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Online marketing refers to the practices of promoting a company’s brand to its potential customers. It helps the companies to find
new venues and trade worldwide. Numerous online media such as Facebook, YouTube, Twitter, and Instagram are available for
marketing to promote and sell a company’s product. However, in this study, we use Instagram as a marketing medium to see its
impact on sales. To carry out the computational process, the approach of linear regression modeling is adopted. Certain statistical
tests are implemented to check the significance of Instagram as a marketing tool. Furthermore, a new statistical model, namely a
new generalized inverse Weibull distribution, is introduced.,is model is obtained using the inverse Weibull model with the new
generalized family approach. Certain mathematical properties of the new generalized inverse Weibull model such as moments,
order statistics, and incomplete moments are derived. A complete mathematical treatment of the heavy-tailed characteristics of
the new generalized inverse Weibull distribution is also provided. Different estimation methods are discussed to obtain the
estimators of the new model. Finally, the applicability of the new generalized inverse Weibull model is established via analyzing
Instagram advertising data. ,e comparison of the new distribution is made with two other models. Based on seven analytical
tools, it is observed that the new distribution is a better model to deal with data in the business, finance, and management sectors.

1. Introduction

Advertising means a way of business communication be-
tween the company/business firm and its present and
prospective audience. It provides information about the
business firms, their brand qualities, price, place of avail-
ability, etc. For a better business deal, advertisement is es-
sential for both the company and the customers. However, it
is more fruitful for the company to reach maximum cus-
tomers [1].

Advertising is an effective and useful step of marketing to
promote a specific brand. Marketing is a collection of the
process that involves designing the brand, creation, research,

and investigation about how to promote the products/ser-
vices to the potential and target and customers [2]. An
effective marketing program, also known as a marketing
plan or marketing strategy, helps to define the price and
quality of the product. Several methods have been suggested
for marketing a company’s brand. However, marketing
through online media is very fruitful to reach the maximum
audience [3].

Numerous online platforms such as YouTube, Insta-
gram, Facebook, Pinterest, Twitter, and Flickr are available
for online marketing; see Dwivedi et al. (2015). Among the
available online platforms for marketing, Instagram is one of
the most beneficial tools for online marketing [4].
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A decade ago, Instagram was founded by Michel Kriger
(a software engineer) and Kevin Systrom (a former Google
employee). In April 2012, Facebook bought Instagram for $1
billion. It is one of the most influential and biggest social
media platforms (SMPs). In June 2018, this platform had hit
one thousand million monthly active users [5]. Due to a
large number of active users, it is a very useful platform for
online marketing; see Salleh et al. [6] and Yu et al. [7].

In this work, we test the significance of online media on
the sales of certain products. For this activity, we choose the
Instagrammedium among the well-known online platforms.
We use a simple linear regression (SLR) model to check the
significance of the Instagram medium. Two well-known
statistical tests such as the (i) t-test and (ii) F-test, along with
the correlation test (CT) are considered to perform the
regression analysis (RA).

In addition to the RA, a new flexible statistical distri-
bution (SD) is introduced to model the Instagram sales data.
,e proposed SD may be called a new generalized inverse
Weibull (NIG-Weibull) model. ,e NGI-Weibull is very
flexible and offers a close fit to Instagram sales data.

2. Regression Analysis

Within this section, we provide the RA to see the impact and
usefulness of advertising on sales using the Instagram me-
dium. Furthermore, we apply the t-test statistic and F-test
statistic to test a hypothesis about the significant role of
Instagram advertising in the business sector.

2.1. Simple Linear Regression Model. ,e SLR model to
describe the relationship between Instagram advertising and
sales has the following form:

Y � λ0 + λ1 Instagram + ε. (1)

By implementing the RA technique, we observe that
λ0 � 5.1030, interpreted as the expected dollar sales (in
1000 s). So, for allocating no advertising budget on Insta-
gram, the expected sale is 5.1030∗ 1000 � 5103.,e slope of
the regression model (regression coefficient) presented in
equation (1) is 0.193 5, indicating an increment of 193
(0.193 5 ∗ 1000) units in the sales. ,is fact shows that by
spending money on Instagram medium, the expected sale is
5.103 0 + 0.193 5 ∗ 1000�198.603, representing a sale of
$198 603. ,e estimated regression model concerning
equation (1) is given by

Y � 5.1030 + 0.1935 Instagram. (2)

A visual display (graphical illustration) of the positive
linear relationship between Instagram medium and sales is
presented in Figure 1. From the visual display in Figure 1, we
observe that spending money on Instagram advertising is
very fruitful and helps to increase the sale.

2.2. Hypothesis Testing. Here, we implement a statistical
technique called hypothesis testing to check the significance
and usefulness of Instagram advertising on sales. To perform

the hypothesis testing, we adopt the t-test and F-test. ,e
null hypothesis (NH) usually represented by (H0) and al-
ternative hypothesis (AH) usually represented by (HA) can
be formulated as (HTML translation failed) � Instagram
advertisement has no impact on sales VS HA � Instagram
advertisement has an impact on sales.

2.2.1. t-Test. To carry out the numerical computation using
the t-test, we need to find whether the estimate of the re-
gression coefficient (RC) λ1 is far from 0 or not. If the
standard error (SE) of the estimate of the RC λ1 is very small,
then we have sufficient evidence to reject NH H0. After
implementing the t-test, a summary of the numerical
analysis is reported in Table 1.

