
The advent of whole slide digital imaging systems has 
catalysed new interactive models for pathology edu-
cation, expedited clinical workflows and provided 
opportunities for the development of new medically 
actionable image analysis tools and investigative 
techniques. Although still evolving, this technology 
has provided the clinical and research community  
with new solutions that will need to be integrated with 
established models for contemporary care. Ultimately, 
we anticipate that a new system of care will emerge, 
whereby these innovative technologies are integrated 
into routine practice in a rational and fully validated 
manner.

In this Review, we discuss how developments in  
digital pathology and computational image analysis are 
shaping a new digital era for nephropathology and how 
these technologies might be most expeditiously consid-
ered for clinical deployment. We provide an overview 
of the current status of the digital ecosystem in nephro-
pathology, which encompasses human expertise in 
renal pathology, artificial intelligence (AI), omics science 
and powerful computational tools, as well as potential 
applications and challenges associated with the emerg-
ing armamentarium of technologies for image analysis. 
Finally, we present what might be a prescient vision of 
the imminent future of clinical research and practice 
made possible by these technologies.

Nephropathology in the digital era
Only a decade ago, virtual microscopy was considered to 
be a fairly novel technology and of insufficient maturity 
for primary diagnostic purposes. Although the technol-
ogy was rapidly embraced for educational uses, its role 
in clinical practice was less clear given the preference of 
conventionally trained pathologists to work with con-
ventional light microscopy. This status quo has been 
shattered by the emergence of rapidly evolving tech-
nologies such as telepathology and digital pathology, 
in combination with developments in computational 
image analysis. The collective subspecialties of pathol-
ogy are now witnessing a far-​ranging and transform
ative set of new practice models, with implications for 
both intramural and remote primary and consultative 
diagnosis. Similarly, delivery models for education 
and companion diagnostics are positively affected by 
the emergence of these technologies. In particular, 
content-​based image retrieval1 — a machine vision tech-
nique that searches images by analysing their con-
tent (according to their colour, shape and/or texture) 
rather than their associated metadata — is now a real-
ity that opens fascinating new possibilities to leverage 
the vast and under-​utilized slide and image archives 
long held by pathology departments. The main uses 
of digital imaging in nephropathology can be divided 
into three major operational models: telepathology,  
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digital pathology and computational image analysis, as 
outlined below.

Telepathology
Telepathology involves the transmission of one or more 
microscopic images from an originating location to an 
imaging workstation at a distant location. Its use has 
been extensively validated and it is now a common 
tool for real-​time assessment of tissue adequacy and 
diagnosis2,3. In nephropathology, dynamic telepathology 
has been deployed for the remote assessment of donor 
implant biopsy samples by trained renal pathologists. 
This approach overcomes some of the limitations of cur-
rent practice, whereby cadaveric donor kidneys are often 
harvested and evaluated after-​hours, in non-​academic 
hospitals and by general surgical pathologists4,5.  
Telepathology has also enabled renal pathologists to 
assess the quality of fresh tissue biopsy at the time of 
the biopsy procedure without needing to be physically 
present in the interventional radiology suite. Its use 
gives the subject matter expert (rather than the available 
non-​renal pathologist) the ability to triage the kidney 
biopsy samples for subsequent histology, immuno
fluorescence and electron microscopy analysis, without 
significant disruption of their workflow1.

Digital pathology
Digital pathology is a general term that refers to the 
assemblage of digital workflow and imaging solutions 
that are geared towards creating a digital image-​based 
practice environment in which a whole slide image (WSI) 
or other digital image is acquired, managed, interpreted 
and searched for specific content. This new approach 
is being increasingly adopted in clinical trials6, for edu-
cation purposes7–9 and for clinical research1,10–16. Since 
2017, the FDA has approved the use of commercial 
WSI platforms, facilitating the use of digital pathology 
as a tool for primary diagnosis17–22. In response, many 

pathology practices and laboratories, particularly in 
Europe and Canada, are now in the early or mid-​phases 
of implementing digital pathology solutions for pur-
poses other than image archiving or for second-​opinion 
consultation23,24. WSIs, which can now be scanned in less 
than a minute, can serve as an effective surrogate for 
traditional microscopy-​based pathology20,25. However, 
WSI workflow models have known limitations including 
the need for substantial network bandwidth to handle 
large file sizes, the lack of Z-​dimensional focus (except in 
specialized cases, where a ‘Z-​Stack’ image might be gen-
erated for a region of interest (ROI) from the larger total 
slide area), which limits their utility for cytopathologi-
cal and renal biopsy evaluation, and imperfect control 
software in the scanning appliances themselves, which 
can contribute to various imaging artefacts (for exam-
ple, out-​of-​focal plane dust on the glass slide triggering 
acquisition of the wrong focal plane)26.

These limitations support the subjective perception 
held by many pathologists that digital pathology can 
be less accurate and more time consuming than glass 
slide microscopy for diagnosis, although direct quanti-
tative comparisons show the opposite. Processes might 
indeed be slower when digital pathology workflows are 
first adopted; however, following an initial training and 
acclimatization period, overall pathologist performance 
greatly increases for measurements of both speed and 
accuracy. As a result, perceptions are changing, with 
digital pathology becoming increasingly accepted, 
helping the pathology specialty move towards fully 
digital workflows and associated platforms for clinical 
operations26–29.

Computational image analysis
Advances in scanning technology paired with the 
increasing availability of large datasets of digital images 
have enabled pathologists to collaborate with technology 
experts, including data scientists, computational engi-
neers and imaging physicists, to explore the potential 
of a newly established branch in the field of pathology: 
machine vision, a component of computational image 
analysis. The primary objective of this field is to extract 
and/or generate quantitative data from digital image 
subject matter, either in isolation or in tandem with 
other classes of spatially or non-​spatially based biolog-
ical or omics data. Recognizing the high-​dimensionality 
of the data generated by computational image analysis, 
AI and machine-​learning (ML)30–33 techniques, which are 
ideally positioned to interrogate such complex datasets 
in an exhaustive manner, have been deployed to extract 
features, patterns and information from histopatholog-
ical subject matter that cannot otherwise be analysed 
by human-​based image interrogation alone. Deep learning 
(DL) — also known as deep structured learning — is a  
particularly important branch of ML that provides 
opportunities to interrogate images at greater depths than 
previously possible30,31,34,35. In pathology, DL has been 
used for the detection, annotation, segmentation, registra-
tion, processing and classification of WSIs. The learning  
process uses neural networks mimicking the human 
intelligence and contains multiple layers to progres-
sively extract deep features from the input image, first 

Key points

•	The introduction of digital pathology in clinical research, trials and practice has 
catalysed the development of novel machine-​learning models for tissue interrogation 
with the potential to improve our ability to discover disease mechanisms, identify 
comprehensive, patient-​specific phenotypes, classify kidney patients into clinically 
relevant categories, predict disease outcome and, ultimately, identify more targeted 
therapies.

•	The development of computational image analysis tools for tissue interrogation has 
brought pathology to the forefront in this process of re-​defining kidney diseases.

•	The new nephropathology ecosystem offers several advantages over conventional 
pathology but also brings some challenges that need to be addressed collectively by 
all the stake holders, including pathologists, nephrologists, computer scientists, 
regulatory agencies and patient’s representatives; overcoming these challenges is a 
pre-​requisite for these new machine-​learning and computational pathology models 
to be fully deployed for patient care.

•	The development of novel powerful computational tools for image analysis and data 
integration in kidney diseases has exposed the need to revise the curriculum for 
medical professionals to prepare the next generation to fully operate within the new 
digital pathology ecosystem.

•	Ultimately, our ability to treat kidney diseases (actionable intelligence) will be largely 
based on the application of artificial (augmenting) intelligence tools and the 
establishment of synergistic human–machine protocols that integrate digital 
pathology data with clinical and molecular data for personalized nephrology.

Computational image 
analysis
The application of artificial 
intelligence for the extraction 
of meaningful information 
(output) from the digital images 
(the input).

Artificial intelligence
(AI). A branch of computer 
science that deals with the 
ability of computers to mimic 
human intelligence or cognitive 
functions.

Virtual microscopy
The use of microscopy and 
digital technology to capture 
an image from a stained tissue 
section and transmit it in real 
time as a static image (digital 
pathology) or live image 
(telepathology) over computer 
networks, so that the viewer 
can access the image on a 
remote computer.

Companion diagnostics
Generally, indicates a test 
developed based on a 
companion biomarker and 
used as a companion to a 
medical intervention. 
Companion diagnostics can 
identify patients who are most 
likely to benefit from a 
therapeutic approach.
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transcribing imaging information into structured data, 
and then translating them into knowledge.

