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A B S T R A C T

Several reinforcement materials are incorporated into a polymeric matrix to improve the mechanical properties
and reduce the cost of the obtained composites. In this work, recycled high-density polyethylene/waste glass
powder composites, compatibilized with maleic anhydride-grafted polyethylene, were prepared using a two-roll
mill and compression molding techniques. Four levels of waste glass powder, 2, 10, 20 and 30% by weight, and
five levels of the compatibilizer, polyethylene grafted with maleic anhydride (0.5, 1.5, 2.5, 5 and 7.5%by weight),
were used. The effect of adding waste glass powder and compatibilizer concentration on the composite's me-
chanical properties, such as tensile strength, tensile strain, tensile modulus and thermal properties was studied.
The results showed that superior mechanical properties were obtained and that the tensile strength and modulus
increased with increasing waste glass powder content and compatibilizer concentration by 20 and 1.5 wt%,
respectively. However, the elongation at the break decreased with the increase in both factors. The composite,
which was prepared under ideal conditions, has high thermal stability and can be easily recycled and reprocessed
for five cycles with high mechanical properties. This study recommends that the prepared composite, under
optimum conditions, can be used as a cost-effective automobile dashboard material.
1. Introduction

Thermoplastic composites are wonder materials that can be
defined as hybrids of materials consisting of two phases: the polymeric
matrix phase holds the dispersed phase (reinforcement phase) and
shares a load with this phase; however, the two phases could be
different in chemical and physical properties and separated by a
distinct interface [1,2]. The strength of the produced composite
mainly depends on the ratio between the polymer matrix and the
added material in the composite content [1]. Thermoplastic compos-
ites are increasingly important because of their advantages, such as
light weight, high fatigue strength, corrosion resistance and electrical
insulation [3]. There are many different thermoplastic matrix com-
posites used in the automotive industry, and the most common are
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thermoplastic polyurethane (TPU), polypropylene (PP), polyethylene
(PE) and polystyrene (PS).

High-density polyethylene (HDPE) is a thermoplastic that has a
relatively low tensile modulus, low density and more uses in the auto-
motive industry as a composite due to its lighter weights than the ma-
terials traditionally used, which positively affects fuel consumption.In
addition, HDPE manufacturing is much simpler and faster than that of
other types of materials. Moreover, HDPE has a long shelf life and lower
environmental impact [4] because it may come from recycled plastic.
Additionally, vehicle parts manufactured with HDPE can be repaired
easily, making it cost-effective.

Using composite reinforcement materials in particle form, such as
carbon [5,6,7], ceramic [8,9] or glasses particles [10,11], is less effective
in strengthening than using reinforcement materials in fibrous form, but
hoo.com (N.A. Elessawy).
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Table 1. Composition of soda lime glass powder.

Component Value Unit

SiO2 71.4 Wt. %

Al2O3 1.7 Wt. %

Fe2O3 0.1 Wt. %

MgO 3.2 Wt. %

CaO 9.12 Wt. %

Na2O 11.5 Wt. %

K2O 2.6 Wt. %

TiO2 0.05 Wt. %

P2O5 0.03 Wt. %

Cr 112 ppm

Ba 285 ppm

S 341 ppm

Cl 88 ppm
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they do improve stiffness, strength and toughness.In addition, they have
the benefit of being low cost and are easier to produce and form
compared to fiber-reinforced materials [11]. However, the advantage of
using glass waste as a reinforcing material is mainly related to its low
cost, high availability and thermal stability. The problem facing the
manufacture of thermoplastic glass powder composites is their poor
compatibility with the thermoplastic polymer, and the only way to
improve the compatibility between the two phases is to select a coupling
agent that reacts with both glass powder and the polymer matrix. The
most broadly used coupling agent “compatibilizers” are maleated poly-
olefins [12,13,14]. They are typically made by grafting maleic anhydride
onto the polyolefin backbone via chemical interactions [14,15]. These
linked malleated polyolefins can form many chemical bonds at the
preparation temperature with hydroxyl groups on the glass particle
surface [12], thereby strongly coupling the glass particles to the poly-
meric matrix [16].

To date, numerous approaches have been extensively developed to
make polymeric composites sustainable [17,18], whereas interest in
waste recycling and disposable plastics has been developed in more
recent decades. This work contributes to sustainable waste material
processing with multiscale and multifunctional issues, such as low
heating energy consumption for glass waste upcycling using a simple and
reproducible approach. In addition, this research was conducted to
develop a “green polyethylene composite”, which can be achieved by
adding certain amounts of waste glass powder (WGP), up to 20 wt %, into
a recycled HDPE (RHDPE) matrix in the presence of polyethylene grafted
maleic anhydride (MAgPE) as a compatibilizer using a novel procedure,
and an investigation of the mechanical properties and thermal stability of
RHDPE/MA-g-PE/WGP composites was carried out.