From the results in Table 1, we can see that for (i) λ0, the
value of t-statistic is 11.389 and p value is less than 2e-16, and
for (ii) λ1, the value of t-statistic is 6.259 and p value is less
than 8.01e − 09. As we see that the value of the t-statistic (for
λ0 and λ1) is far from zero and the p value is less than 0.05,
therefore, we have enough evidence against H0, and so, we
reject it.

2.2.2. F-Test. In this part, we implement the F-test to see the
impact/significance of Instagram advertising (X) on sales
(Y). A larger value of F-test statistic indicates a significant
impact of X on Y. After carrying out the computation
process, the numerical results are summarized in Table 2.
From the presented results in Table 2, we have F-test� 39.17
with p value� 8.011e − 09. From the results in Table 2, we
conclude that spending an advertising budget on the
Instagram medium will increase the sale.

,e R square (R2) is an important statistical tool for
measuring the fit of the underlined regressionmodel. It deals
with the linear relationship between the response variable
(sale in this study) and the explanatory variable (Instagram
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Figure 1: Relationship between Instagram advertising and sales.
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medium in this study). ,e value of (R2) ranges between 0
and 1. Its value near to 1 indicates the best fit, and a value
near to 0 indicates the poor fit. Corresponding to Instagram
advertising data, we observe R2 � 0.2594. So, using Insta-
gram as an advertising tool, the sale can be increased up to
25.94%.

2.3. Correlation Test. ,e CT is an important statistical
approach to evaluate the association between two variables.
In this study, we have considered two variables (Instagram
advertising and sales). To check the correlation between X
and Y, we consider the Pearson correlation test to check the
linear dependency betweenX and Y.,e Pearson correlation
coefficient (PCC) expressed by r is calculated as follows:

r �
􏽐

p
i�1 Instagarm − MInstagarm􏼐 􏼑 Sales − MSales( 􏼁

􏽐
p

i�1 Instagarm − MInstagarm􏼐 􏼑
2
Sales − MSales( 􏼁

2
, (3)

where MInstagram and MSales represent the mean values of
Instagram advertising and sales data, respectively. If the p
value is <0.05, then it shows a significant correlation between
Instagrammedium and sales. After applying the CT, we have
r � 0.5471673, showing a positive relationship (PR) between
Instagram advertising and sales; see Figure 2. Corresponding
to this test, we observe that the value of Spearman’s rank
correlation is 100 445 and the p value is 6.208e − 10. As the p
value is <0.05, therefore, we reject H0, which states that
Instagram advertisement has no significant impact on sales.

3. Statistical Modeling

After performing the RA, we move forward and introduce a
novel SD for dealing with the Instagram advertising data.
,is section is organized into six different subsections: (a)
the very first part of the section deals with the introduction
of the methodology used to obtain the new model, namely
NGI-Weibull (new generalized inverse Weibull) model, (b)
the new model is fully described in the second subsection,
(c) the heavy-tailed (HT) characteristics of the NGI-
Weibull are provided in the third subsection, (d) some
mathematical properties are obtained in the fourth sub-
section, (e) the estimators of the NGI-Weibull are obtained
in the fifth subsection, and finally (d) the sixth part of this
section is devoted to analyzing the Instagram advertising
data.

3.1. Literature and Statistical Methodology. During the last
couple of decades, serious developments have been made in
distribution theory (DT) to propose new flexible statistical
distributions or families of distributions. ,e statistical
distributions play a useful role to model data in numerous
areas such as (a) health sector, (b) finance sector, and (c)
reliability engineering. Due to the applicability of the sta-
tistical distributions in applied sectors, numerous extensions
and modifications of the existing distributions have been
proposed; see Tahir and Cordeiro [8].

In the health sector, Wahed et al. [9] proposed a new
generalized (NG) form of the Weibull distribution (WD) for
modeling breast cancer data. Zhu et al. [10] used the WD for
modeling the survival times of patients with gastric cancer.
Jan et al. [11] applied the transmuted exponentiated IW
(TEIW) distribution of the survival times of patients having
bladder cancer. Yoosefi et al. [12] used the exponentiated
Weibull (EW) distribution formodeling the survival times of
colorectal cancer patients. Mohammed et al. [13] studied a
new modified (NM) form of the WD and analyzed the
bladder cancer data.

In the finance sector, Nadarajah and Kotz [14] applied
the modified Weibull (MW) for asset returns. Bakar et al.

Table 1: Regression analysis using Instagram advertising and sales data.

Adv. media Coefficients Esti. values Standard
error t-statistic Pr (> |t|)

YouTube λ0 5.1030 0.44807 11.389 2e − 16
λ1 0.1935 0.03092 6.259 8.01e − 09

Table 2: Regression analysis using Instagram advertising medium.

Adv. media R2 Adjusted R2 F-statistic p value Degree of
freedom

YouTube 0.2662 0.2594 39.17 8.011e-09 1 and 108
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Figure 2: Visual sketching of the numerical results related to CT.
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[15] used the composite models for modeling loss data. Bhati
and Ravi [16] applied the generalized log-Moyal (GLM)
model to the Norwegian fire insurance loss data. Punzo and
Bagnato [17] applied the Laplace scale mixtures (LSMs) to
data related to cryptocurrencies.

