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The Paris Climate Agreement aims to hold global-mean temper-
ature well below 2 ◦C and to pursue efforts to limit it to 1.5 ◦C
above preindustrial levels. While it is recognized that there are
benefits for human health in limiting global warming to 1.5 ◦C,
the magnitude with which those societal benefits will be accrued
remains unquantified. Crucial to public health preparedness and
response is the understanding and quantification of such impacts
at different levels of warming. Using dengue in Latin America as
a study case, a climate-driven dengue generalized additive mixed
model was developed to predict global warming impacts using
five different global circulation models, all scaled to represent
multiple global-mean temperature assumptions. We show that
policies to limit global warming to 2 ◦C could reduce dengue cases
by about 2.8 (0.8–7.4) million cases per year by the end of the cen-
tury compared with a no-policy scenario that warms by 3.7 ◦C.
Limiting warming further to 1.5 ◦C produces an additional drop
in cases of about 0.5 (0.2–1.1) million per year. Furthermore, we
found that by limiting global warming we can limit the expansion
of the disease toward areas where incidence is currently low. We
anticipate our study to be a starting point for more comprehen-
sive studies incorporating socioeconomic scenarios and how they
may further impact dengue incidence. Our results demonstrate
that although future climate change may amplify dengue trans-
mission in the region, impacts may be avoided by constraining
the level of warming.

climate change impacts | disease modeling | Latin America

There is a growing concern about the potential impacts of
climate change upon human health (1–4). The effects of cli-

mate change on vector-borne infectious diseases have caught a
great deal of attention (5–9) because climatic factors such as tem-
perature, precipitation, and humidity modulate many aspects of
their biology such as the reproduction rate of the vector and the
transmission rate of the pathogens they carry (10–12). Vector-
borne diseases impose a large health and economic burden in
many regions (13–15), and so it is crucial, from a public health
perspective, to quantify the impacts of climate change on such
diseases.

Dengue is a rapidly spreading vector-borne viral disease that
is endemic to over 100 countries. Dengue has been recently esti-
mated to cause ∼390 million cases per year, using a statistical
and cartographic approach (16) [almost four times the ∼100
million cases per year previously estimated by the World Health
Organization based on country-specific reporting (17)]. About 54
million of these cases occur in Latin America and the Caribbean
(LATAM) (16). Several studies have investigated the poten-
tial impacts of climate change upon future dengue occurrence,
but most of those studies are ≥15 y old, have used a maxi-
mum of three general circulation models (GCMs), and are based
on low-resolution climate model data for their computations of

dengue risk (18–21). More recent studies have investigated the
effects of climate change on the spatial distribution of the dengue
mosquito vector Aedes aegypti (22), but the presence of the vector
in an area does not mean that human cases will occur. Climatic
and nonclimatic factors could prevent disease from occurring.
For example, low temperatures increase the extrinsic incubation
(12, 23) period of the virus, which may exceed the temperature-
sensitive longevity of A. aegypti mosquitoes [i.e., the maximum
longevity in the field is only about 33 d at temperatures of about
27 ◦C (24, 25)], reducing the risk of transmission. Moreover, even
if the climate was conducive for dengue, access to preventive
measures such as air conditioning and window screening could
inhibit disease occurrence (26). Also, most previous research
has focused on the impacts of climate change associated with a
warming of 2 ◦C or more (27–29).

The Paris Agreement under the United Nations Framework
Convention on Climate Change aims to hold global-mean tem-
perature well below 2 ◦C and to pursue efforts to limit it to 1.5 ◦C
above preindustrial levels this century (30). Recent research
reveals that a reduction of warming from 2 ◦C to 1.5 ◦C could
lead to shorter heat waves, lower risk of coral reef degradation,
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shorter dry spells, and a 10-cm lower global sea-level rise by 2100
(relative to year 2000 levels) (31). While it is recognized that lim-
iting global warming to 1.5 ◦C could also be beneficial for human
health, a fundamental unknown is the impact upon dengue fever.
Here, we use a multi-GCM, multiscenario approach to investi-
gate and quantify the risks avoided by limiting global-mean tem-
perature to 1.5 ◦C above preindustrial levels compared with that
occurring at 2 ◦C or 3.7 ◦C. Using the ClimGen pattern-scaling
tool (32), we generated climate projections from five Coupled
Model Intercomparison Project Phase 5 (CMIP5) climate mod-
els (33). We scaled the simulated patterns of climate change of
each model, using the Integrated Model to Assess the Global
Environment (IMAGE) modeling framework, which identifies
socioeconomic pathways and projects the climatic implications
of different climate and energy policy scenarios (34). Specifically,
we investigated a business-as-usual scenario where global-mean
temperature rises by 3.7 ◦C by 2100. We compared this sce-
nario with two alternative scenarios where, due to mitigation
strategies, there is a 66% probability of holding global-mean
temperature increase below 1.5 ◦C and 2.0 ◦C.