2. Materials and methods

2.1. Materials

Recycled high density polyethylene (RHDPE) grade material with
density 0.953 g/cm3, commercial grade waste soda lime glass (WGP),
and maleic anhydride-grafted-polyethylene (MAgPE) compatibilizer,
also termed malleated polyethylene or polymer modifier grade (Fusa-
bond E100), were obtained from DuPont & Industrial Polymer, Geneva,
Switzerland.

2.2. Methods

HDPE waste bottles were cut and ground to powder using a rotary
mill (Model 4 Wiley Mill, 115 V, 50/60 Hz, Wiley Standard, USA)to in-
crease the homogeneity in particle size for both the glass waste powder
and the compatibilizer. Pieces of waste glass were collected from broken
house glass, washed with water and detergent, rinsed with ultrapure
water and then dried at 20 � 2 �C.The composition was then determined
using an X-ray fluorescence spectrometer (XRF) (ARL-XRF, Thermo
Fisher, USA), as illustrated in Table 1.

After drying, the glass pieces were ground using an Emax High
Energy Ball Mill (Retsch, Germany) to achieve fine powder. The size of
the fine glass powder was measured using scanning electron microscopy
(SEM, JEOL, Model JSM 6360 LA, Japan), and an N5 submicron particle
size analyzer (Beckman Coulter,USA) was used to evaluate the particle
size distribution in addition to the particle size distribution of RHDPE
and MAgPE, as shown in Figure 1.

Thermal compounding was prepared, as shown in Figure 2, using a
two roll mill machine (Prep-Mill PME 2002, Brabender CWB, USA) for 12
min at 150 �C. The sequences of material addition was such that RHDPE
was added first for 3 min and then, after starting to melt, WGPwas slowly
added for another 3 min. Finally, the compatibilizer MAgPE (its physical
properties illustrated in Table 2) was added to obtain homogeneity
between all components and then, the produced composite paste was
shaped as a sheet.
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The prepared composite samples with different ratios of the
components are illustrated in Table 3. RHDPE/MAgPE/WGP com-
posite sheet was produced with dimensions of 200 mm � 200 mm x 3
mm using a hydraulic hot press machine (Model G30H-12, Wabash
Genesis, USA) at a temperature of 160 � 10 �C and pressure of 7.355
MPa for 10 min.
2.3. Characterization

Surface morphology images were obtained by scanning electron
microscopy (SEM, JEOL, Model JSM 6360 LA, Japan). Fourier trans-
form infrared (FTIR) spectroscopy was utilized to investigate the
chemical bonding in raw materials and composite samples using an
ATR-FTIR spectrometer((Nicolet iS50, Thermo Fisher Scientific,
USA). The spectra were recorded over the wavenumber range of
400–4000 cm�1. The thermal stability of the prepared composites was
explored by thermogravimetric analysis (TGA) using a Shimadzu TGA-
50 (Japan). The analysis was conducted in a nitrogen atmosphere from
room temperature to 800 �C with a heating rate of 10 �C/min. X-ray
diffraction (XRD) was utilized to investigate the structure of RHDPE,
MAgPE and WGP by using XRD (D2 Phaser, Bruker, Germany), while
an N5 Submicron Particle Size Analyzer (Beckman Coulter, USA) was
used to evaluate the particle size distributions. The mechanical
properties were determined five times, according to ASTM D 638-14
for a type IV dumbbell shaped specimen (Figure 3), for each com-
posite sample using an Instron universal testing machine (USA) with a
load cell of 5 kN at a speed of 1 mm/min for the tensile modulus and a
speed of 5 mm/min for the tensile and elongation tests.

3. Results and discussion

3.1. Mechanical properties analysis

The mechanical properties, such as tensile strength, elongation at
break and tensile modulus, of the prepared RHDPE/WGP composites
with varying compatibilizer contents (0.5, 1.5, 2.5, 5 and 7.5 wt. %) and
four different glass reinforcement particle percentages (5, 10, 20 and 30
wt. %) were determined and illustrated in Table 4.