In reliability engineering, Sarhan and Zaindin [18] used
themodifiedWeibull (MW) distribution tomodel the lifetime
of electronic devices. Almalki and Yuan [19] introduced a new
modified Weibull (NMW) model for dealing with reliability
data. Singh [20] proposed the additive Perks–Weibull (APW)
distribution form modeling the Arset data. Okasha et al. [21]
analyzed the failure time data by introducing the extended
inverse Weibull (EIW) distribution.

As per the studies of Cooray and Ananda [22], Gebi-
zlioglu et al. [23], Scollnik and Sun [24], Bernardi et al. [25],
Adcock et al. [26], Miljkovic and Grun [27], Bhati and Ravi
[16], and Punzo [28], the HT distributions are very com-
petent for dealing with the data in business, finance,
management, and other connected sectors.

According to the findings of Beirlant et al. [29], a sta-
tistical model is said to possess the HT characteristics, if its
survival function (SF) T(z;Φ) � 1 − T(z;Φ) satisfies

lim
z⟶∞

� exp mz{ }T(z;Φ) �∞, (4)

where m> 0.
An important property of the HT models is the regular

variational property (ReVaPr); see Resnick [30]. A model is
termed as a regular varying (ReVa) model, if it obeys

lim
z⟶∞

1 − T(mz;Φ)

1 − T(z;Φ)
� m

− a
, (5)

where a ∈ 0,∞{ }.
In this work, we move a step further and contribute a

new HT model to the literature of DT. Consider that the
distribution function (DF) T(z;Φ) of the inverse Weibull
(IW) model is given by

T(z;Φ) � e
− λ2/zλ1 , z, λ1, λ2 > 0, (6)

with probability density function (PDF) t(z;Φ) given by

t(z;Φ) �
λ1λ2
z
λ1+1e

− λ2/zλ1 , z, λ1, λ2 > 0. (7)

Recently, Wang et al. (2021) proposed a new generalized
family of distributions via the DF K(z; λ,ϕ), which is given
by

K(z; λ,Φ) � 1 −
(T(z;Φ))

λ

e
T(z;Φ)

, z ∈ R, λ> 0,Φ ∈ R, (8)

where T(z;Φ) � 1 − T(z;Φ). ,e PDF k(z; λ,ϕ) associated
with equation (8) is as follows:

k(z; λ,Φ) � t(z;Φ)[1 − T(z;Φ)]
λ− 1

·
[(1 + λ) − T(z;Φ)]

e
T(z;Φ)

, z ∈ R,

(9)

where t(z;Φ) � (d/dz)T(z;Φ).

We combine the DF of the IW model provided in
equation (6) with the DF expressed in equation (8) to
generate and study a new model, namely a NGI-Weibull
model. ,e HT characteristics and behaviors of the NGI-
Weibull model are obtained. ,e parameters of the NG-
Weibull are estimated via different estimation approaches.
Finally, after carrying out the mathematical work, real-life
data are analyzed.

3.2. A NGI-Weibull Distribution. Suppose Z follows the
three-parameter NGI-Weibull model with two shape pa-
rameters (λ, λ1 > 0) and one scale parameter (λ2 > 0), then
its DF K(z; λ,Φ) is given by

K(z; λ,Φ) � 1 −
1 − e

− λ2/zλ1􏼒 􏼓
λ

e
e− λ2/z

λ1
, z> 0, (10)

with the corresponding PDF k(z; λ,Φ) given by

k(z; λ,Φ) �
λ1λ2
z
λ1+1e

− λ2/zλ1 1 − e
− λ2/zλ1􏼔 􏼕

λ− 1

·
(1 + λ) − e

− λ2/zλ1􏼔 􏼕

e
e− λ2/z

λ1
, z> 0.

(11)

To see the behavior of the NGI-Weibull model, different
plots of k(z; λ,Φ) are obtained in Figure 3. ,e five different
plots of k(z; λ,Φ) in Figure 3 are sketched for (a) λ1 �

1.2, λ2 � 0.5, λ � 0.4 (blue line), (b) λ1 � 1.2, λ2 � 1, λ � 1.2
(magenta line), (c) λ1 � 1.2, λ2 � 1.8, λ � 1.6 (grey line), (d)
λ1 � 1.2, λ2 � 2.8, λ � 2.2 (green line), and (e) λ1 � 1.2, λ2 �

4.2, λ � 2.8 (red line). From Figure 3, it is obvious that as the
values of λ and λ2 increase, the NGI-Weibull captures the
HT characteristics.

3.3. ?e HT Characteristics. Here, we use a mathematical
approach to show that the NGI-Weibull model possesses the
HT characteristics.

3.3.1. Regular Variational Property. According to Seneta
[31], in terms of SF [1 − T(z;Φ)], we have the following.

Theorem 1. If [1 − T(z;Φ)] is the SF of the RVD, then [1 −

K(z; λ,Φ)] is a RVD.