AI models, including ML and DL, can be used for 
various purposes, including the automatic detection, 
segmentation and quantification of histological param
eters and structural changes, and for disease diagnosis. 
These tasks are considered to be ‘low-​level’ tasks. This is 
in contrast to ‘high-​level tasks’, in which AI models are 
used to concurrently interrogate and integrate multiple 
classes of primary data — for example, histopathological 
image data spatially coupled to transcriptomic data — 
providing opportunities for the prediction of processes 
such as disease aggression (for example, the biological 
potential of a malignancy), patient outcome, organ 
engraftment survival and therapeutic response. Thus, 
use of AI has the potential to elevate digital images from 
their basic use as a tool for visual assessment of disease 
status to a much more complex and comprehensive role 
as a tool to facilitate prediction of disease trajectory. 
These new capabilities enable the extraction of useful 
information in a way that was not previously possible 
with the use of conventional microscopy in the context 
of direct human cognitive and visual assessment.

The increased demand for predictive assays for 
patient profiling is driven not only by the need to better 
stratify patients according to their clinical characteris-
tics and outcomes but also by the evolving discovery 
and development of drugs that target specific molecular 
pathways36. Novel approaches to aid in the understand-
ing of the relationships between structural changes in 
tissue and clinical and/or molecular phenotypes would 
be particularly beneficial to the nephrology community, 
as current classification systems are inadequate in their 
ability to capture the heterogeneity of kidney diseases, 
or predict disease outcomes. New, robust algorithms 
derived from the application of AI approaches and inte-
gration of pathology data with other relevant datasets 
will have utility for both pathologists and nephrologists, 
with the potential for a meaningful impact on patient 
care and precision medicine.

Many parallels can be drawn between machine vision 
in pathology and developments in radiography, which 
underwent its own digital revolution in the late twenti-
eth century with the development of native digital radio
graphic modalities such as MRI and CT, which allowed 
interrogation of digital anatomically coupled subject mat-
ter for the first time. Additional innovations in radiology, 
such as cassette-​based storage phosphor image plates 
(which allowed X-​ray images to be recorded digitally37) 
and the implementation of charge-​coupled devices, facil-
itated the rapid development of digital detectors38–41 and 
further accelerated the adoption of digital technologies. 
Similar to the current interplay between digital and com-
putational image analysis, the mainstream availability 
of digital radiographic images has enabled quantitative 
imaging analysis techniques to be tested and introduced 
for use in clinical trials and for patient monitoring42,43.

Digital pathology repositories
The nephrology community has witnessed the for-
mation of several international consortia that collect 
biospecimens from patients with a variety of kidney  

diseases (Table 1). The common goals of these consor-
tia10,11,13,44–52 are to better understand the pathogenesis 
of kidney diseases and to improve their classification 
and treatment through comprehensive analysis of clin-
ical, morphological and molecular data — a process 
that has required the establishment of digital pathology 
repositories (DPRs) for the banking and organization of 
digital images from renal biopsies and their associated 
metadata.

The establishment of DPRs has driven the concept 
of a digital biobank and a convergence of research 
on digital rather than physical assets. Conceptually, 
the formation of a digital biobank is the same as 
forming other types of biobank, starting with rigor-
ous training of personnel involved in the collection, 
de-​identification and transfer of the pathology material. 
This part of the process requires adherence to quality 
control (QC) steps to protect the privacy of individu-
als and their health information in accordance with the 
Health Insurance Portability and Accountability Act, to ensure 
study protocol compliance and that the renal biopsy pathol-
ogy materials are adequate, complete, organized in the 
appropriate patient and disease category-​designated space, 
and properly identified (labelled) for searchability11,14.  
DPRs are created to facilitate shareable data access; thus, 
considerations are needed at the consortium and regula-
tory agency level to facilitate secure, seamless and timely 
access for the end user.

The digital nephropathology ecosystem
Digital pathology applications are progressively modify-
ing the ecosystem in which pathologists operate, offering 
considerable advantages over traditional pathology 
approaches, as discussed below. However, these appli-
cations also present challenges that require considera-
tion of factors such as the redistribution of resources, 
standardization and regulation of processes, approaches 
to standardizing and integrating data, the consequences 
of these new approaches for diagnostic paradigms and 
effects on the medical curriculum.

Investment in digital pathology
DPRs are a cost-​efficient way of systematically organ-
izing pathology resources. The investment, although 
initially burdensome, is long term and allows for the 
establishment of a permanent library of sharable images.

In translational research, the return of such invest-
ment resides in the nature of the digital library itself, 
which can be accessed by multiple investigators, thereby 
supporting and facilitating a variety of pathology-​based 
applications and related new discoveries within and 
across populations15,16,53–56. Additionally, DPRs allow bar-
riers that were previously not addressable to be overcome: 
they provide transparency for regulatory agencies and 
enable collaboration both within and between consor-
tia. The reproducibility of observations is also improved, 
facilitated by digital annotation11,12,15,16 and computer-​
aided quantitative assessment, which offers a numerical 
value to the observations and measurements of param-
eters (i.e. density, spatial distribution and relationships 
of histological primitives) that cannot be achieved by 
conventional analysis1. Thus, with the increasing role of  

Content-​based image 
retrieval
Tissue interrogation using 
machine vision technology to 
search an image dataset by 
analysing information contained 
and derived from the images of 
a dataset. In the context of 
digital pathology, the content 
refers to the colours, shape and 
texture of the image.

Machine vision
Settings in which image-​based 
computational algorithms and 
processing pipelines are applied 
to provide automation to tasks 
that would otherwise represent 
substantial cognitive tasks for 
human observers alone.

Dynamic telepathology
A process whereby a live video 
image is viewed with the 
assistance of an operator at 
the site from which the image 
is transmitted, or via a robotic 
mode, where the viewer 
remotely controls the 
transmission of the image  
at the originating site.

Whole slide image
(WSI). High-​resolution replica of 
a glass slide created by a slide 
scanner that can be viewed on 
a computer screen (a virtual 
slide).

Z-​dimensional focus
The coordinate axis representing 
the depth of an image.

Dimensionality
The number of data attributes 
that make up a dataset; the 
number of degrees-​of-​ 
freedom (i.e. features) in a 
machine-​learning model.

Machine-​learning
(ML). A branch of artificial 
intelligence that builds 
mathematical models based on 
training data in order to make 
predictions or decisions without 
being explicitly programmed to 
perform the task.

Image interrogation
The application of a variety of 
machine vision technologies to 
extract quantitative information 
from whole slide images.

Deep learning
A class of machine-​learning 
algorithms that has networks 
capable of unsupervised 
learning from data that are 
unstructured or unlabelled.  
It uses multiple layers to 
progressively extract higher 
level features from the input  
(in this case, the image).
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big data and the ability to integrate separate knowledge 
domains (pathology, clinical and molecular domains) 
to generate new diagnostic categories and predictors 
of outcome, the launching of digital platforms for the 
collection and analysis of tissue structural changes has  
become a necessary investment for clinical research.

Improvements in image resolution and digital scanner  
capacity, as well as the development and regulatory 

approval of whole slide scanners for primary diagnosis 
and tools for the integration of image management software 
with laboratory information systems, have posi-
tioned digital pathology to be deployed for clinical 
applications17,19,28. Studies have shown that the implemen-
tation of digital pathology in clinical settings decreases 
overall operational costs while increasing clinical and 
operational efficiency28. Most recently, the COVID-19 

Table 1 | Multicentre digital pathology repositories for kidney disease

Name Location Data collection 
centre/central hub

Target diseases DPR (year 
established)

Consortium website

NEPhrotic syndrome 
sTUdy NEtwork (NEPTUNE)

North 
America

University of Michigan, 
MI, USA

MCD; FSGS; MN 2010 https://neptune-​study.org/

NEPhrotic syndrome 
sTUdy NEtwork – CHINA 
(NEPTUNE-​CHINA)

China National Clinical 
Research Center of 
Kidney Diseases; Nanjing 
University, China

MCD; FSGS; MN 2013 NA

Cure 
GlomeruloNephropathies 
(CureGN)

North 
America; 
Europe 
(Poland, Italy)

Arbor Research, 
Michigan, MI, USA

MCD; FSGS; MN, IgAN 2015 https://curegn.org/

EURenOmics Europe, 
North 
America

University of Heidelberg, 
Germany

Paediatric kidney diseases 2015 https://www.eurenomics.eu/

Transformative Research 
In DiabEtic NephropaThy 
(TRIDENT)

North 
America

University of 
Pennsylvania, PA, USA

Diabetic kidney disease 2016 https://www.med.upenn.
edu/trident/

Biomarker Enterprise to 
Attack Diabetic Kidney 
Disease (BEAt-​DKD)