According to the obtained results, the tensile strength and tensile
modulus of the prepared RHDPE/WGP composite without a compati-
bilizer, as in samples S5,0, S10,0, S20,0 and S30,0,decreased with increasing
glass reinforcement particle content, as shown in Figure 4. This result
could be attributed to the imperfect adhesion between the polymer ma-
trix and glass particles [19], which led to an aggregation of glass particles
(confirmed from SEM images in the next section) and that in turn made
the reinforcement particles unable to support stress transferred from the
polymer matrix [10,20]. Furthermore, the concentration of stress at the



Figure 1. Particles size distribution of (a) WGP, (b) RHDPE and (c) MAgPE.

Figure 2. Preparation steps for RHDPE/MAgPE/WGP composite.

Table 2. Physical properties of polyethylene grafted maleic anhydride (MAgPE).

Property Value

Density 0.954 g/cm3

Melting Flow rate 2 g/10 min

Melting Point 134 �C

Vicat softening point 127 �C

Max. Processing temp. 300 �C
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particle-matrix interface region leads to weakness of the particle-matrix
interaction and consequently reduces the tensile strength [21].In other
words, the tensile strength is a function of the surface contact area and
the interfacial strength, the modulus is a function of the surface contact
area, and filler agglomeration affects both factors. However, the signifi-
cant difference of the tensile modulus of samples S0,0 and S5,0 is not very
large, but visible, while no statistically significant difference between the
modulus of samples S10,0, S20,0 and S30,0is visible.The elongation at the
breaks of all composite samples, with and without compatibilizer,
decreased by increasing the WGP content in the polymeric matrix, which
may be explained by the fact that WGP has a high rigid stiffening effect
with low deformation characteristics, which acts as a stress concentrator
that increases crack initiation, and consequently, the ductility of the
composite will be reduced [22,23].

However, to study the effect of adding MAgPE to the RHDPE/GWP
composite at a constant weight percent of WGP (5 wt%), it was noticed
that the tensile strength and modulus increased from 17.92 MPa and
645.18 MPa, respectively, for the uncompatibilized sample S5,0, to
21.8 MPa and 963.53 MPa, respectively, for sample S5,1.5, with a
compatibilizer percentage of 1.5 wt. %, while further addition of
compatibilizer decreased the tensile strength and modulus, as shown
for samples S5,2.5, S5,5 and S5,7.5. The tensile strength and tensile
modulus,as shown in Figure 5 (a and c),of all sample sets (at fixed
3

loading of WGP) were improved by adding MAgPE starting from 0.5
wt. % to achieve its maximum value at 1.5 wt. %, which may be
because the addition of MAgPE increases the interfacial adhesion be-
tween the WGP particles and the RHDPE matrix, which reduces the
interfacial stress concentration and reinforcement particle agglomer-
ation [22,24]. On the other hand, addition of MAgPE beyond 1.5 wt. %
reduced the tensile strength of all sample sets, which may be explained
by the formation of more hydrogen bonds between the hydrophilic
sites of MAgPE and the surface hydroxyl groups on WGP particles
leading to more aggregation of glass particles, subsequently
decreasing the tensile strength of the composites [25]. The best result
obtained for the tensile strength was that with 20%WGP loading using



Table 3. Samples matrix composite in weight (%).

Sample code Polymer HDPE (wt. %) Reinforcement particles WGP (wt. %) Compatibilizer MAgPE (wt. %)

S0,0* 100 0 0

S5,0 95 5 0

S5,0.5 94.5 5 0.5

S5,1.5 93.5 5 1.5

S5,2.5 92.5 5 2.5

S5,5 90 5 5

S5,7.5 87.5 5 7.5

S10,0 90s 10 0

S10,0.5 89.5 10 0.5

S10,1.5 88.5 10 1.5

S10,2.5 87.5 10 2.5

S10,5 85 10 5

S10,7.5 82.5 10 7.5

S20,0 80 20 0

S20,0.5 79.5 20 0.5

S20,1.5 78.5 20 1.5

S20,2.5 77.5 20 2.5

S20,5 75 20 5

S20,7.5 72.5 20 7.5

S30,0 70 30 0

S30,0.5 69.5 30 0.5

S30,1.5 68.5 30 1.5

S30,2.5 67.5 30 2.5

S30,5 65 30 5

S30,7.5 62.5 30 7.5

*Sxy with x which represents the amount of WGP and y which represents the amount of compatibilizer.
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1.5%MAgPE (optimum composite sample), as shown in Figure 5(b),
whereas the tensile strength for this optimum composite sample was
84.59% higher than that of the uncompatibilized composite sample
and 29.26% higher than that of the raw RHDPE. In addition, the
tensile modulus was 159.59% higher than that of the uncompatibi-
lized composite sample and 126.78% higher than that of the raw
RHDPE.

