by a recent study showing that hypothalamic connectivity with the insula was 

positively correlated with BMI as well as diminished quality of life related to body 

weight in both lean and obese subjects [24]. Importantly, the same study additionally used 

positron emission tomography to demonstrate that this connectivity was related to attenuated 

hypothalamic norepinephrine transporter availability which is implicated in emotional 

processing, suggesting the close relationship between body weight, neurobiological 

alterations, and mental well-being [24]. The current work is also in keeping with previous 

reports of increases in the right insular activation to hunger and food cues [25] but decreases 

in the right posterior insular activity after eating [26]. Meta-analyses have also implicated 

both the anterior and posterior insula in response to food reward [27]. Greater hypothalamic 

and bilateral (anterior and posterior) insular activations were demonstrated in response to 

high- than low-calorie food images in overweight and healthy individuals [28]. In contrast, 

glucose ingestion decreased activity in the left anterior and posterior insula [29] and 

hypothalamus [30] with the hypothalamus showing less reduction in obese compared to 

lean subjects [31]. Thus, the hypothalamus and posterior insula are involved in motivating 

food intake both in healthy and overweight individuals.

While the insula is commonly associated with interoception, recent research has 

demonstrated the heterogeneity of insular functions which may encompass energy balance 

and reward. For instance, the posterior insula is involved in the emotional and motivational 

aspects of food intake [32] and functionally connected with sensorimotor regions [33]. As 

such, the insula may contribute to the processing of interoceptive information about bodily 

states important for homeostatic regulation. Additionally, studies have implicated the insula 

in drug addiction. Individuals with cocaine and heroin dependence showed reduced GMV 

in the right posterior insula [34]. Smokers who suffered damage to the insula, as compared 

to other brain regions, were more successful in smoking cessation, likely as a result of 

reduced craving [35]. Finally, as demonstrated in humans [36], the anatomical connections 

between hypothalamus and insula may directly facilitate the integration of taste/gustatory, 

interoceptive, and hedonic signals to motivate drug/food seeking and consumption.

BMI was positively correlated with hypothalamic connectivity with the thalamus, consistent 

with a role of the hypothalamic-thalamic-striatal circuit in motivating feeding behaviors. 

In rodents, lesions of the thalamus impaired locomotor activity to acquire food [37], food 

preference learning, and instrumental conditioning for food reward [38]. Food expectation 

as well as learning of cue-sucrose association activated the thalamus, as assessed by c-Fos 

expression, a marker of neuronal excitation [39]. In non-human primates, neurons in the 

centromedian thalamus responded differentially to distinct contingencies to obtain food 

rewards [40]. In human imaging, the thalamus responded not only to action selection vs. rest 

[41] but also to food vs. non-food imagery [42] as well as intake of caloric vs. non-caloric 

sweetener [43]. The thalamus receives extensive inputs from the hypothalamus, including 
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serotonergic and peptidergic projections, both of which have been associated with the 

control of food intake [44]. Thus, the current findings add to the literature by shedding 

light on the influence of thalamus-hypothalamus connectivity on body weight.

Food intake requires the integration of motivational and motor processes [45]. Here, we 

found that hypothalamic connectivity with the globus pallidus and cerebellum, both central 

to the cerebellar-thalamic-striatal-cortical circuit of action control, was positively correlated 

with the BMI. Neurons in the globus pallidus increased firings when monkeys reached for 

food or initiated motor response to receive food reward but not to avoid electric shock 

[46]. Neuronal activity in the cerebellum also reflected food anticipation and cerebellar 

stimulation induced feeding behavior in rodents [47]. In humans, the globus pallidus showed 

higher activation to high-calorie food vs. neutral stimuli in positive correlation with BMI 

in obese individuals [48] and reduced activation after leptin treatment in leptin-deficient 

patients [49]. The cerebellum showed increased regional cerebral blood flow [50] as well 

as connectivity with the left posterior insula [9] during fasting vs. satiation and enhanced 

activation to images depicting high vs. low calorie-food [51]. Further, lower cerebellum-

hypothalamus resting state connectivity predicted weight loss in a 3-month diet follow-up in 

overweight individuals [5]. Thus, the current findings extend the literature in implicating the 

globus pallidus and cerebellum in feeding behavior.