We quantified the likely number of dengue cases and changes
in the length of the dengue transmission season for the period
1961–1990 and for each of the three scenarios for the peri-
ods 2040–2069 (2050s) and 2086–2115 (2100). The estimated
number of cases was computed using clinical and laboratory-
confirmed dengue reports for the three most populated coun-
tries in LATAM (Brazil, Colombia, and Mexico) and fitting
a climate-driven empirical model of dengue incidence that
accounts for long-term and seasonal trends (35) and whose struc-
ture and climatic parameters were selected using time-series
cross-validation (TSCV) (36) so that the model captured the
spatial and temporal variations in observed dengue data.

Results
We fitted different model specifications for our empirical dengue
model, regressing the dengue data for Brazil, Colombia, and
Mexico with all possible combinations of climatic predictors
using TSCV (Materials and Methods). The lowest mean abso-
lute error (MAE = 103 cases per month) was achieved with a
negative binomial generalized additive mixed model (GAMM)
including temperature lagged 0–2 mo (T0:2) and potential
evapotranspiration (PET) lagged 0–2 mo (PET0:2) as climatic
covariates. That model was selected for projecting the potential
impacts of climate change. The model output captures well the
observed temporal trends on dengue transmission in the three
countries with most observed reports falling within the confi-
dence intervals (SI Appendix, Fig. S1). The country-specific MAE
estimates were 99, 48, and 188 monthly dengue cases for Brazil,
Colombia, and Mexico, respectively.

The effects of future climate on the population at risk for
dengue for the multimodel ensemble mean were then projected
for LATAM from Mexico to northern Argentina and are sum-
marized in Table 1. We averaged the mean predicted number
of cases across all climate change scenarios and compared them
with the baseline (SI Appendix, Fig. S2). The number of dengue
cases for the 2050s period was, on average, 260% larger than the

Table 1. Multi-GCM ensemble mean (and range) of the predicted
number of dengue cases (million cases per year) in LATAM under
different climate change scenarios

Scenario Baseline 2050s 2100

1.5 ◦C 4.3 (3.0–6.1) 10.7 (7.0–16.7) 8.8 (5.9–13.6)
2.0 ◦C 11.0 (7.1–17.2) 9.3 (6.1–14.7)
3.7 ◦C 11.8 (7.4–19.2) 12.1 (6.9–22.1)

The baseline values are the same for all climate change scenarios.
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Fig. 1. Multi-GCM ensemble mean of the predicted additional (to the pre-
dicted number of cases for the 1961–1990 baseline) number of dengue cases
under a 1.5 ◦C scenario for the 2050s period (thousands).

1961–1990 baseline scenario with about 6.9 million extra cases
per year. A 234% average increase was estimated for the 2100
period with 5.8 million extra cases per year. We note that the
population at risk for dengue is estimated to be lower by the end
of the century, but only for the 1.5 ◦C and 2.0 ◦C scenarios.

Critically, we show that limiting global warming to about
2.0 ◦C above preindustrial levels could reduce the number of
dengue cases by ∼0.8 (0.3–2.0) million cases per year compared
with a no-policy scenario with a 3.7 ◦C warming for the 2050s
period and by ∼2.8 (0.8–7.4) million cases per year for the 2100
period. Constraining global warming to 1.5 ◦C produces an addi-
tional drop in dengue cases of ∼0.3 (0.1–0.5) million avoided
cases by the middle of the century and ∼0.5 (0.2–1.1) million
avoided cases by the end of the century. It is important to
note that when comparing the 3.7 ◦C scenario with the 1.5 ◦C
scenario, the estimated benefit by the end of the century corre-
sponds to ∼77% (25–200%) of the estimated mean number of
cases for the baseline period (1961–1990).