Proof. Assume limz⟶∞([1 − T(mz;Φ)]/[1 − T(z;Φ)]) �

u(m) is finite but nonzero for every m> 0. Incorporating
equation (8), we get

lim
z⟶∞

1 − K(mz; λ,Φ)

1 − K(z; λ,Φ)
� lim

z⟶∞

[1 − T(mz;Φ)]
λ

[1 − T(z;Φ)]
λ · e

T(z;Φ)/eT(mz;Φ)
,

lim
z⟶∞

1 − K(mz; λ,Φ)

1 − K(z; λ,Φ)
� lim

z⟶∞

[1 − T(mz;Φ)]

[1 − T(z;Φ)]
􏼠 􏼡

λ

· e
T(z;Φ)/eT(mz;Φ)

.

(12)

Using equation (6) in equation (12), we get
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lim
z⟶∞

1 − K(mz; λ,Φ)

1 − K(z; λ,Φ)
� lim

z⟶∞

[1 − T(mz;Φ)]

[1 − T(z;Φ)]
􏼠 􏼡

λ

· e
e− λ2/z

λ1
/ee− λ2/(mz)λ1

,

lim
z⟶∞

1 − K(mz; λ,Φ)

1 − K(z; λ,Φ)
� lim

z⟶∞

[1 − T(mz;Φ)]

[1 − T(z;Φ)]
􏼠 􏼡

λ

· e
e− λ2/∞

λ1
/ee− λ2/(m.∞)λ1

,

lim
z⟶∞

1 − K(mz; λ,Φ)

1 − K(z; λ,Φ)
� lim

z⟶∞

[1 − T(mz;Φ)]

[1 − T(z;Φ)]
􏼠 􏼡

λ

· e
e− λ2/∞ /ee− λ2/∞

,

lim
z⟶∞

1 − K(mz; λ,Φ)

1 − K(z; λ,Φ)
� lim

z⟶∞

[1 − T(mz;Φ)]

[1 − T(z;Φ)]
􏼠 􏼡

λ

· e
e0 /ee0

,

lim
z⟶∞

1 − K(mz; λ,Φ)

1 − K(z; λ,Φ)
� lim

z⟶∞

[1 − T(mz;Φ)]

[1 − T(z;Φ)]
􏼠 􏼡

λ

,

lim
z⟶∞

1 − K(mz; λ,Φ)

1 − K(z; λ,Φ)
� (u(m))

/
,

(13)

where (u(m))/ � limz⟶∞([1 − T(mz;Φ)]/[1 − T(z;

Φ)])λ.
,en, equation (13) is nonzero for every m> 0. ,ere-

fore, [1 − K(z; λ,Φ)] is the SF of the RVD. □

3.3.2. A Supportive Example of RVP. Consider Z has a
power-law behavior, and then, according to the definition of
the HT property, we have

1 − T(z;Φ) � P(Z> z) ∼ z
− α

,

or

[1 − T(z;Φ)]
λ

� P(Z> z) ∼ z
− α

.

(14)

Using the results of Karamata’s characterization theorem
[31], we can write 1 − K(z; λ,Φ) as follows:

1 − K(z; λ,Φ) � z
− α

L(z), (15)
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Figure 3: Different plots of k(z; λ,Φ).
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where L(z) represents the slowly varying function (SVF).
From (8), we have

1 − K(z; λ,Φ) �
[1 − T(z;Φ])

λ

e
T(z;Φ)

,

1 − K(z; λ,Φ) �
z

− α

e
T(z;Φ)

,

1 − K(z; λ,Φ) �
z

− α

e
T(z;Φ)

,

1 − K(z; λ,Φ) � z
− α

L(z),

(16)

where L(z) � (1/eT(z;Φ)). So, if we are able to show that L(z)

is a SVF, then the variational result obtained in (16) is true.
To prove that L(z) is SVF, we have shown that

lim
z⟶∞

L(az)

L(z)
� 1. (17)

So,

L(az)

L(z)
�

e
T(z;Φ)

e
T(az;Φ)

,

L(az)

L(z)
�

e
e− λ2/z

λ1

e
e− λ2/a

λ1 zλ1
.

(18)

Applying the limit, we get

lim
z⟶∞

L(az)

L(z)
�

e
e− λ2/∞

λ1

e
e− λ2/a

λ1∞λ1
,

lim
z⟶∞

L(az)

L(z)
�

e
e0

e
e0

,

lim
z⟶∞

�
L(az)

L(z)
� 1.

(19)

3.4. Mathematical Properties. Here, we derive some math-
ematical properties of the NGI-Weibull distribution.

3.4.1. Asymptotics. Note that 1 − (1 − x)a ∼ ax as x⟶ 0,
by taking x � e− λ2 z− λ1 , the asymptotics of (10) and (11) as
z⟶ 0 are given by

K(z) ∼ λe
− λ2z− λ1

,

k(z) ∼ λλ1λ2z
− λ1− 1

e
− λ2z− λ1

(20)

respectively.
Note that 1 − e− x ∼ x as x ∼ 0, by taking x � e− λ2 z− λ1 , the

asymptotics of (10) and (11) as z⟶∞ are given by

1 − K(z) ∼ λλ2e
z− λλ1

,

k(z) ∼ λλ1λ
λ
2e

z− λλ1 − 1
(21)

respectively.