The negative correlation between BMI and hypothalamic connectivity with the SPL likely 

reflects diminished behavioral control in individuals with higher BMI. In support, the SPL 

showed higher activation when participants inhibited their urge to eat as compared to when 

they imagined eating during the presentation of visual food stimuli [52]. Further, the SPL 

responded to incongruent vs. congruent trials in the Stroop task in positive correlation with 

the restraint scores of the Eating Disorder Examination Questionnaire [53]. When instructed 

to “crave” rather than “resist” during exposure to food cues, patients who underwent gastric-

bypass surgery showed attenuated SPL activation [54]. Taken together, the current study 

found a contrasting pattern of hypothalamic connectivities with regions involved in reward, 

saliency, interoception and motor processing and those involved in executive control, in 

relation to BMI.

4.2 BMI, hypothalamic GMV, and hypothalamic connectivity with posterior insula

The finding of hypothalamic GMV in positive correlation with BMI is in line with 

a previous report of a positive relationship between hypothalamic GMV and BMI as 

well as plasma leptin levels in healthy individuals [12]. Patients with anorexia nervosa 

also demonstrated atrophy in the hypothalamus [14] and the extent of this atrophy was 

negatively related to BMI [15]. It is worth noting that another study reported a negative 

correlation between BMI as well as waist circumference and hypothalamic GMV [55]. Other 

investigations including one of over 2,300 individuals showed no relationship between waist 

circumference and hypothalamic GMV [56,57]. Sample size and heterogeneity in sample 

characteristics (e.g., range of BMI; comorbidity; dietary restrictions) may have contributed 

to the inconsistencies in findings.

We showed that hypothalamic GMV was positively correlated with the strength of 

hypothalamus-posterior insula connectivity. Further, hypothalamus-insula connectivity 
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mediated the bidirectional relationship between BMI and hypothalamic GMV. Although 

no previous work has examined the relationship between hypothalamic morphology and 

connectivity in the context of body weight, the broad relationship between regional 

GMV and functional connectivity has been observed for other brain regions [58]. 

Furthermore, recent investigations have demonstrated that hypothalamic connectivity with 

regions including the insula and orbitofrontal cortex may be related to norepinephrine 

[24] and serotonin [59] transporter availability, both of which have been implicated 

in negative emotionality. It is plausible that psychological distress from weight gains 

enhances hypothalamic connectivity via the noradrenergic and serotonergic systems and 

in turn leads to overeating and worsening of mood [24]. As shown in animal studies, 

diet-induced body weight gains or losses altered the cytoarchitecture of the hypothalamus, 

including changes in dendrite length, dendrite number, and soma size [60]. Such changes 

in morphology may impact synaptic activity and potentially connectivity and molecular 

functions of the hypothalamus. Thus, consistent with the mediation analysis, body weight, 

hypothalamic connectivity strength, and GMV may be intricately interrelated. Nonetheless, 

the mechanistic relationship between GMV, connectivities and molecular profiles of the 

hypothalamus in relation to food intake require additional research.

5. Conclusions

Higher BMI was positively correlated with greater hypothalamic GMV and connectivity 

with the insula, thalamus, globus pallidus, and cerebellum but negatively correlated with 

hypothalamic connectivity with the superior parietal lobule. Morphometric and connectivity 

analyses together pointed to a potentially specific role of the hypothalamic-posterior insula 

connectivity in the regulation of food intake. The current report adds to the growing 

literature of hypothalamic dysfunctions in obesity and disordered eating. Longitudinal 

research is needed to understand whether these neural features reflect the consequences 

of chronic increases in food intake or represent a biomarker that may dispose individuals to 

excessive food consumption.
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Figure 1: 
BMI was positively correlated with hypothalamic (Hy) (seed shown in violet - inset) 

connectivity with the right globus pallidus (GP), left insula (Ins), bilateral thalamus 