Europe Lund University, Sweden Diabetic kidney disease 2018 https://www.beat-​dkd.eu/

European Rare Kidney 
Disease Network 
(ERK-​Net)

Europe University of Heidelberg, 
Germany

Glomerulopathies; thrombotic 
microangiopathies; renal and 
urinary tract malformations; 
tubulopathies; metabolic 
nephropathies; familial 
cystic diseases; any rare 
kidney disease; paediatric 
transplantation

2018 https://www.erknet.org/

German Focal Segmental 
Glomerulosclerosis and 
Minimal Change Disease 
Registry (FOrME)

Europe University of Cologne, 
Germany

MCD; FSGS 2019 https://clinicaltrials.gov/
ct2/show/NCT03949972

Kidney Precision Medicine 
Project (KPMP)

North 
America

University of Washington, 
WA, USA; University 
of Michigan, MI, USA; 
Mount Sinai School of 
Medicine, NY, USA

Chronic kidney disease; acute 
kidney injury

2019 https://kpmp.org/

Japan Renal Biopsy 
Registry (J-​RBR)

Japan Niigata University Glomerulopathies; 
tubulopathies; transplantation

2019 https://pubmed.ncbi.nlm.
nih.gov/21437579/

Human Heredity and 
Health in Africa (H3 Africa)

Africa University of Michigan 
(for the DPR), MI, USA

Non-​communicable 
disorders (e.g. heart and 
kidney disease), as well as 
communicable diseases 
(e.g. tuberculosis)

2020 https://h3africa.org/

Acceleration of Medicine 
Partnership in RA/Systemic 
Lupus Erythematosus 
(AMP RA/SLE)

North 
America

University of Michigan 
(for the DPR), MI, USA

Lupus nephritis 2020 https://amp-​ralupus.
stanford.edu/

APLO1 Long-​term Kidney 
Transplantation Outcomes 
Network (APOLLO)

North 
America

Wake Forest, NC, USA Kidney transplantation in the 
African American population

Under 
consideration

https://clinicaltrials.gov/
ct2/show/NCT03615235

This table lists major, multicentre studies that are known to the authors, but it is not exhaustive. DPR, digital pathology repository; FSGS, focal segmental 
glomerulosclerosis; IgAN, IgA nephropathy; MCD, minimal change disease; MN, membranous nephropathy; NA, not available.
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pandemic has forced the practising pathology com-
munity to explore approaches to enabling remote his-
topathological analysis on a large scale. In the USA, a 
critical step in facilitating this move was an amend-
ment to the 1988 Clinical Laboratory Improvement Act 
(CLIA ’88), which relaxed the location-​specific licens-
ing requirements that regulate where a pathologist is 
allowed to diagnose cases. This change enabled a num-
ber of pathology practices and health networks to rapidly 
employ remote diagnosis workflow models, allowed the 
field of pathology to gain greater proficiency in render-
ing primary diagnoses by digital means and facilitated 
the accelerated adoption of modality-​specific workflow 
models and digital consultative review. These develop-
ments all bode well for the prospect of nephropathology 
benefiting from the expanded use of WSI solutions for 
expedited primary diagnosis.

However, the potential benefit of a fully digital path
ology operation on clinical applications in nephro
pathology extends beyond operational aspects alone. 
Integration of knowledge generated by these new com-
putational tools can lead to new discoveries with the 
potential to introduce new paradigms in clinical practice.

Standardization of analytics
The deployment of digital pathology into research, clin-
ical trials, and ultimately clinical practice depends on a 
variety of elements, from the standardization of analy
tics to allow the sharing of images to the application of 
image analysis tools (Table 2). The process of transform-
ing glass slides into WSIs involves a series of steps, each 
contributing to the final quality of the digital image that 
is visualized on a computer monitor. Protocols for the 
processing of tissue into histology sections and the scan-
ning and transmission of image-​associated information 
need to be standardized so that the digital pathology 
applications can augment the work of the pathologist 
on a large scale. Such processes demand a revision of 
traditional criteria for QC and standardization of ana-
lytics beyond current recommendations and regulations 
that apply to conventional histology approaches, as pro-
vided by the College of American Pathologists, CLIA 
‘88, the Digital Pathology Association57 and the Renal 
Pathology Society (RPS). In 2018, The Royal College of  
Pathologists in the UK published best-​practice recom
mendations for implementing digital pathology, 
highlighting the diagnostic challenges of WSIs and 

Segmentation
One of the most important 
tasks of machine vision. 
Manual segmentation 
(annotation) is performed by 
subject matter experts, who 
use digital annotation tools to 
delineate the boundaries of the 
object (region of interest) or 
histological primitive. 
Automatic segmentation is 
performed by the deep 
learning model trained to 
detect the boundaries of 
the object.

Prediction
The result of a machine- 
learning model when operating 
on a new data point based on 
historical data samples.

Health Insurance Portability 
and Accountability Act
An Act passed by US Congress 
in 1996 to reduce health-​care 
fraud and abuse, enable 
transfer of insurance coverage 
when changing jobs, 
standardize health-​care 
information on electronic 
billing and other formats, and 
protect confidentiality of 
health information.

Computer-​aided 
quantitative assessment
Use of a computer output to 
guide clinical decision-​making 
and interpretation of clinical 
data.

Histological primitives
Discrete normal or abnormal 
structures (e.g. glomerular 
tufts, globally sclerotic 
glomeruli, tubules, atrophic 
tubules and vessels) or cells 
(e.g. lymphocytes, podocytes 
and proximal tubular cells).

Digital scanner
A device that optically scans 
images or glass slides and 
converts them into digital 
images or whole slide images.

Image management 
software
Software that allows the 
acquisition, organization and 
viewing of pathology image 
data and its associated 
metadata.

Table 2 | Current limitations and proposed solutions for computer-​based image analysis

Issue Problem Proposed solution

Standardization of tissue 
analytics

Variability of harvesting and 
tissue processing

Revision of histology protocols across centres to 
optimize downstream quantitative analysis

Involvement of subspecialty societies

Standardization of imaging 
analytics

Scanner variability and 
image inconsistencies

Implementation of standard quality assurance 
and calibration procedures (e.g. image linearity, 
uniformity, reproducibility)

Implementation of DICOM implementation in 
pathology

Evaluation of scanner variability across manufacturers

Involvement of subspecialty societies

Selection of the best approach 
for each task or problem

Quantitative techniques are 
specific to the application, 
region of interest, or the 
clinical question

Parallel training, validation and testing of models and 
techniques

Prospective evaluation (trials) to assess the clinical 
relevance of the application

Studying rare kidney diseases Inherently small datasets Knowledge-​based data science

Data augmentation

Inter-​institutional consortia for data sharing

Data integration Data extraction, 
representation, and fusion 
across different length 
scales

Standardization of data collection and storage

Ontology development

Development of new data fusion algorithms

Knowledge integration Lack of didactic training 
across disciplines

Revision of curricula for health-​care providers (e.g. 
medical students, residents, fellows) and health data 
scientists

Interdisciplinary nephrology boards

Deployment and efficacy in 
clinical practice

Lack of comprehensive 
prospective evaluation

Comprehensive prospective evaluation in clinical trials

Development of new regulatory guidelines

Data-​sharing ethics Lack of regulatory 
guidelines

Revision of IRB oversight

Revision of Data and Material Transfer and/or Access 
Agreements

Involvement of subspecialty societies and the medical 
ethics community

DICOM, Digital Imaging and Communications in Medicine; IRB, Institutional Review Board.
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providing practical solutions for reducing the risk of 
discordant diagnoses58,59. In the past few years, the 
College of American Pathologists has also provided 
guidelines for validating digital pathology approa
ches60, and the National Society for Histotechnology  
has initiated a programme to improve the quality of 
WSIs60,61. However, we and others recommend that all 
stake-​holders participate in regulating and monitoring 
the use and performance of digital pathology-​based  
protocols62.

As outlined below, standardization of pathology ana-
lytics requires consideration of three major components 
(Fig. 1): a pre-​analytical phase, which includes the steps 
from tissue procurement to fixation, processing, cutting 
and drying time; an analytical phase, which includes a 
histology phase (involving stain selection, optimization 
and validation) and a digital phase (scanning, consid-
eration of image and monitor resolution, number of 
colours, colour distribution, compression ratio and 
image format63); and a post-​analytical phase, which 
involves the analysis and interpretation of results, the 
recording and reporting of data, and pathologist and ML 
performance metrics1,10,12,16,64–66 (Fig. 1).