3.4.2. Moments and Incomplete Moments. Let Z follows the
NGI-Weibull with parameters (λ, λ1, λ2), and then, the nth

moment of Z is given by

E Z
n

( 􏼁 � 􏽚
∞

0
z

n
k(z)dz. (22)

After using generalized binomial expansion and the
Taylor expansion, we can obtain

E Z
n

( 􏼁 � 􏽘
∞

i,j�0

(− 1)
i+j

α − 1

i

⎛⎝ ⎞⎠

j!
(λ + 1)λ1λ2 􏽚

∞

0
z

n− λ1− 1
e

− λ2(i+j+1)z− λ1 dz

+ 􏽘
∞

i,j�0

(− 1)
i+j

α − 1

i

⎛⎝ ⎞⎠

j!
(λ − 1)λ1λ2 􏽚

∞

0
z

n− λ1− 1
e

− λ2(i+j+2)z− λ1 dz,

E Z
n

( 􏼁 � 􏽘
∞

i,j�0

(− 1)
i+j

α − 1

i

⎛⎝ ⎞⎠

j!
(λ + 1)λ1λ2

Γ (1 − n)/λ1( 􏼁

λ2(i + j + 1)( 􏼁
(1− n)/λ1

+ 􏽘
∞

i,j�0

(− 1)
i+j

α − 1

i

⎛⎝ ⎞⎠

j!
(λ − 1)λ1λ2

Γ (1 − n)/λ1( 􏼁

λ2(i + j + 2)( 􏼁
(1− n)/λ1

.

(23)

6 Computational Intelligence and Neuroscience



For incomplete moments, we have

E Z
n

| Z≤ z( 􏼁 �
1

K(z)
􏽚

z

0
t
n
k(t)dt. (24)

After using generalized binomial expansion and the
Taylor expansion, we obtain

E Z
n

| Z≤ z( 􏼁 �
1

K(z)
􏽘

∞

i,j�0

(− 1)
i+j

α − 1

i
􏼠 􏼡

j!
(λ + 1)λ1λ2 􏽚

z

0
t
n− λ1− 1

e
− λ2(i+j+1)t− λ1 dt

+
1

K(z)
􏽘

∞

i,j�0

(− 1)
i+j

α − 1

i
􏼠 􏼡

j!
(λ − 1)λ1λ2 􏽚

z

0
t
n− λ1− 1

e
− λ2(i+j+2)t− λ1 dt.

(25)

Using t− λ1 � u transformation, we obtain

E Z
n

| Z≤ z( 􏼁 �
1

K(z)
� 􏽘
∞

i,j�0

(− 1)
i+j

α − 1

i
⎛⎝ ⎞⎠

j!
(λ + 1)λ1λ2

􏽒
∞
λ2(i+j+1)z− λ1 u

(1− n)/λ1( )− 1
e

− udu

λ2(i + j + 1)( 􏼁
(1− n)/λ1

+
1

K(z)
􏽘

∞

i,j�0

(− 1)
i+j

α − 1

i
⎛⎝ ⎞⎠

j!
(λ − 1)λ1λ2

􏽒
∞
λ2(i+j+2)z− λ1 u

(1− n)/λ1( )− 1
e

− u du

λ2(i + j + 2)( 􏼁
(1− n)/λ1

,

E Z
n

| Z≤ z( 􏼁 �
1

K(z)
􏽘

∞

i,j�0

(− 1)
i+j

α − 1

i
⎛⎝ ⎞⎠

j!
(λ + 1)λ1λ2

Γ (1 − n)/λ1, λ2(i + j + 1)z
− λ1􏼐 􏼑

λ2(i + j + 1)( 􏼁
(1− n)/λ1

+
1

K(z)
􏽘

∞

i,j�0

(− 1)
i+j

α − 1

i
⎛⎝ ⎞⎠

j!
(λ − 1)λ1λ2

Γ (1 − n)/λ1, λ2(i + j + 2)z
− λ1􏼐 􏼑

λ2(i + j + 2)( 􏼁
(1− n)/λ1

,

(26)

where Γ(s, z) � 􏽒
∞
z

us− 1e− u du is the upper incomplete
gamma function.

3.4.3. Order Statistics. Let Z1, Z2, . . . , Zn be random vari-
ables with size n from (10); then, the DF of ith order statistics
(OS) is given by

Ki: n(z) � 􏽘
n

l�i

n

l
􏼠 􏼡K(z)

l
(1 − K(z))

n− l
,

Ki: n(z) � 􏽘
n

l�i

􏽘

l

j�0
(− 1)

j
l

j
􏼠 􏼡

n

l
􏼠 􏼡[1 − K(z)]

n− l+j
,

or

Ki: n(z) � 􏽘
n

l�i

􏽘

l

j�0
(− 1)

j
l

j
􏼠 􏼡

n

l
􏼠 􏼡e

− (n− l+j)e− λ2z− λ1
1 − e

− λ2z− λ1
􏼔 􏼕

λ(n− l+j)

.

(27)

By differentiating equation (27), we get the PDF of the ith

OS as given by
ki: n(z) �

d

dz
Ki: n(z). (28)
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3.5. Estimation. Here, we adopt different estimation
methods to derive the estimators (􏽢λ, 􏽢λ1, 􏽢λ2) of the param-
eters (λ, λ1, λ2) of the NGI-Weibull distribution.