On the other hand, the elongation at break of RHDPE/MAgPE/
WGP for all sets of composites slightly decreased with the addition of
MA-g-PE up to7.5%, as shown in Figure 5(d), which may be due to the
greater glass particle-matrix interaction, reducing the mobility of
polymer chains [22,25].
Figure 3. Sample dimension ac
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3.2. Morphological properties analysis

The specimens submitted to mechanical tests were subjected to surface
morphological investigation using SEM, as shown in Figure 6, to confirm
that the best mechanical properties of the prepared sample composites
were a result of good particle matrix interfacial adhesion. Figure 6 (a and b)
shows SEM images of the raw materials used to prepare the composites,
while Figure 6(c, e, g and i) shows SEM images of the RHDPE/WGP com-
posites without the MAgPE compatibilizer, in which the glass powder
particles are highly aggregated and have a nonhomogeneous dispersion
into the polymer matrix, which indicates poor adhesion between the
polymeric phase and reinforced phase. However, by adding MAgPE, the
interfacial adhesion between the glass powder and polymer matrix was
cording to ASTM D 638-03.



Table 4. The effect of adding different wt. % of WGP with different wt. % of MAgPE on the tensile strength, tensile modulus and elongation at break of RHDPE/MAgPE/
WGP composites.

Sample HDPE WGP MAgPE Tensile strength Tensile Modulus Elongation at break

(wt. %) (wt. %) (wt. %) (MPa) (MPa) (%)

S0,0* 100 0 0 19.75 690.00 707.36

S5,0 95 5 0 17.92 645.18 69.12

S5,0.5 94.5 5 0.5 20.24 8 84.30 63.00

S5,1.5 93.5 5 1.5 21.80 963.53 58.00

S5,2.5 92.5 5 2.5 18.55 850.00 56.64

S5,5 90 5 5 15.28 776.90 54.71

S5,7.5 87.5 5 7.5 14.62 762.82 51.30

S10,0 90 10 0 15.73 604.10 36.56

S10,0.5 89.5 10 0.5 21 1213.28 28.50

S10,1.5 88.5 10 1.5 24.32 1428.57 26

S10,2.5 87.5 10 2.5 22.76 1248.85 25.17

S10,5 85 10 5 20.53 1063.87 22.33

S10,7.5 82.5 10 7.5 20.4 919.24 18.00

S20,0 80 20 0 13.83 602.79 21

S20,0.5 79.5 20 0.5 20.15 1380.97 19.16

S20,1.5 78.5 20 1.5 25.53 1564.81 16.84

S20,2.5 77.5 20 2.5 24.08 1413.49 16.20

S20,5 75 20 5 21.50 1205.20 14.72

S20,7.5 72.5 20 7.5 20.26 1160.61 13.74

S30,0 70 30 0 11.36 559.59 13.46

S30,0.5 69.5 30 0.5 19.50 980.20 10.50

S30,1.5 68.5 30 1.5 23.67 1168.34 10.23

S30,2.5 67.5 30 2.5 22.16 1058.11 10.17

S30,5 65 30 5 19.58 803.40 9.82

S30,7.5 62.5 30 7.5 17.25 686.47 10.00

*Sxy with x an index which represents the amount of WGP and y an index which represents the amount of compatibilizer.
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Figure 4. The effect of WGP content on tensile strength, tensile modulus and elongation at break of RHDPE/WGP composites without compatibilizer.
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improved, as shown in Figure 6(d, f, h and j), which has an important role
in the determination of composite properties [26]. The reduction in glass
particle aggregation is due to an interaction between the surface hydroxyl
groups of glass and the carbonyl groups of MAgPE attached to the poly-
meric matrix, which enhances the mechanical properties of the composites
[24,27,28]. In comparison with the different concentrations of the rein-
forced waste glass powder, the size of aggregation increased with
increasing glass phase content in the polymeric matrix phase, which agrees
with previous studies [29,30,31].

3.3. Structural properties analysis

The characteristic FTIR spectra of the raw components are presented
in Figure 7 (a) and Tables 5, 6, and 7. Polymer-compatibilizer-
reinforcement particle interactions were investigated and are repre-
sented in Figure 7 (b), which shows the FTIR spectra of the prepared
composite samples with 5, 10, 20 and 30 wt % WGP and 1.5 wt %
MAgPE.