Standardization of the pre-​analytical and analytical 
phases. The current criteria for ensuring QC of the 
histology preparations allow for broad variation of pre-​
analytical and analytical artefacts across and within 
laboratories. The spectrum of artefacts varies in severity 
and quality. Some can affect the glass slide (for example, 
pen marks, dirt and bubbles), whereas others affect the 
tissue (for example, the presence of tissue folds, or dif-
ferences in thickness or stain intensity) or the scanning 
process (for example, differences in focus or the gridding 
effect of the WSI). While pathologists train themselves to 
make an interpretation using the stain protocol they are 
accustomed to and read through artefacts on the glass 
slide, tissue section or digital image, computers must be 
trained to adapt to such heterogeneity in image presenta-
tion. For computer-​aided algorithms to leverage digital 
pathology and enable quantification, classification and 
prognostication in a scalable manner, the algorithms 
must be generalizable across datasets. Although variabil-
ity in WSI training sets may actually represent a poten-
tial advantage for the generalizability of the resulting 
algorithms, the performance of algorithms is intimately 
linked to the control of analytics and homogeneity of 
the datasets63.

High-​quality datasets can be achieved by proactively 
gaining tighter control over analytical practices within 
and across laboratories, and by re-​modelling current cri-
teria for the minimum QC threshold based on the needs 
of current technologies and their applications61. As the 
use of image-​based data by AI technologies requires  
the conversion of analogue data into numerical values 
(that is, digitization), understanding of the intimate asso-
ciation between stain quality and image quality becomes 
essential. Similar to the field of radiology, where imaging 
physicists are employed to ensure QC of clinical images 
and imaging systems, standardization and quality assur-
ance at both the tissue staining phase and the image 
acquisition phase will likely require on-​site technical 
expertise. This support will ensure patient safety and 
reliable diagnostics. We expect that this area of optics 
and light microscopy will be an important focus of 
discovery and standardization in the coming years.

One relevant issue that requires better understanding 
before computational tools are deployed for image analy
sis in the clinical setting is how variation in image  
quality caused by the physical abstraction layer of the 
WSI scanning platform itself affects the performance 
of AI approaches. Different commercial WSI solutions 
digitally reproduce colours based on a reference colour 
source slide with uneven variability. This variability can 
extend to inter-​device variability, even within a single 
model of a WSI scanner. Although colour correction 
software can be used to standardize WSIs across dif-
ferent scanning platforms, this approach is still in its 
infancy. Recognizing that AI algorithms can be (and 
often are) dependent on consistent colour representa-
tion, standardization of colour becomes essential to 
establish robust and reproducible quantitative measure-
ments and analysis63,67,68. This issue is of critical impor-
tance in the context of multicentre DPRs and will force 
investigators to weigh the pros and cons of central versus 
local scanning.

QC of image datasets can also be achieved retro-
spectively (that is, after WSI acquisition) using com-
putational post-​processing techniques. QC tools have 
now been developed to automatically assess WSI qual-
ity, capturing variations in image presentation such as 
stain distribution, brightness, or glass, tissue and scan-
ning artefacts. One example of such a QC algorithm is 
HistoQC, an open source QC tool that quantitatively 
assesses the heterogeneity of WSI image datasets and, 
similarly, identifies artefacts present on the source glass 
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Pre-analytical phase
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Fig. 1 | The analytical phases of digital pathology. The pre-​analytical 
phase includes steps involved in tissue procurement, processing and 
fixation. The analytical phase involves a histology phase (which includes 
selection of the stain to be used, optimization and validation of the staining 
procedure) and a digital phase (which includes scanning the slides as whole 
slide images (WSIs) and curation of the digital library). The post-​analytical 

phase involves data extraction, analysis and interpretation of results. Data 
extraction is accomplished using human visual analysis and/or machine 
vision, using human–machine synergistic protocols. Data extracted from the 
images using human and machine vision are integrated and reported. Data 
integration can be achieved using computational tools as well as human 
intuition and domain expertise.

Generalizable
The ability of a 
machine-​learning algorithm to 
remain effective across a wide 
range of data examples and 
applications.

Analogue data
Data that are represented and 
analysed in a physical way  
(e.g. a glass slide) as opposed 
to a digital way (e.g. a whole 
slide image). Analogue data are 
stored in physical structures.

Physical abstraction layer
The physical computational 
machines, which represent a 
hard stop with respect to the 
computational scale and 
storage capacity of a computer 
and typically cannot be 
overcome by the addition of 
more software.
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slides or on the scanned image69. In the context of clin-
ical research, HistoQC is currently being evaluated in 
NEPTUNE, CureGN and Kidney Precision Medicine 
Project (KPMP) for curation of the image dataset prior 
to experimental analysis (Table 1). In clinical practice, 
the ability to identify compromised WSIs before they 
are assessed by the pathologist or computer-​aided tools 
reduces downstream delays in clinical diagnosis.

Standardization of the post-​analytical phase. The digital 
ecosystem has the potential to facilitate the harmoni-
zation of data collection both within and between con-
sortia via the use of shared protocols10, and to improve 
accuracy15 and concordance among pathologists12,16. 
However, agreement among nephropathologists in 
diagnostic and tissue assessment remains the limit-
ing factor and a pre-​requisite for the training of AI 
algorithms5,12,16,70–73. Awareness that the standardization 
of pathology definitions and use of a controlled vocab-
ulary are central elements that drive the reproducibility 
and accuracy of observations and/or of data generated 
for both human and computer-​aided analysis is reflected 
by several recent initiatives. For example, NEPTUNE 
and the international digital nephropathology net-
work, INTEGRATE, have generated a list of individual 
observational lesions (descriptors) and their associated 
definitions, obtained by international consensus, for the 
assessment of WSIs10,12. Similarly, the Renal Pathology 
Society has undertaken an initiative to develop a univer-
sal lexicon by compiling detailed and unambiguous defi-
nitions of pathological lesions and structures with the 
goal of harmonizing classifications, whereas the KPMP 
investigators have applied a controlled vocabulary to 
assemble libraries of conventional diagnoses, disease cat-
egories and descriptors. In KPMP, the descriptor library 
will be relevant to informing and guiding the assembly 
of the KPMP feature vector library, a ML approach to the 
automatic detection of normal and abnormal histologi-
cal primitives, and to generate a functional ontology and 
atlas of kidney diseases.

Shifting paradigms in renal pathology
The transformative approach to the study of kidney dis-
eases introduced by systems biology science is calling 
for a change of paradigms in renal pathology for the 
interrogation of WSIs. The current ‘one-​size-​fits-​all’ 
approach, whereby pathologists generate classifications 
using a few preselected parameters and test them against 
disease outcome or disease biomarkers, provides nei-
ther sufficient granularity nor a quantitative metric that 
adequately represents the complexity of structural and 
cellular changes that can exist in the kidney. The new 
digital ecosystem and the development of novel tech-
nologies offers an opportunity to establish new protocols 
and methodologies — either visual or computer-​aided 
— to retrieve and represent, as interpretable data, the 
information contained in kidney biopsy samples.

The introduction of digital pathology and use of 
descriptors to identify discrete elements of struc-
tural changes in tissue has enabled a more compre-
hensive visual assessment of the kidney on annotated 
WSIs compared with conventional methodologies10,11. 

As discussed above, the standardization of pathology 
vocabulary is a prerequisite for the interoperability of 
image data collection and reporting. Use of standardized 
vocabulary and DPR protocols has facilitated the har-
monization of data collected across multiple consortia, 
providing insights into the structural manifestations of 
kidney diseases within and across populations10,53. For 
example, one study that used visual assessment of sam-
ples from three cohorts in North America and China 
showed that the age-​adjusted percentage of global glo-
merulosclerosis is a useful predictor of kidney disease 
progression across diseases and populations53. Similarly, 
the percentage of interstitial fibrosis was associated 
with the expression of specific genes, transcriptional 
regulators and urinary biomarkers across cohorts from 
North America and Europe54,55. However, visual (that 
is, manual) assessment of WSIs is time consuming and 
has limited reproducibility71. Computational imag-
ing algorithms are likely to provide more efficient and 
reproducible automated quantitative assessment across 
diseases and populations, increasing the robustness of 
the observations and scalability of such studies. The inte-
gration of computational image analysis and AI into the 
digital pathology ecosystem will induce further shifts in 
renal pathology paradigms towards the integration of 
structural changes, with multiaxial datasets to redefine 
categories and subcategories of patients with similar bio-
logical mechanisms, morphological profiles and clinical 
trajectories.