3.5.1. Maximum-Likelihood Estimation. Consider a random
sample (RS) as Z1, Z2, . . . , Zp taken from k(z; λ,Φ). Cor-
responding to k(z; λ,Φ), the log-likelihood (LL) function
Δ(λ,Φ) is given by

Δ(λ,Φ) � p log λ1 + p log λ2 − λ1 + 1( 􏼁 􏽘

p

v�1
log zv − λ2 􏽘 z

− λ1
v − 􏽘

p

v�1
e

− λ2z
− λ1
v

+ λ1 − 1( 􏼁 􏽘

p

v�1
log 1 − e

− λ2z
− λ1
v􏼔 􏼕 + 􏽘

p

v�1
log (1 + λ) − e

− λ2z
− λ1
v􏼔 􏼕.

(29)

With respect to λ, λ2, and λ2, the partial derivatives of
Δ(λ,Φ) are given by

z

zλ
Δ(λ,Φ) � 􏽘

p

v�1

1

(1 + λ) − e
− λ2z

− λ1
v􏼔 􏼕

,

z

zλ1
Δ(λ,Φ) �

p

λ1
− 􏽘

p

v�1
log zv + λ2 􏽘 log zv( 􏼁z

− λ1
v − 􏽘

p

v�1

log λ2z
− λ1
v􏼐 􏼑λ2z

− λ1
v e

− λ2z
− λ1
v

(1 + λ) − e
− λ2z

− λ1
v􏼔 􏼕

+ 􏽘

p

v�1
log 1 − e

− λ2z
− λ1
v􏼔 􏼕 −

log λ2z
− λ1
v􏼐 􏼑 λ1 − 1( 􏼁λ2z

− λ1
v e

− λ2z
− λ1
v

1 − e
− λ2z

− λ1
v􏼔 􏼕

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

− 􏽘

p

v�1
log λ2z

− λ1
v􏼐 􏼑 λ2z

− λ1
v􏼐 􏼑e

− λ2z
− λ1
v ,

z

zλ2
Δ(λ,Φ) �

p

λ2
− 􏽘 z

− λ1
v + 􏽘

p

v�1
z

− λ1
v e

− λ2z
− λ1
v + λ1 − 1( 􏼁 􏽘

p

v�1

z
− λ1
v e

− λ2z
− λ1
v

1 − e
− λ2z

− λ1
v􏼔 􏼕

+ 􏽘

p

v�1

z
− λ1
v e

− λ2z
− λ1
v

(1 + λ) − e
− λ2z

− λ1
v􏼔 􏼕

,

(30)

respectively.
On solving (z/zλ)Δ(λ,Φ) � 0, (z/zλ1)Δ(λ,Φ) � 0, and

(z/zλ2)Δ(λ,Φ) � 0, we get the MLEs (􏽢λ, 􏽢λ1, 􏽢λ2) of the pa-
rameters (λ, λ1, λ2).

3.5.2. ?e Least-Squares and Weighted Least-Squares Esti-
mation Methods. Here, we derive the least-squares esti-
mators (LSEs) and weighted least-squares estimators
(WLSEs) of the NGI-Weibull. Let si; i � 1, 2, . . . , n􏼈 􏼉 be a RS
and si: n; i � 1, 2, . . . , n􏼈 􏼉 be the associated order statistics,
and K(.) is the DF of NGI-Weibull. ,en, the LSEs of the
NGI-Weibull are obtained by solving equations:

zSLSE λ, λ1, λ2( 􏼁

zλ
� 0,

zSLSE λ, λ1, λ2( 􏼁

zλ1
� 0,

zSLSE λ, λ1, λ2( 􏼁

zλ2
� 0,

(31)

where

SLSE λ, λ1, λ2( 􏼁 � 􏽘
n

i�1
KNGI− Weibul si: n; λ, λ1, λ2( 􏼁 −

i

n + 1
􏼒 􏼓

2
.

(32)
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,eWLSEs of the NGI-Weibull distribution are obtained by
solving equations:

zSWLSE λ, λ1, λ2( 􏼁

zλ
� 0,

zSWLSE λ, λ1, λ2( 􏼁

zλ1
� 0,

zSWLSE λ, λ1, λ2( 􏼁

zλ2
� 0,

(33)

where

SWLSE λ, λ1, λ2( 􏼁 � 􏽘
n

i�1

(n + 1)
2
(n + 2)

i(n − i + 1)

· KNGI− Weibul si: n; λ, λ1, λ2( 􏼁 −
i

n + 1
􏼒 􏼓

2
.

(34)

3.5.3. Cramér–von Mises Estimator. Here, we obtain the
Cramér–von Mises estimators (CMEs) of the NGI-Weibull
distribution. ,e CMEs are obtained by minimizing the
following functions:

zSCME λ, λ1, λ2( 􏼁

zλ
� 0,

zSCME λ, λ1, λ2( 􏼁

zλ1
� 0,

zSCME λ, λ1, λ2( 􏼁

zλ2
� 0,

(35)

where

SCME λ, λ1, λ2( 􏼁 �
1
12n

+ 􏽘
n

i�1

· KNGI− Weibul si: n; λ, λ1, λ2( 􏼁 −
2i − 1
2n

􏼒 􏼓
2
.