(Thal), and left cerebellum (CBL) (red). BMI was negatively correlated with hypothalamic 

connectivity with the left superior parietal lobule (SPL) and dorsal precuneus (Pcun) (blue).
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Figure 2: 
Hypothalamic GMV was negatively correlated with the strength of hypothalamic 

connectivity with a cluster in parieto-occipital fissure/sulcus (POS) and anterior calcarine 

sulcus (ACS) (blue). At a slightly more liberal threshold (cluster size = 84), hypothalamic 

GMV was positively correlated with the connectivity with the left posterior insula (Ins) 

(red).
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Figure 3: 
(A) Hypothalamic connectivity in correlation with BMI (red) and with hypothalamic GMV 

(green) overlapped in the left posterior insula (Ins, yellow). (B) BMI was positively 

correlated with the strength of the hypothalamus-insula connectivity. (C) Hypothalamic 

GMV was positively correlated with the strength of the hypothalamus-insula connectivity. 

(D) BMI and hypothalamic GMV were positively correlated. Note that residuals are plotted 

in these partial correlations with age as the covariate.
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Figure 4: 
Mediation analysis of the inter-relationships between body mass index (BMI), hypothalamic 

gray matter volume (GMV), and hypothalamus-left posterior insula connectivity 

(Connectivity). All six models of mediation were tested: (A) Model 1: BMI → GMV 

→ Connectivity; (B) Model 2: GMV → BMI → Connectivity; (C) Model: 3 GMV 

→ Connectivity → BMI; (D) Model 4: BMI → Connectivity → GMV; (E) Model 5: 

Connectivity → BMI → GMV; and (F) Model 6: Connectivity → GMV → BMI. Both 

Model 3 and 4 showed a significant and complete mediation effect. Solid and dotted arrows 

indicate significant and non-significant relationships, respectively.
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Table 1:

BMI and hypothalamic GMV modulation of hypothalamic connectivity

MNI coordinates (mm) Voxel Cluster

Region x y z T k

BMI Positive correlation

Thalamus 30 −26 4 5.50 925

−22 −20 −8 5.16

Thalamus/Globus Pallidus 36 −22 −6 5.14

Insula −38 14 −14 4.04 103

−34 −6 −16 4.03

−40 6 −12 4.00

Cerebellum −34 −62 −40 4.01 110

−42 −62 −38 3.91

Negative correlation

Precuneus −12 −54 64 4.85 262

−12 −72 52 4.22

Superior parietal lobule −20 −66 52 4.20

GMV Positive correlation

Insula −42 −2 −12 4.45 84

Negative correlation

Posterior cingulate cortex 14 −56 14 5.24 569

20 −58 20 5.07

−12 −48 4 4.72
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Table 2.

Mediation of BMI, hypothalamic GMV, and hypothalamus-posterior insula connectivity

Path a (X → M) Path b (M → Y) Path c (X → Y) Path c' (X → Y) Mediation path (c - c')

Model 1: X (BMI) → Y (Connectivity) mediated by M (GMV)

β 0.047 1.209 0.340 0.283 0.057

p-values 0.019 0.001 0.001 0.001 0.073

Model 2: X (Connectivity) → Y (Connectivity) mediated by M (BMI)

β 0.851 0.283 1.449 1.209 0.241

p-values 0.03 0.001 0.001 0.001 0.063

Model 3: X (GMV) → Y (BMI) mediated by M (Connectivity)

β 1.449 0.373 0.851 0.311 0.541

p-values 0.001 0.001 0.030 0.41 0.007

Model 4: X (BMI) → Y (GMV) mediated by M (Connectivity)

β 0.340 0.088 0.047 0.017 0.030

p-values 0.001 0.001 0.019 0.39 0.011

Model 5: X (Connectivity) → Y (GMV) mediated by M (BMI)

β 0.403 0.017 0.095 0.088 0.007

p-values 0.001 0.39 0.001 0.001 0.417

Model 6: X (Connectivity) → Y (BMI) mediated by M (GMV)

β 0.095 0.311 0.403 0.373 0.030

p-values 0.001 0.41 0.001 0.001 0.431
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