Fig. 1 highlights the areas likely to experience significant
changes in the expected number of dengue cases under the
1.5 ◦C scenario for the 2050s period. We note that southern Mex-
ico, many Caribbean Island states, northern Ecuador, Colombia,
Venezuela, and the coastal Brazilian states will be most affected
by increases in dengue cases. Similar geographical patterns were
observed under the 2.0 ◦C and 3.7 ◦C scenarios both for the
2050s and the 2100 periods.

Table 2 presents the difference in the predicted number of
cases per country, comparing the 3.7 ◦C scenario to the 1.5 ◦C
scenario. It is noted that Brazil will benefit the most from lim-
iting global warming to 1.5 ◦C with an estimated 0.5 (0.2–1.0)
million avoided cases per year by the 2050s and 1.4 (0.5–3.1) mil-
lion avoided cases by 2100. The benefit in disease burden in the
2050s period is over five times the estimated absolute benefit
in dengue cases for Colombia which we project to be the sec-
ond most benefited country in the region. Except for Argentina,
the countries with the largest benefits are also the countries with
some of the largest dengue incidences in the region (16).

Fig. 2 depicts the changes in the length of the dengue transmis-
sion season (LTS) compared against the baseline scenario. Fig. 2
shows that the areas experiencing increases in LTS of more than
3 mo show considerably lower increase if warming is constrained
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Table 2. Multi-GCM ensemble mean (and range) of the absolute
difference in predicted number of dengue cases (thousands)
between the 3.7 ◦C and the 1.5 ◦C warming scenarios

Country 2050s 2100

Brazil 503.0 (206.0–1,012.0) 1,406.0 (518.0–3,052.0)
Colombia 97.4 (18.8–312.0) 317.0 (70.1–1,005.0)
Venezuela 89.7 (23.0–321.0) 272.0 (43.2–1,161.0)
Mexico 81.8 (25.3–211.0) 273.0 (70.5–762.0)
Ecuador 34.6 (16.6–74.6) 110.0 (45.3–261.0)
Guatemala 32.2 (10.9–96.6) 143.0 (42.4–477.0)
Haiti 31.3 (17.2–63.3) 87.9 (43.4–190.0)
Dominican Republic 30.8 (15.3–66.4) 92.7 (40.3–214.0)
Peru 28.9 (13.6–57.3) 88.8 (34.4–200.0)
Argentina 22.8 (13.9–37.6) 80.1 (45.0–137.0)
Others 115.0 (37.6–312.0) 317.0 (70.1–1,005.0)

to 1.5 ◦C compared with a 3.7 ◦C warming scenario. Such
benefits are evident in southern Mexico, Central America, the
coasts of Ecuador, the Andean foothills, Cuba, Haiti, the
Dominican Republic, southwestern Venezuela, southern Brazil,
and most of the Brazilian coastline.

Discussion
For this study, we used one of the largest panels (144 mo) of
subnational monthly dengue reports for Latin America (350
unique geographical units composing the whole of Mexico and
Colombia and 25% of the Brazilian municipal counties) ever col-
lated, covering a latitudinal range between 30◦N and 30◦S and
accounting for ∼60% of the total dengue reports for the region.
Such a detailed set of spatiotemporal dengue data allows us to
model the local and temporal variation in ecological aspects of
transmission in more detail than in previous studies (20, 21).

Our model projections show that climate change is likely to
amplify the risk of mosquito-transmitted diseases in LATAM by
increasing the risk of infection (1, 20, 21, 37) and by altering
the LTS (5). We demonstrate that climate change may lead to
increases of up to 7.5 (3.1–14.9) million additional cases per year
by the middle of the century under a 3.7 ◦C scenario. Limiting
warming to 2.0 ◦C could reduce the number of additional dengue
cases to 6.7 (2.8–12.9) million, while limiting it to 1.5 ◦C could
reduce such increase even further to 6.4 (2.7–12.4) million cases
per year. Our estimated 10.7–11.8 million dengue cases by 2050
are in line with previous annual estimates of dengue activity in
the region (16). For context, the population of LATAM by 2015
was estimated to be about 632 million people with a mean rate
of natural population increase of 11.9 individuals per 1,000 peo-
ple. Thus, each year about 7.5 million new susceptible individuals
could be added to the population without considering migration
and international traveling.