(36)

3.6. Application to Sales Data. ,is subsection deals with the
implementation of the NGI-Weibull distribution to Insta-
gram advertising data given by 11.451, 6.357, 5.186, 7.363,
6.765, 3.683, 7.343, 5.190, 3.009, 6.398, 5.178, 7.638, 6.240,
5.643, 8.846, 11.673, 5.243, 10.130, 6.725, 8.010, 7.610, 4.479,
17.753, 9.932, 5.634, 6.151, 7.989, 6.826, 10.195, 6.006,
11.265, 7.004, 5.477, 8.616, 5.029, 6.600, 13.140, 6.733, 5.594,
11.294, 7.121, 9.427, 10.728, 7.218, 4.940, 6.648, 4.479, 11.811,
7.945, 4.079, 6.814, 5.388, 9.145, 11.609, 11.661, 12.514, 3.671,
7.452, 9.028, 9.157, 4.580, 13.188, 9.028, 7.977, 10.070, 5.796,
5.614, 6.196, 11.011, 8.038, 9.472, 6.547, 3.546, 4.839, 9.068,
5.566, 2.415, 5.388, 3.473, 4.625, 6.770, 7.367, 4.645, 5.647,
9.383, 7.892, 7.137, 8.575, 7.630, 8.922, 6.018, 3.732, 9.912,
11.015, 5.691, 8.620, 6.321, 7.989, 12.614, 8.967, 6.248, 12.017,

7.767, 7.569, 10.441, 9.730, 3.821, 5.117, 2.968, and 10.090.
Corresponding to these data, the basic measures (BMs) are
as follows: minimum� 2.415, 1st quartile� 5.599, 3rd
quartile� 9.154, range� 15.338, median� 7.178, mean�

7.539, variance� 7.311, standard deviation� 2.704,
skewness� 0.669, kurtosis� 3.662, and maximum� 17.753.

,e NGI-Weibull is applied to Instagram advertising
data to establish its flexibility and best fitting capability. For
this practical demonstration, the results of the NGI-Weibull
model are compared with the parent model (IW distribu-
tion) and exponentiated Lomax (Exp-Lomax) distributions.

Singh et al. [32] showed that the IW model fits the fi-
nancial data sets closely than the other well-known com-
petitors. ,e Exp-Lomax is a flexible modification of the
Lomax model, which was basically introduced for dealing
with data in the finance sector. ,e survival functions (SFs)
of the competitive distributions are given by

(i) ,e IW model

S(z;Φ) � 1 − e
− λ2/zλ1 , z, λ1, λ2 > 0. (37)

(ii) ,e Exp-Lomax model

S(z; β,Φ) � 1 − 1 − 1 + λ2z􏼂 􏼃
− λ1􏼐 􏼑

β
, z, λ1, λ2, β> 0.

(38)
,e graphs of boxplot (BP) and total time test (TTT) for

the Instagram sales data are provided in Figure 4.
To show the usefulness of the NGI-Weibull model,

certain statistical tools (STs) are considered. ,ese STs
consist of four information criteria (IC) and three goodness-
of-fit measures (GFMs) along with the p value. ,e values of
the IC are calculated as follows:

(i) ,e Akaike IC (AIC)
AIC � 2m − 2Δ(Φ), (39)

(ii) ,e Bayesian IC (BIC)
BIC � m log(p) − 2Δ(Φ), (40)

(iii) ,e corrected AIC (CAIC)

CAIC �
2mp

p − m − 1
− 2Δ(Φ), (41)

(iv) ,e Hannan–Quinn IC (HQIC)

HQIC � 2m log(log(p)) − 2Δ(Φ), (42)

where the terms p, n, and Δ(Φ) represent the
number of parameters, sample size, and LL func-
tion, respectively.

,e values of the GFMs are calculated as follows:

(i) ,e Anderson–Darling (AD) test statistic

AD � − p −
1
p

􏽘

p

v�1
(2v − 1)

· log K zv( 􏼁 + log 1 − K zp− v+1􏼐 􏼑􏽮 􏽯􏽨 􏽩.

(43)
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(ii) ,e Cramér–von Mises (CM) test

CM �
1

12p
+ 􏽘

p

v�1

2v − 1
2p

− K zv( 􏼁􏼢 􏼣

2

. (44)

(iii) ,e Kolmogorov–Smirnov (KS) test

KS � supz Kp(z) − K(z)􏽨 􏽩. (45)

Corresponding to the Instagram sales data, the nu-
merical estimates (NEs) of the model parameters are ob-
tained via implementing the R-script with the method
SANN; see Appendix. ,e NEs of the fitted models are
provided in Table 3, whereas the values of IC measures and
GFMs of the fitted models are, respectively, given in Tables 4
and 5.

For the underline data, a model with a larger p value and
smaller values of IC and GFMs is considered a better model.
From the presented results in Tables 4 and 5, it is obvious
that the NGI-Weibull model is the best, as it has the smallest
values of the IC and GFMs and a larger p value. ,is fact
reveals the applicability and importance of the NGI-Weibull
distribution to deal with Instagram sales data and other data
sets in the business management and finance sectors.