The FTIR spectrum of the prepared RHDPE/MAgPE/WGP composites
showed a band of C¼O stretching vibration, which belonged to MAgPE in
the composite andwas shifted to a lower value at 1642 cm�1 compared to
that of pure MAgPE. This suggests that the C¼O and C–O–C groups of
maleic an hydride in MAgPE interacted with the hydroxyl groups on the
WGP surface by hydrogen bonding [25,32], which improved both the
compatibility between the polymer matrix and glass particles, which in
turn increased the degree of dispersion and interfacial adhesion.
Furthermore, it was observed that the Si–O–Si band at 1050 – 1150cm-1

for WGP was replaced by a Si–O–C band at 800–1150 cm�1 in the pre-
pared composites, and this band became broader and stronger by
increasing the WGP content, which confirmed that the surface group of
silica changed from Si–OH to Si–O–C and that the compatibilizer was
tightened chemically to the WGP surface.
6

Figure 7 (c) shows a suggested schematic diagram of the interaction
that occurred between the RHDPE/MAgPE/WGP functional groups and
the formation of the composite. XRD measurements were conducted to
study the structure of the RHDPE, WGP and MAgPE raw materials in
addition to the RHDPE/MAgPE/WGP composite at the optimum mixture
(78.5 wt.% RHDPE,1.5 wt.% MAgPE and 20 wt.% WGP) before and after
the thermal milling consolidation process, as shown in Figure 7 (d). As
shown, the two characteristic diffraction peaks of HDPE at 2θ ¼ 21.4�

and 23.9� corresponding to the 110 and 200 orthorhombic crystalline
planes [33], respectively, were observed in RHDPE, suggesting that the
crystal structure of RHDPE remained unchanged after cold milling.
Similarly, the amorphous structure of WGP and semicrystalline structure
of MAgPE were not affected by milling. However, from the XRD pattern
of the blended mixture before thermal milling, a clear decrease could be
seen in the intensity of the two characteristic peaks of RHDPE at the same
angles due to the addition of 20 wt.% amorphous WGP. On the other
hand, the XRD pattern of the blended mixture after thermal milling
showed a further decrease in the intensity of the two characteristic peaks;
in addition, they became broader, which may be due to the heteroge-
neous intercalation of WG nanoparticles between the interlayer spacing
of RHDPE [34,35] and chemical interaction between composite compo-
nents [25,32].

3.4. Thermal properties analysis

The thermal stability behavior of the RHDPE/MAgPE/WGP compos-
ites with the optimum compatibilizer concentration of 1.5 wt.% MAgPE
and with different loading contents of WGP compared to that of raw
RHDPE is shown in Figure 8(a). The thermal degradation of all composite
samples showed a single degradation step similar to raw RHDPE, and the
thermal stability of RHDPE was increased by adding WGP and MAgPE,
whereas MAgPE enhanced the interaction between the surface of glass



Figure 6. SEM images of (a) raw RHDPE, (b) raw WGP, RHDPE/WGP composites without compatibilizer (c) 5 wt%, (e) 10 wt%, (g) 20 wt% and (i) 30 wt% WGP
content and RHDPE/MAgPE/WGP composites with 1.5 wt.% MAgPE as a compatibilizer where (d) 5 wt%, (f) 10 wt%, (h) 20 wt% and (j) 30 wt% WGP content.
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particles and RHDPE to create a shield that physically protected the
composite from the effects of heat. The thermal stability increases line-
arly with increasing glass powder content, which may be because the
specific heat of glass is much less than that of RHDPE and the presence of
glass powder with MAgPE enhances the thermal stability of RHDPE and
decreases its volatilization [25]because the composite preferentially
absorbs heat energy.
7

The temperatures obtained at mass losses of 10%, 20%, 50% and 70%
are shown in Figure 8(b) and their values are illustrated in Table 8. These
results show a shift in the degradation temperatures with increasingWGP
content from 5 wt. % to 30 wt. % and that the residue left after com-
bustion at 800 �C for the composite that contains 30 wt. % WGP is
29.87%, which is clearly an indication for the complete degradation of
MAgPE and RHDPE at this temperature and that the residue is mainly
related to WGP.
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Table 5. IR peak assignments for HDPE.

Wavenumber (cm�1) Assignments

2919 (C–H) asymmetric stretching vibration

2847 (C–H) symmetric stretching vibration

1472 (-CH2) bending vibrations

1462 (-CH3) symmetric vibration

730 (-CH2) rocking vibrations*

719 (-CH2)rocking vibrations

* due to polyethylene crystallinity.