Integration and interoperability
Multi-​domain datasets generated by systems biology 
approaches are represented by different length scales; 
for example, serum creatinine is measured quantita-
tively at different time points during the disease course, 
morphology data are collected using different method-
ologies, human or machine vision, and metrics, at the 
time of the biopsy, genetic data do not change with time, 
whereas the expression of genes and associated regula-
tors are dependent on disease status. The extraction, 
alignment, integration, interpretation and reporting of 
such multi-​scale information is an emerging challenge in 
nephrology (Table 2). In the new data integration ecosys-
tem, foundational, structural and semantic interopera-
bility across and within datasets and studies is intimately 
linked to the standardization of analytics, data sharing 
and data integration approaches. The interoperability of 
image analysis alone carries challenges, from annotation 
to algorithms and image features. For example, image 
annotations created by vendor-​supplied software pro-
grams in one community are often incompatible with 
those created by other communities who might make use 
of a different program. A valuable approach to facilitat-
ing the interoperability of heterogeneous data within and 
across domains is to use ontologies, which encompass 
and represent properties and relations between data, cat-
egories, concepts and entities, and to organize the data 
into information and knowledge74,75. The Quantitative 
Histopathology Image Ontology is one example of an 
effort to establish standardized approaches to ontologi-
cal pathology image data for their integration with data 
from other domains — such as clinical or demographic 

Feature vector
Typically, one or more spatial 
constructs selected by a 
subject matter expert that 
serves as a training template 
for any class of machine-​ 
learning algorithm, including 
convolutional neural networks.

Ontology
Represented sharable 
knowledge, a specification of a 
conceptualization, in the form 
of concepts and categories for 
a specific domain, associated 
properties and relationships 
between them. Ontologies 
function using a controlled 
vocabulary to connect terms 
and use links, logical 
definitions, concepts and 
networks of well-​defined 
relationships.
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data. The Quantitative Histopathology Image Ontology 
is aimed at standardizing terminology at multiple 
levels, including data input and output, parameters for 
image acquisition and analysis, and the execution phase 
whereby data are recorded and reported76. Integration 
and interoperability are also centre-​stage concepts in 
KPMP, where the development of a kidney cell atlas will 
be based on a comprehensive ontology harmonized with 
pre-​existing ontologies. Much can be learned by study-
ing other disciplines, such as oncological pathology42,77–85 
and radiology, where considerable progress in integrat-
ing information has already been achieved42, and where 
ML approaches have been used to combine pathology 
and molecular data for improved prediction of cancer 
recurrence81,82,86.

The data ecosystem
The confluence of large-​scale studies, often involving 
clinical data from electronic health records or data 
repositories, and the capacity to represent entire research 
studies in electronic form, has altered the way in which 
researchers collect, store, use and integrate data. The 
oncology field has integrated data from different 
domains for quite some time, with the advent of secure 
data environments paired with flexible database design 
and cloud computing technology aiding the evolution 
of the data ecosystem. Rather than attempt to place data 
in a single database in which a single framework uni-
fies disparate data types, the trend is to now store data 
in individually optimized databases that are then con-
nected by data aggregators. Functionally, such a set-​up 
enables end-​users to perform a search from one data-
base as simultaneous queries against multiple databases. 
Moreover, this process enables image data to be linked 
with both clinical and molecular data.

Data sharing. Data sharing encompasses several 
diverse concepts, from transparency and regulation, 
to interoperability (discussed above). A key aspira-
tional goal for data sharing has been, and remains the 
attainment of interoperability, under the umbrella of  
the now-​recognized FAIR principle (Findable, 
Accessible, Interoperable and Reusable)87. The past dec-
ade has seen the emergence of several policies relating 
to data sharing and research transparency by the Office 
of Research Integrity, National Institute of Health or 
other organizations88. Providing access to bio-​specimen 
repositories and research data increases their potential 
utility for health discovery and validation, and opti-
mizes their long-​term value89–95. This benefit is par-
ticularly relevant in the context of rare diseases, where 
data sharing is often needed to obtain sufficient sample 
sizes. Historically, renal pathologists have used local 
datasets for research purposes, with limited opportuni-
ties for external QC or data exchange. The availability 
of digital WSIs fosters opportunities for collaboration 
in a transparent environment. Transparency is not only 
relevant to QC for internal research purposes, for exam-
ple, when clinical trials are conducted using a digital 
pathology platform for the pathology analysis, the rel-
evant pathology data elements can be easily audited by  
regulatory agencies6.

However, the concept of data sharing raises several 
legal and ethical issues. Some of these, including issues 
related to inclusiveness, ethically responsible research, 
privacy and return of results, are not new and apply to 
many forms of research. Consideration must also be 
given to the sharing of metadata, including validated 
feature detector ensembles and associated image sets 
that would be submitted in the curation process in par-
allel with the bio-​specimens themselves. In addition, 
although best practices relating to data sharing and 
material transfer agreements have been articulated in 
many documents, particularly in the context of rare 
disease research89–95, guidance specific to the sharing of 
pathology images and use of DPRs does not yet exist and 
is urgently needed (Table 2).

An additional consideration is the use of WSI data 
for retrospective analysis, beyond the original stated 
research intent. The digital permanent image libraries 
that will originate at the institutional level, or under indi-
vidual consortium oversight, will naturally outlive the 
scope of the originally stated informed consent, the spe-
cific aims of the original study, and technology that was 
available at the time of the image data collection. Given 
that new technologies empower investigators to gener-
ate hypotheses and ask scientific questions that were not 
conceivable at the time of the collection, it will be essen-
tial to establish standard processes to enable permission 
lists of original data use to be extended. These extensions 
will require a standardized adjudicative process that can 
operate without the need to re-​consent participants, as 
their location and identity may no longer be known. 
Such broad consent documents, which essentially 
‘future-​proof ’ possible unforeseen uses of curated tissues 
and images are already used by researchers in various 
omics fields. One controversy from the oncology field96, 
involving the alleged exclusive sharing of pathology 
datasets originally intended for general, not-​for-​profit 
use with a commercial AI developer, underscores the 
need for the pathology field to rethink not only how 
informed consents should be formulated but also who 
should benefit from the sharing of digital datasets and 
associated health information.

It is imperative that guidelines for the responsible 
sharing of data in the digital pathology ecosystem are 
formally established. Such guidelines could be modelled 
on previously published documents, such as the interna-
tional code of conduct for genomic and health-​related 
data sharing, the founding principles of which are 
based on the goals of promoting health and advancing 
research, and associated ethical elements (for exam-
ple, respect of the parties involved and their privacy, 
distribution of benefits, trust, integrity, accountability,  
reciprocity, and data security and quality)97.

Image analysis
Two main approaches are used for the interrogation of 
WSIs: human visual assessment and machine vision.

Human visual assessment
A variety of methods have been used for the visual 
assessment of WSIs, including conventional diagnostic5 
and descriptor-​based approaches10, quantification of 

Data aggregators
Aggregation or compiling of 
information from databases 
with the goal of preparing such 
information for data 
processing.
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structural and cellular elements6,12, and morphometric 
analysis56. The collection and quantification of visual data 
can be further facilitated by digital or manual annotation 
tools of the regions or objects of interest on the WSIs, 
resulting in increased accuracy and reproducibility of 
the observations15. Visual assessment of WSIs has been 
used to identify features that correlate with outcomes or 
the presence of biomarkers, and for the discovery of clin-
ically relevant disease categories. As mentioned earlier, 
features such as extent of age-​adjusted global glomeru-
losclerosis or interstitial fibrosis can be reliably assessed 
visually and are associated with outcomes including 
disease progression53,54. Other quantitative information 
that can be obtained from WSIs of renal biopsy samples, 
such as the interstitial capillary and podocyte density, 
might enhance our ability to predict predisposition to 
chronic kidney disease progression, hypertension98 and 
the development of global glomerulosclerosis99–105 but 
cannot be easily visually assessed, at least not without a 
significant amount of labour.

Machine vision
Machine vision refers to the computational techniques 
that are used to convert digital pathology images into 
mineable data, using AI techniques such as ML, DL and 
pathomics. This approach is driving a fundamental par-
adigm shift in digital pathology in which digital renal 
biopsy samples are interpreted as quantitative data-
sets. The performance of the AI techniques depends 
on the quantity and quality of the primary data, where 
‘quality’ refers to the cleanliness, provenance, accuracy, 
signal-​to-​noise ratio and comprehensiveness to achieve 
the maximum predictive performance. Obtaining 
primary data of sufficient quality or quantity can be 
challenging for datasets associated with rare kidney 
diseases.

The two main categories of machine vision that are 
applicable to WSIs of renal biopsy samples are supervised 
learning and unsupervised learning. In unsupervised 
machine vision, features are identified based on their 
similarity to each other and group or category assign-
ment is based on their relative proximity. By contrast, 
supervised learning uses an annotated training dataset 
to learn the relationship between individual features 
and categorical labels. Supervised and unsupervised 
learning can be used to convert digital pathology 
images into minable data, using two general techniques: 
‘hand-​crafted pathomics’ (also known as conventional 
pathomics) and ‘discovery pathomics with DL’.