The simulated increases in LTS under the 3.7 ◦C scenario indi-
cate considerable potential to expand the endemic establishment
of the disease toward areas where incidence is currently low
(38, 39). Such southward expansion could be reduced by limiting
warming to 1.5 ◦C. The predicted expansion might be related to
more conducive conditions for Aedes mosquitoes (40). It is impor-
tant to note that populations in low-transmission areas are likely
to be immunologically naive due to low transmission intensity (41)
and are consequently more likely to succumb to major epidemics.
Moreover, public health systems in some of these regions are
woefully unprepared for dealing with major dengue epidemics.

We estimate that increases in the number of dengue cases
will be greater for the 2050s period than for the 2100 period
for two of the climate change scenarios (warming at 1.5 ◦C and
at 2.0 ◦C above preindustrial levels). This reduction in dengue
cases is related to a slight fall in global-mean temperature

under these two scenarios which could gradually lead to less
conducive climatic conditions for dengue transmission in some
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Fig. 2. Changes in the LTS under the (A) 1.5 ◦C, (B) 2.0 ◦C, and (C) 3.7 ◦C
warming scenarios by 2100. The different colors represent changes in LTS
between 2100 and the 1961–1990 baseline (in months) for the ensemble
mean of the multi-GCM ensemble.
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regions, possibly due to lower environmental suitability for A.
aegypti as estimated by ref. 22. We note that lower temperatures
increase the development time and gonotrophic cycle of the vec-
tor, decrease its biting rate, and reduce its ability for transmitting
the virus to a human host, reducing disease transmission (12, 42).

In this study we show that reductions in warming from 3.7 ◦C
to 2.0 ◦C or 1.5 ◦C above preindustrial levels may result in impor-
tant health benefits although the estimated number of cases will
still be above current levels. Specifically, we predict that lim-
iting warming to 1.5 ◦C will reduce the estimated number of
dengue cases by 0.3 (0.1–0.5) million toward the middle of the
century and by 0.5 (0.2–1.1) million by the end of the century
compared with a scenario projected to reach 2.0 ◦C of global-
mean warming by 2100. Moreover, limiting warming to 1.5 ◦C
will reduce the expected number of cases by 1.1 (0.4–2.5) mil-
lion by the 2050s and by 3.3 (1.0–8.5) million by 2100 compared
with a scenario where global-mean temperature warms 3.7 ◦C.
Thus, our findings emphasize that holding the increase in global-
mean temperature at about 1.5 ◦C above preindustrial levels may
significantly reduce public health risks.

Although our spatially explicit projections of dengue risk pro-
vide useful information for public health preparedness, there
are some caveats. First, our results have not considered the
mass deployment of a vaccine which would significantly reduce
the risk of infection. Recent studies suggest that a tetrava-
lent dengue vaccine is efficacious against virologically confirmed
dengue cases (43, 44). However, the evaluation of this tetravalent
vaccine indicates that its mean efficacy is only about 58% with
some variation between serotypes (45). Second, we have based
our risk estimates on one of the most comprehensive dengue
datasets yet assembled. Still, other determinants of disease such
as socioeconomic development, intervention deployment, urban-
ization, and the international movement of people and goods,
not explicitly accounted for in our model, may produce signif-
icant changes in the levels of risk experienced by the affected
populations (21, 26, 37). Importantly, to this date there are no
publicly available continuous, gridded socioeconomic data for
the contemporary and future periods that could be incorporated
into such modeling exercises. This situation highlights the need
for the development of such socioeconomic datasets (46). Third,
the quality of surveillance systems is likely to vary widely between
and within countries, adding uncertainty to our estimates. To
our knowledge, there are no available studies or datasets quanti-
fying between- or within-country variation in surveillance data
quality. Thus, while we adopted a GAMM approach (Mate-
rials and Methods) to control for those effects, we highlight
the need for further quantifying the quality of epidemiological
surveillance data.