Table 6. IR peak assignments of WGP.

Wavenumber(cm�1) Assignments

3340 (-OH) hydroxyl group stretching vibration

1643 (-OH) hydroxyl group bending vibration

1450 (O–C–O) asymmetric stretching vibration

1050 (Si–O) asymmetric stretching

453 (O–Si–O) bending vibrations
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3.5. Recyclability

Developing recyclable thermoplastic composites is required to in-
crease the lifetime of the existing polymer materials in addition to mini-
mizing polymer waste, which is ever increasing. To evaluate the
recyclability and reprocessability, which are important factors to estimate
the cost effectiveness of the prepared RHDPE/MAgPE/WGP composite
with an optimum content of WGP (20 wt. %) and MAgPE(1.5 wt.%),
samples that experienced mechanical fracture during testing were
Table 7. IR peak assignments for MAgPE.

Wavenumber(cm�1) Assignments

2915 (C–H2) asymmetric stretching vibration

2848 (C–H2) symmetric stretching vibration

1786 (C¼O) stretching vibration of maleic anhydride

1706 (C¼O) stretching vibration of maleic anhydride

1468 (C–H2) bending vibrations

1213 (C–O) stretching vibration band

1028 (C–H2) twisting

933 (C–H2) wagging

718 (C–H2) rocking
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Figure 8. (a) Thermal decomposition and (b) thermal stability of RHDPE/MAgPE/WGP composites with different glass loading content at fixed 1.5 wt.% of MAgPE
depicted by TGA analysis.
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collected, cut into small strips and then remelted using a two roll mill
machine for 12 min at 150 �C. The produced composite paste was
reshaped as a sheet with dimensions of 200mm� 200mmx 3mmusing a
hydraulic hot pressmachine at 160 �C and pressure equal to 30 tons for 10
min. The tensile strength, elongation at break and tensile modulus were
9

measured for dumbbell shaped specimens of each reprocessed sample.
Afterfive reprocessing cycles, it was found that the variations in the tested
mechanical properties were quite small after each cycle, as shown in
Figure 9. For instance, the differences between the first cycle and the last
cycle were quite small (1.05MPa, 1.5MPa and 0.98% for tensile strength,
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Figure 9. Recyclability of RHDPE/1.5% MAgPE/20% WGP composite for 5 cycles and its effect on tensile strength, tensile modulus and elongation at break as relative
relation to first cycle.

Table 8. The degradation temperatures T10%, T20%, T50% and T70% of RHDPE/MAgPE/WGP composites with different glass loading content and 1.5 wt.% of MAgPE
depicted by TGA analysis.

Sample Code T10% �C T20% �C T50 %
�C T70 %

�C Residue wt.%

S0,0 444.38 460.92 480.8 487.76 0.35

S5,1.5 447.35 461.56 480.23 488.67 4.02

S10,1.5 447.41 463.99 481.21 489.71 9.11

S20,1.5 461.09 472.74 488.82 510.49 19.27

S30,1.5 467.04 474.19 490.7 571.25 29.87

W.A. Sadik et al. Heliyon 7 (2021) e06627
tensile modulus and elongation at break, respectively), which is a good
indication of RHDPE/MAgPE/WGP composite structure stability.
Furthermore, there was an extremely small increase in the values of the
measuredmechanical properties for the second recycling cycle. However,
the oddity in the second cycle may be due to the components of the
composite having a homogeneous distribution due to remixing, which
slightly enhanced the mechanical properties, but due to stress accumu-
lation, the mechanical properties then decreased in the following cycles.

4. Conclusion

Novel, low-cost, and fully recyclable thermoplastic composites
were produced using a simple and environmentally conscientious
approach by reinforcing recycled high-density polyethylene waste
with waste glass powder in the presence of maleic anhydride-grafted
polyethylene as a compatibilizer. The mechanical evaluation showed
that the tensile strength, tensile modulus and elongation at break of
the prepared composites were affected by the reinforcement glass
powder and compatibilizer content, whereas the higher the load was,
the higher the modulus up to the optimum condition at 20 wt. %
waste glass powder and 1.5 wt. % MAgPE, while the evaluation of
the thermal properties showed high thermal stability for the opti-
mum composite. Recycling of the prepared composite did not affect
10
its mechanical and thermal properties. Therefore, this method holds
great promise to replace high-cost polymer-based composite auto-
motive components to achieve more cost-competitive materials for
the future.
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