Hand-​crafted pathomics. This approach involves the seg-
mentation (by manual or automated means) of an ROI 
on an image (for example, glomeruli, tubules, arteries 
or interstitial capillaries), from which high-​throughput 
quantitative features known as hand-​crafted features 
are extracted to derive a pathomic feature space, or 
digital image signature. This approach is essentially a 
transcription process, whereby unstructured imag-
ing data (that is, pixels within the ROI) are converted 
into structured imaging data (that is, the pathomic 
feature space) so that it can be recognized by learning  
algorithms.

Pathomic signatures, which are digital imaging sig-
natures obtained through hand-​crafted pathomic feature 
extraction, are typically engineered to capture a num-
ber of features including morphology, intensity, texture, 
higher-​order and spatial features. Morphology features 
quantify the size and shape of the ROI, such as its com-
pactness, border irregularity or maximum diameter. 
Intensity features capture the distribution of pixel values 
within the ROI, based on the image’s histogram, which is 
a probability distribution that encodes the frequency of 
occurrence of all pixel intensities. Of note, intensity fea-
tures do not capture spatially encoded information. For 
instance, the entropy of an image can explain the degree 
of randomness in its pixel intensities but not where the 
randomness occurs. Texture features quantify the spatial 
distribution of pixel information in the image, based on 
joint-​probability distribution functions. These features 
quantify aspects such as overall image brightness, local 
heterogeneities and non-​linear relationships between 
pixels. Fine- and coarse-​texture features capture hetero-
geneities at different orders of magnitude. Higher-​order 
features capture information specific to certain fre-
quency bandwidths such as wavelet decomposition and 
multi-​scale invariance such as fractal geometry. Spatial 
features capture the spatial organization or architecture 
of specific histological primitives (for example, glomer-
uli or tubules) in the tissue. These typically involve graph 
network-​based algorithms such as the Voronoi tessellation 
or minimum spanning tree.

Discovery pathomics with deep learning. In contrast to 
hand-​crafted pathomics, discovery pathomics uses DL 
to extract features directly from images, without explicit 
mathematical definitions. DL algorithms are often able to 
uncover novel and important patterns from sets of input 
images with case-​level annotations and without human 
guidance, given their ability to excel in unsupervised 
feature extraction. This approach can be particularly 
powerful for applications that remain as unstructured 
imaging data (for example, generating segmentations of 
a histological primitive), or when a problem is too com-
plex for conventional feature engineering. Although DL 
can be interpreted as a complete classifier, it can also be 
used as a type of image representation analogous to the 
hand-​crafted pathomic approach. In fact, DL approaches 
commonly encode an input signal into structured data 
form (that is, a transcription process similar to that 
used for feature engineering), followed by a decoding 
of the data to generate an output signal (that is, a trans-
lation process akin to that used by conventional ML 
algorithms). The most common type of DL used with 
images is based on convolutional neural networks (CNNs), 
whereby a series of shift-​invariant filters are used to gen-
erate abstract feature maps to learn hierarchical patterns 
embedded within the input image. CNN architectures 
have been used to automatically detect and segment 
normal and sclerotic glomeruli, nodular glomeruloscle-
rosis, tubules, interstitial space and fibrosis, peritubular 
capillaries and arteries72,73,106 (Fig. 2). Other popular DL 
architectures (that is, artificial neural networks) include 
fully convolutional networks, recurrent neural networks and 
generative adversarial networks42 (Table 3).

Pathomics
The high-​throughput extraction 
and analysis of features 
derived from digital pathology 
images, typically achieved 
using techniques from the 
machine vision field, image 
processing and machine 
learning.

Hand-​crafted pathomics
Pathomics with feature 
engineering — a process that 
uses domain knowledge to 
extract features (attributes or 
properties) from raw data.

Discovery pathomics
An approach that uses 
deep-​learning-​based feature 
extraction to learn complex 
patterns in the data or image. 
It commonly uses artificial 
neural networks.

Hand-​crafted features
Mathematically well-​defined 
features derived from data 
using feature engineering 
techniques.

Digital image signature
A mathematical vector, the 
components of which denote 
various quantitative imaging 
features that collectively 
represent an image.

Wavelet decomposition
A signal processing technique 
whereby an input signal (e.g. an 
image) is passed through a 
cascade of digital filters (i.e. 
high-​pass filters or low-​pass 
filters) to generate a set of 
bandwidth-​limited signal 
components (e.g. filtered 
images), which collectively 
contain the full information  
of the original signal.

Fractal geometry
A non-​regular geometric shape, 
where the degree of 
non-​regularity is invariant 
across different spatial scales.

Voronoi tessellation
A mathematical approach 
where a plane (e.g. a whole 
slide image) is partitioned into 
sub-​regions based on their 
relative proximity to a given set 
of objects (e.g. image 
landmarks, histological 
primitives, etc.).
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Trade-​off between hand-​crafted and discovery pathomics.  
Hand-​crafted pathomics and discovery pathomics  
are complementary approaches to quantitative WSI 
representation. Each technique has advantages and dis-
advantages, and their proper implementation therefore 
depends on the specific clinical case and intended use. 

Hand-​crafted pathomic features are mathematically well 
defined, interpretable and can be easily combined with 
other structured health data, such as radiomics, tran-
scriptomic or electronic health record data, to develop 
multi-​modal digital biomarkers. However, hand-​crafted 
features are limited to human intuition (that is, human 
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Fig. 2 | Machine vision technology as a support tool in nephropathology. 
Machine vision tools — including discovery pathomics with deep learning 
and hand-​crafted pathomics — can be used to convert digital pathology 
images into minable data and provide support to pathologists. a | Machine 
vision can be used to automatically detect histological primitives. For 
example, a convolutional neural network can be used to detect glomeruli 
in frozen kidney sections stained with haematoxylin and eosin. b | Machine 
vision has also been used to establish a classifier for glomerular disease 
stage in patients with diabetic glomerulosclerosis. The left panel shows a 
paraffin-​embedded section of a normal glomerulus (top) and a glomerulus 
with nodular glomerulosclerosis (bottom) stained with periodic acid Schiff. 
The middle panel shows detection of the cellular/nuclei (blue) and matrix 
(red) component of the normal (top) and diseased (bottom) glomerulus. The 
right panel shows the measurements of the glomerular characteristics for 
both the normal and the diseased glomerulus. c | Application of artificial 
intelligence-​guided morphometry can provide quantitative assessment of 
the interstitial fractional space. On the left is a paraffin-​embedded section 
stained with trichrome. The right panel shows the automatic detection of 

interstitial fractional space. The superimposition of a digital grid on the 
image enables digital morphometry. d | Machine vision can also be used to 
build models to aid prognostication. For example, qualitative and 
quantitative automatic detection of features of acute tubular injury may 
predict the course of the disease and response to therapy: the presence of 
only a few areas of vacuolization with specific qualitative characteristics 
could predict rapid recovery from an episode of acute renal failure, with 
normalization of serum creatinine levels, compared with a renal biopsy 
containing much greater levels of vacuolization. e | Computational imaging 
tools can be combined with other methodologies for parallel discovery. For 
example, computational image analysis tools can be applied to guide laser 
capture microdissection by identifying structures with similar pathomic 
signatures within the same biopsy sample and across biopsy samples. The 
structures with similar pathomic signatures can be captured and analysed 
separately, allowing for spatial mapping of pathogenomic signatures.  
Panel b reprinted courtesy of P. Sander and B. Ginley, University at Buffalo, 
NY, USA. Panel c reprinted courtesy of J. Hodgin, University of Michigan,  
MI, USA.
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involvement is required to define the features based 
on relevant domain knowledge) and can often lead to 
high-​dimensional feature spaces that are non-​trivial and 
computationally expensive to analyse. On the other 
hand, unsupervised feature generation does not require 
classical feature engineering (that is, features are instead 
generated automatically based on intrinsic patterns 
in the data that do not require direct human input). 

Furthermore, DL-​based approaches are particularly 
useful when the input (for example, manual segmenta-
tion of a histological primitive) and output (for example, 
automatic segmentation) of a problem are both images 
or when conventional approaches cannot perform the 
task at hand. However, the trade-​off of these benefits 
is loss of mathematical interpretation and the need for 
relatively larger datasets.