Materials and Methods
Dengue Surveillance Data. Monthly laboratory-confirmed dengue reports
were obtained from the Colombian (portalsivigila.ins.gov.co/sivigila/
documentos/Docs 1.php) and Mexican (www.epidemiologia.salud.gob.mx/
anuario/html/anuarios.html) Ministries of Health while suspected (clini-
cal) reports were obtained from the Brazilian Ministry of Health (tabnet.
datasus.gov.br/cgi/deftohtm.exe?sinanwin/cnv/denguebr.def). Data from
Mexico and Brazil were obtained for the period January 2001 to Decem-
ber 2012, while Colombian data were retrieved for the period January
2007 to December 2012. Colombian data were retrieved at the department
level (n = 32), Mexican data at the state level (n = 32), and Brazilian data
at the municipal county level (n = 5566). The Brazilian municipal coun-
ties are considerably smaller in area and population than the Colombian
departments or the Mexican states, and their data were characterized by
low case counts. The Brazilian municipal counties were consequently aggre-
gated into larger geographical units by dividing their centroid coordinates
into 286 latitude–longitude intervals and merging all counties with cen-
troid coordinates within each bin together. Missing dengue counts were
imputed for areas with less than 20% missing values using a singular value
decomposition-based method (47), included in the bcv package (48) for R
(49). Areas with over 20% missing counts (n = 4,177) were removed.

Climate Observations. Gridded monthly mean temperature (◦C), total pre-
cipitation (mm·mo−1), and potential evapotranspiration (mm·mo−1) data
were obtained from the Climatic Research Unit (CRU) TS3.24 climate archives
(crudata.uea.ac.uk/cru/data/hrg/) at a 0.5◦ × 0.5◦ resolution for land cells
only for the period January 2001 to December 2012 (50). Three-month
moving averages of mean temperature, total precipitation, and potential
evapotranspiration were used as predictors to account for the delayed
effects of climate on dengue incidence (9). These were obtained for each
administrative unit using the extract method included in the R (49) raster
package (51).

Climate Change Projection Data. Future climate data were derived for a
single “middle-of-the-road” shared socioeconomic pathway (SSP2) and for
three different global temperature change scenarios developed using the
IMAGE modeling framework (34). The first scenario assumes that no addi-
tional (to the Cancun pledges) climate policy takes place and, under those
conditions, IMAGE simulates global-mean temperature rising to 3.7 ◦C
above preindustrial levels by 2100. The second and third scenarios, on the
other hand, assume stringent mitigation strategies to obtain a 66% prob-
ability that global-mean temperature will remain below 1.5 ◦C and 2.0 ◦C,
respectively. For each of these three scenarios, gridded climate data were
generated for three 30-y time slices (2040–2069 and 2086–2115 as well as
observed climate data for 1961–1990) by scaling patterns of climate change
by the global temperature change. The climate change patterns were diag-
nosed from CMIP5 (33) climate model simulations for use in the ClimGen
pattern-scaling tool (32). We selected the same five CMIP5 models as used
previously by the Inter-Sectoral Impact Model Intercomparison Project fast-
track project to sample a wide range of potential climate changes: Hadley
Global Environment Model 2 - Earth System (HadGEM2-ES), Institut Pierre
Simon Laplace Coupled Model Version Five A - Low Resolution (IPSL-CM5A-
LR), an atmospheric chemistry version of the Model for Interdisciplinary
Research on Climate Earth System Model (MIROC-ESM-CHEM), Geophysical
Fluid Dynamics Laboratory Earth System Model with MOM, version 4 compo-
nent (GFDL-ESM2M), and the Norwegian Earth System Model (NorESM1-M)
(6, 33). The scaled climate change patterns were combined with the CRU
TS (50) observed baseline climate on a 0.5◦ latitude–longitude grid and
with CRU TS observed monthly variability. A notable modification to this
standard pattern-scaling approach is that the monthly precipitation vari-
ability is also perturbed according to the changes in precipitation variability
simulated by each of the five climate models used here, thus represent-
ing increases or decreases in future precipitation variance and distribution
skewness (32). Projections were generated for monthly mean temperature
and precipitation and also for mean minimum and maximum temperatures,
cloud cover, and vapor pressure from which PET was calculated using the
Penman–Monteith method.

Historic Population Data. Global gridded total population counts were
retrieved at a 2.5-arcmin resolution from the Gridded Population of the
World project (sedac.ciesin.columbia.edu/data/collection/gpw-v3/about-us)
at 5-y intervals for the period 2000–2010. Population data were aggre-
gated at a 0.5◦ × 0.5◦ resolution using the Climate Data Operators software
(52) for consistency with the climate data. Total population estimates were
scaled to agree with the United Nations World Population Prospects yearly
population estimates (https://esa.un.org/unpd/wpp/Download/Standard/
Fertility/). Monthly estimates for each grid box were derived using linear
interpolation (6, 9). The estimated population for each geographical unit
included in the study was then calculated using the extract method included
in the R (49) raster package (51).