Besides the numerical illustration, a visual display of the
performances of the competing models is presented in
Figures 5–8. For the visual comparison, we plotted the
graphs of the fitted DFs (Figure 5), SFs (Figure 6), QQ
(Figure 7), and PP (Figure 8) of the fitted models. It is
important to note that the plots in Figures 5–8 are obtained
for NGI-Weibull (red line), IW (blue line), and Exp-Lomax
(green line).
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Figure 4: ,e BP and TTT plot of the Instagram sales data.

Table 3: ,e values of the estimated parameters of the fitted models.

Models λ λ1 λ2 β

NGI-Weibull 16.910 6 0.9307 20.1934 —
IW — 2.5589 91.4791 —
Exp-Lomax — 7.9471 0.0578 10.1876

Table 4: ,e numerical values of the IC measures of the fitted distributions.

Models AIC CAIC BIC HQIC
NGI-Weibull 528.2917 528.5181 536.3931 531.5776
IW 553.9948 554.1070 559.3958 556.1855
Exp-Lomax 544.1750 544.4014 552.2765 547.4610

Table 5: ,e GFMs of the fitted models.

Models CM AD KS p value
NGI-Weibull 0.0310 0.2742 0.0465 0.9707
IW 0.3138 2.1091 0.1078 0.1544
Exp-Lomax 0.0500 0.4164 0.0977 0.2438
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Figure 6: Corresponding to Instagram sales data, the fitted SFs of the models.
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Figure 7: Corresponding to Instagram sales data, the QQ plots of the models.
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Figure 8: Corresponding to Instagram sales data, the PP plots of the models.
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Figure 5: Corresponding to Instagram sales data, the fitted DFs of the models.
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4. Concluding Remarks

,is work explored the impact of online marketing on sales.
Among the available online marketing media, a well-
known online medium called Instagram is considered. ,e
data sets related to Instagram advertising and sales were
studied and analyzed scientifically. To carry out the anal-
ysis, we implemented the linear regression approach along
with the F-test and t-test. Based on these tests, it showed
that there is a positive impact of Instagram advertising on
sales. According to the finding of this study, it showed that
spending money on Instagram advertising can increase the
sale. In addition to the F-test and t-test, we also performed
the CT. Based on the results of the CT, it was observed that
there is a positive correlation between Instagram adver-
tising and sales.

Finally, a new statistical model named a NGI-Weibull
was introduced and studied in detail. Certain mathematical
properties along the HT characteristics of the NGI-Weibull
distribution were obtained. ,e NGI-Weibull was applied to
model the Instagram advertising sales data. ,e comparison
of the NGI-Weibull model was made with the other models.
Certain statistical tools (AIC, CM, BIC, AD, CAIC, KS, and
HQIC) were considered for comparative purposes to see
which model provides the best description of the Instagram
advertising sales data. Using these statistical tools, it showed
that the NGI-Weibull model is the best model for taking care
of financial data sets.

Appendix

,e R-code is used for analysis under Section 3.

data�c(11.451, 6.357, 5.186, 7.363, 6.765,
3.683, 7.343, 5.190, 3.009,

6.398, 5.178, 7.638, 6.240, 5.643, 8.846,
11.673, 5.243, 10.130, 6.725,

8.010, 7.610, 4.479, 17.753, 9.932, 5.634,
6.151, 7.989, 6.826, 10.195,

6.006, 11.265, 7.004, 5.477, 8.616, 5.029,
6.600, 13.140, 6.733, 5.594,

11.294, 7.121, 9.427, 10.728, 7.218, 4.940,
6.648, 4.479, 11.811, 7.945,

4.079, 6.814, 5.388, 9.145, 11.609, 11.661,
12.514, 3.671, 7.452, 9.028,

9.157, 4.580, 13.188, 9.028, 7.977, 10.070,
5.796, 5.614, 6.196, 11.011,

8.038, 9.472, 6.547, 3.546, 4.839, 9.068,
5.566, 2.415, 5.388, 3.473,

4.625, 6.770, 7.367, 4.645, 5.647, 9.383,
7.892, 7.137, 8.575, 7.630,

8.922, 6.018, 3.732, 9.912, 11.015, 5.691,
8.620, 6.321, 7.989, 12.614,

8.967, 6.248, 12.017, 7.767, 7.569, 10.441,
9.730, 3.821, 5.117, 2.968, 10.090)

##########################################
######################################

##### PDF of the NGI-Weibull distribution

##########################################
######################################

pdf_pm <- function(par,x)

{

lam� par[1]

lam1� par[2]

lam2� par[3]

lam1∗ lam2∗ (x̂(-lam1-1))∗ exp(-lam2/
x̂lam1)∗ ((1-exp(-lam2/x̂lam1))̂(lam-1))
∗ ((1+lam)-exp(-lam2/x̂lam1))/exp(exp(-
lam2/x̂lam1))

}

##########################################
######################################

##### DF of the NGI-Weibull distribution

##########################################
######################################

cdf_pm <- function(par,x)

{

lam� par[1]

lam1� par[2]

lam2� par[3]

1-(((1-exp(-lam2/x̂lam1))̂(lam))/(exp(exp(-
lam2/x̂lam1))))

}

set.seed(0)

goodness.fit(pdf�pdf_pm, cdf�cdf_pm,

starts � c(0.5,0.5,0.5), data � data,

method� ”SANN,” domain�c(0,Inf),mle�NULL)

Data Availability

,e data are available from the corresponding author upon
request.
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