Table 3 | Use of methods for image analytics in digital nephrology studies

Methodology Stains Histological primitive Number of WSIs or cases Task Refs

CNN PAS (paraffin 
sections)

Interstitial fibrosis, tubular atrophy, 
global glomerulosclerosis

65 WSIs from transplant 
kidney biopsies

Segmentation of multi-​classes 
of histological primitives

119

PAS (paraffin 
sections)

Glomeruli, empty Bowman capsule, 
globally sclerotic glomeruli, 
proximal tubules, distal tubules, 
atrophic tubules, not otherwise 
identified tubules, arteries

142 WSIs from transplant 
kidney biopsies; 15 WSI 
from nephrectomies

Segmentation of multi-​classes 
of histological primitives

73

PAS (paraffin 
sections)

Non-​sclerotic glomeruli, globally 
sclerotic glomeruli, podocyte nuclei, 
other nuclei, interstitial fibrosis/
tubular atrophy

WSIs from mouse kidneys; 
WSIs from human biopsies 
(number of WSIs not 
provided)

Segmentation of multi-​classes 
of histological primitives

109

TRI (paraffin 
sections)

Glomeruli 275 WSIs from 171 renal 
biopsies

Glomerular segmentation and 
classification

117

H&E (frozen 
sections)

Non-​sclerotic glomeruli; globally 
sclerotic glomeruli

40 WSIs from donor kidney 
biopsies

Glomerular segmentation 120

TRI (paraffin 
sections)

Interstitial fibrosis 171 WSIs from native 
kidney biopsies

Prediction of clinical 
phenotype

106

Feature-​engineering 
RNN

PAS (paraffin 
sections)

Nuclei; glomerular capillary lumina; 
glomerular matrix

54 WSIs from human 
renal biopsies and 
nephrectomies; 25 WSIs 
from mouse kidneys

Glomerular segmentation; 
glomerular nucleus; 
glomerular component 
detection; glomerular 
feature extraction; diabetic 
nephropathy classification/
prediction

72

FCN (two-​stage 
semi-​supervised 
approach)

PAS (paraffin 
sections)

Glomeruli 22 WSIs from mouse 
kidneys

Glomerular segmentation 110

CNN, SW-​CNN and 
FCN

PAS (paraffin 
sections)

Glomeruli 24 WSIs from mouse 
kidneys

Glomerular detection and 
segmentation

107

CNN and GAN PAS, COL3, 
CD31, AFOG 
(paraffin 
sections)

Glomeruli, interstitial space, 
interstitial capillaries

20 WSIs from mouse 
kidneys

Stain-​dependent 
supervised segmentation; 
stain-​independent 
unsupervised segmentation

108

Region-​based CNN TRI (paraffin 
sections)

Glomeruli 87 WSIs from rat kidneys; 
6 WSIs from human kidney 
biopsies

Glomerular localization/
detection

111

Local binary 
patterns image 
feature vector and 
CNN

H&E, PAS, TRI, 
SIL, CR (paraffin 
sections)

Glomeruli 17 WSIs from mouse 
kidney; 10 WSIs from rat 
kidney; 9 WSIs from native 
kidney biopsies

Glomerular detection; 
glomerular sub-​classification

110

CNN, SW-​CNN and 
FCN

PAS (paraffin 
sections)

Glomeruli 24 WSIs from mouse 
kidneys

Glomerular segmentation 114

Segmental 
histogram of 
oriented gradients

Desmin 
(paraffin 
sections)

Glomeruli 20 WSIs from rat kidneys Glomerular detection 113

Colour 
segmentation 
and perceptual 
organization

H&E (paraffin 
sections)

Glomerular urinary space WSIs from mouse kidneys Glomerular detection 135

AFOG, Acid Fuchsin Orange G; CNN, convolutional neural network; COL3, collagen type III; CR, Congo red; FCN, fully convolutional network; GAN, general 
adversarial network; H&E, haematoxylin and eosin; PAS, periodic acid Schiff; RNN, recurrent neural network; SIL, silver; SW-​CNN, sliding window convolutional 
neural network; TRI, trichrome; WSIs, whole slide images.
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Applications and challenges
Pathomics and DL are complementary approaches to 
computational image analysis with both operationally 
and research-​driven applications. These approaches 
facilitate the discovery of new scientific knowledge and 
push the boundaries of clinical intuition. By contrast, 
operationally driven applications provide longer term, 
stable solutions to existing clinical use-​cases, facilitate 
more efficient clinical workflows and enable the use 
of existing knowledge in new ways72. Research- and 
operationally driven applications are far from inde-
pendent of one another, as an inherent feedback loop 
exists between them. Operationally driven applications 
designed on the basis of existing clinical needs often 
lead to unanticipated tertiary findings, which may 
motivate new research-​driven applications, resulting in 
updated scientific knowledge to be eventually deployed 
in the form of new operationally driven applications. In  
the next decade, nephropathology will be indisputably 
altered by this feedback loop between AI-​driven research 
discoveries and their application in clinical practice.

Research-​driven applications
In contrast to oncology42,77–85, only a few examples exist 
of research-​driven applications of computational image 
analysis in the nephrology literature72,106–114 (Table 3). The 
complexity of the renal parenchyma, the heterogeneity 

of the pathological features and the conventional use of 
multiple stains for renal histology preparations, make 
computer-​aided image analysis of renal biopsy samples 
challenging (Table 4). In order to produce a complete map 
or atlas of the entire renal parenchyma and its patholog-
ical variations, subject matter experts must manually 
annotate a large number of normal and abnormal histo
logical primitives (covering all normal structures and 
cells, and all possible pathological variations) to train 
the DL algorithms. Definition of the object boundaries 
(for example, glomerular tuft versus glomerular unit) is 
an obvious important pre-​requisite. Although oncolog-
ical pathologists can focus their manual annotation on a 
single monomorphic group of cells that form a specific 
tumour and then apply pathomic tools to identify sub-
visual variations, each form of kidney and glomerular 
disease is represented by a very heterogeneous aggrega-
tion and variable combination of normal and abnormal 
cells, even within the same disease category.

The choice of methodology for each purpose is an 
additional challenge. For example, several methodologies 
have been proposed for the segmentation of glomeruli: 
supervised classification with a separate detection and 
segmentation stage, which is highly dependent on the 
precise annotation of the glomerulus; segmentation of 
the white sickle space surrounding the Bowman capsule, 
which is highly dependent on the glomerulus relative 

Table 4 | Machine vision interrogation of nephropathology samples versus surgical pathology specimens

Consideration Nephropathology (kidney biopsy) sample Surgical pathology

Tissue size Generally small specimens (needle biopsies), which 
contain a variable amount of cortex and with limited 
sample of the objects of interest (e.g. focal lesions)

Resection specimens containing large 
fragments of tumours ± surrounding 
non-​tumoural tissue

Tissue staining A diversity of stains are routinely used. Several 
sections (levels) are stained for each biopsy sample, 
and each may contain a different representation of 
the objects of interest. The object of interest may 
not be represented in all the sections and stains

Routinely only haematoxylin and eosin

Tissue complexity The kidney parenchyma contains a variety of 
histomorphological structures (glomerular unit, 
proximal and distal tubular segments, collecting 
ducts, interstitial space, glomerular and interstitial 
microvasculature, arteries, veins and lymphatics) 
and cell types (glomerular and tubular epithelial 
cells, glomerular/interstitial capillaries, venular and 
arterial endothelial cells)

Generally homogeneous collection 
of tumoural cells ± surrounding 
non-​tumoural tissue

Histological 
complexity of disease 
manifestation

Quantitative and qualitative heterogeneity of 
disease manifestation at the structural and cellular 
level, often involving more than one structure 
or cell type at the same time. The association 
of diverse structural changes is not necessarily 
predictable

Limited histological heterogeneity. The 
histological manifestation of the disease 
can generally be graded based on a 
few pre-​selected parameters. Although 
assessment of aggressiveness is based 
on the most aggressive cell type, there 
may be some variability of the tumour 
grade within each case

Clinical data 
complexity

A variety of clinical parameters are often 
present; the natural history of kidney diseases is 
heterogeneous across and within the same disease; 
genetic heterogeneity exists, and there is lack of 
standardization of therapies during the course of 
many diseases

Outcome is evaluated by time to 
response, progression or death

Data analysis Most kidney diseases are rare; thus, the collection 
of samples from multiple institutions or laboratories 
is necessary to obtain a sufficient number of 
samples for meaningful studies

Many oncological diseases are fairly 
common. It is therefore easier to collect 
a large number of cases across only a few 
institutions or laboratories for analysis

Minimum spanning tree
The subset of the edges of a 
weighted graph that connects 
all vertices together by 
minimizing total edge weight. 
For example, if the physical 
distances (edges) between a 
set of histological primitives 
(vertices) on a whole slide 
image is represented as a 
graph, then its minimum 
spanning tree is the 
combination of edges that 
minimize total physical 
distance, while still connecting 
all histological primitives.