Future Population Scenario Data. Global-scale, spatially explicit population
projections consistent with the new SSPs (53) were used to estimate the
future population at risk for dengue transmission. We used the SSP2 pop-
ulation scenario, which projects moderate population density and change
compared with the other scenarios (53). Data were obtained at 10-y intervals
for the period 2010–2100 at a 0.5◦ × 0.5◦ resolution.

Model Specification. We obtained more than one dengue observation per
geographical area violating the assumption of independence of standard
regression models (54). Also, we expect each area to vary independently
from other areas in the model due to climatic and nonclimatic deter-
minants of dengue (26, 39). Mixed models provide a solution to the
correlated within-area errors by allowing each area to have its own
intercept and slope (54). Consequently, the expected number of dengue
reports E(Yit) for region i = 1,...,I at time t = 1,...,T was modeled using
a GAMM.

6246 | www.pnas.org/cgi/doi/10.1073/pnas.1718945115 Colón-González et al.
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Negative binomial and quasi–maximum-likelihood Poisson models were
fitted to investigate possible overdispersion in the data. The model specifica-
tion with the lowest dispersion parameter and the lowest MAE was selected.
The general algebraic definition of the models is given by

Log(µit) = ηit

ηit =α+ Log(Nit) + t′ +
P∑

p=1

g(xit) + di ,

where ηit is a logarithmic link function of the expectation E(Yit ≡µit), and
Yit is the time series of monthly dengue reports. The term α denotes
the intercept; Log(Nit) is the logarithm of the population at risk (N) for
region i and time t included as an offset to normalize the dengue data by
population. Long-term and seasonal trends are controlled for using a time-
stratified model including an indicator variable for each year and month
(t′) (35). The term g(xit) denotes the smoothed and delayed relationships
between the climatic predictors and dengue incidence defined by thin-
plate splines (55). Area-specific random effects (di) were included to account
for the effects of unknown or unobserved variables in the model such as
mosquito control measures.

Best Subset of Climatic Predictors. The best subset of climatic predictors pro-
ducing the lowest prediction error was defined using a TSCV algorithm (36).
Models were fitted using all climatic predictors in isolation, as well as all
their possible combinations. Thus, we iteratively fitted all possible models
containing one climatic predictor, then two climatic predictors, and so on,
until all climatic predictors were included in a single model. The accuracy of
each model was evaluated, calculating their MAE.

Training and test sets were created to implement the TSCV. The initial
training set comprised 90% of the total number of observations (n = 144) per
region. At each time step (k), a further observation per region was added to
the training set. Consequently, at time step k = 1, the training set comprised
observations for month t = 1,...,130; at k = 2 it comprised observations for
t = 2,...,131, and so on until the training set contained the observations for

t = n− 1, where n is the total number of months in the dataset. The test
set contained the first observation for each region immediately after the
last observation in the training set. Thus, at time step k = 1, the test set
contained all observations for t = 131; at k = 2, it contained all observations
for t = 132, and so on until the test set contained the observations for month
t = n. We calculated the MAE at each time step k = 1,...,K, and for each subset
of climatic predictors h = 1,...,H as in the following matrix:

MAEk,h =


MAE1,1 MAE1,2 . . . MAE1,H

MAE2,1 MAE2,2 . . . MAE2,H

...
...

. . .
...

MAEK,1 MAEK,2 . . . MAEK,H

.

The MAE for each subset of climatic predictors (MAEk,h) was calculated by
averaging the subset-specific values across all time steps.

Model Predictions Under Climate Change. Cross-validated model outputs
were used to generate spatially explicit predictions of dengue cases at a
0.5◦ × 0.5◦ resolution for the periods 2050s and 2100. Model predictions
were computed based on future climate and population scenario data. The
predicted number of cases for a grid box was then multiplied by a factor of
11.5 to account for potential underreporting in the dengue data (56). We
then evaluated changes in the number of dengue cases and in the length
of the transmission season. The LTS was calculated from the predicted inci-
dence rate per month. LTS = 1 for a given month if the predicted incidence
rate per 100,000 people >10.
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