Feature engineering
The process of computationally 
deriving features from 
databases on domain 
knowledge. These features act 
as mathematical inputs to 
machine-​learning algorithms.

Classifier
A mathematical function, 
typically formulated via 
machine learning, that maps a 
set of input variables to 
discrete output variables, 
known as classes.

Convolutional neural 
networks
(CNNs). Types of deep, 
feedforward networks, 
comprising multiple layers to 
infer an output from an input 
(the image). CNNs use building 
blocks to learn and extract 
feature maps from an image, 
and filters between the  
input and the output that  
are connected only to a fixed 
region from the previous layer 
(and not the entire layer). It 
also comprises pooling layers 
to reduce the dimensionality  
of the features.

Artificial neural networks
A set of connected input 
(image) and output (a defined 
class or number) units where 
each connection has a weight 
associated with it. During the 
learning phase, the network 
learns by adjusting the weights 
to predict the correct class 
label (for categorical data) or 
regression value (for 
continuous data) of the input 
image. There are different 
types of artificial neural 
networks (e.g. convolutional, 
recurrent, generative 
adversarial).
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cutting plane; and domain adaptation methods, which 
are dependent on a number of annotated target and 
source domain training data (Table 3). Generalization of 
the selected approach is virtually impossible, as the num-
ber of manual annotations required for each histological 
primitive can also vary and is dependent on the intrin-
sic structural heterogeneity of the histological primi-
tive. Furthermore, as each stain might provide unique 
information, the algorithms will need to be generated 
and tested on all stains before current practice can be 
changed to limit AI applications to a single stain. Finally, 
as the spatial distribution of different pathological struc-
tures is uniquely important to renal diagnostics, future 
applications in 3D WSI reconstruction115,116 will facili-
tate the accurate assessment of histological primitives 
(for example, glomerular number in a biopsy sample) 
and the spatial interplay between pathological features 
(for example, interstitial fibrosis and inflammation) and 
associated molecular signatures.

To date, the majority of studies using DL technology 
with kidney tissue have targeted low-​level tasks, such as 
the detection and segmentation of normal histological 
primitives (for example, glomeruli, tubules, interstitial 
capillaries and arteries) and universally recognized 
pathological primitives (for example, segmental and 
global glomerulosclerosis, nodular glomerulosclerosis,  
interstitial fibrosis and tubular atrophy) on WSIs from 
paraffin72,73,111,117–119 and frozen sections120 (Table 3;  
Fig. 2). More complex tasks have been executed by using 
a DL architecture to stage diabetic glomerulosclerosis72 
or to determine the association of interstitial fibrosis 
with clinical phenotypes such as chronic kidney disease 
stage, serum creatinine level, nephrotic range proteinu-
ria at the time of the biopsy and renal survival at 1, 3 and 
5 years (Fig. 2). Interestingly, the trained CNN models 
outperformed the pathologist-​estimated fibrosis score 
in predicting the output classes106.

Many pathomic tools for the prediction of outcomes, 
genotype and disease mechanisms have not yet been 
applied to renal pathology. The current lack of train-
ing and knowledge of the principles of computer-​aided 
image analysis and AI among pathologists for manual 
annotation and of data scientists for algorithm develop-
ment are just two factors that have prevented this field 
from moving forwards faster.

The development of computational imaging tools 
for nephropathology and pathology can exemplify 
the concept of parallel discoveries (Fig. 2). For exam-
ple, high-​throughput gene expression analysis and 
comparison of multiple samples at the same time can 
be achieved by applying tissue microarrays to glass 
slides containing fragments of tissue from numerous 
patients121. This technique provides an opportunity to 
apply computational imaging techniques to capture the 
desired histological primitive from an image, match his-
tological and cytological features across a range of length 
scales, and combine the information to create a single 
construct from multiple images in an array-​based format 
(an image microarray), on multiple patients at the same 
time. The combination of tissue and image microarrays 
enables the assemblage of many fields, reflecting highly 
specific morpho-​omic signatures122.

Similarly, the combination of laser capture microdis-
section techniques to isolate structures and cells can be 
enhanced via computational imaging techniques122. The 
pairing of computational image analysis with laser cap-
ture microdissection can be purposed to automatically 
detect the ROI as predefined by the pathologist, thus 
substituting the pathologist for the task, and/or to aug-
ment the process with information that would otherwise 
not be captured by the pathologist, but that can offer 
unique opportunities for omics discovery. For example, 
automatic detection of histological primitives followed 
by cluster analysis of those primitives may identify struc-
tures that share subvisual features independently of their 
morphological similarity at the human eye. Visualization 
tools to map these discoveries back to changes at the tis-
sue level might improve our understanding of disease 
mechanisms123.

Arguably the most complex task currently underway 
in the field of nephropathology is the development of a 
functional kidney cell atlas by KPMP investigators. The 
development of a histology-​based atlas of normal and 
pathological renal biopsy samples, where an array of 
validated morpho-​genomic and morpho-​transcriptomic 
data extractions will be spatially coupled to the WSI data,  
will provide an interactive computational framework 
in which interrogation can take place across all data 
domains, within an anatomic framework. This interac-
tive framework is expected to provide deeper insights 
into cell and disease classification and lead to the iden-
tification of actionable targets at the molecular level. 
Unlike most prior efforts, the KPMP effort makes 
digital histology data a centre point for possible initial 
discovery modes.

Operationally driven applications
As research-​driven applications become operationalized, 
AI tools for image analysis are likely to take a role in 
decision support through computer-​assisted diagnosis 
(which, importantly, differs from computer-​generated 
diagnosis). These decision support tools may be gen-
erated by processes such as DL algorithms, pathomics 
with feature engineering and computational integration 
of image data with data from other domains (Fig. 3). For 
example, automated detection of histological primitives 
has potential operational applications owing to its ability 
to increase the reproducibility of estimates of the distri-
bution, severity and quantity of structures and lesions 
that are known predictors of outcome or molecular 
signatures but which have limited reproducibility when 
assessed manually (for example, globally sclerotic glo-
meruli, interstitial fibrosis, diabetic glomerulosclerosis 
stage)4,5,12,16,71; and to provide a quantitative estimate of 
histological primitives that can be visualized but cannot 
be reliably counted manually (for example, podocytes, 
interstitial capillaries)98,100–104. Thus, DL quantifica-
tion of these histological primitives can augment the 
ability of the pathologist to interpret and diagnose 
kidney diseases.

The information contained in WSIs that the human 
cognitive system cannot directly perceive, known as 
subvisual features, provide an opportunity to pose new 
scientific questions and novel insights that have not yet 

Fully convolutional networks
Convolutional networks that 
lack fully connected layers and 
comprise only a hierarchy of 
convolutional layers. They  
can be used to learn 
representations from every 
pixel and make pixel-​level 
predictions.

Recurrent neural networks
Acquire inputs over different 
time points, taking into account 
the status of the input at the 
different time points and 
learning from the discrete 
earlier inputs, displaying 
dynamic behaviours.

Generative adversarial 
networks
Learn from implementing two 
simultaneous neural networks, 
one producing the data 
and the other evaluating 
the agreement between the 
generated data and the 
original input.

Radiomics
The high-​throughput extraction 
and analysis of features 
derived from radiological 
medical images, typically using 
techniques in machine vision, 
image processing and machine 
learning.

High-​dimensional feature 
spaces
A set of descriptive data 
attributes (i.e. features) 
measured across a cohort of 
samples, where the number 
of features (known as the 
dimension of the data) is 
significantly larger than the 
number of samples. Feature 
spaces are typically 
represented as matrices, where 
one dimension (i.e. matrix 
columns) represents different 
features and the other 
dimension (i.e. matrix rows) 
represents different samples.

Use-​cases
Descriptions of how to perform 
a task using examples, 
outlining the system’s 
behaviour in response to the 
request.

Image microarray
The assembly of uniformly 
sized and resolution-​matched 
images, representing key 
morphological features and 
fields of view, and aggregated 
into a single monolithic digital 
image file in an array format.
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been conceived or imagined based on conventional 
pathology approaches. Although the implementation 
of these approaches and integration of new knowledge 
arising from these findings into clinical practice will be 
complex and require extensive validation, future ML 
pipelines will be an integral component of the patholo-
gist’s workflow as decision support tools. Indeed, some 
of these algorithms are already making their way into 
routine practice in the field of radiation oncology42,124,125. 
The ultimate challenge will be the integration and imple-
mentation of computational image analysis-​generated 
data with other knowledge domains to establish fused 
datasets and associated morpho-​omic classifications, 
prognostications and predictions for kidney diseases 
at the individual patient level (that is, fused morpho-​
omic signatures). These applications will also have a 
role in drug discovery36, in the identification of partic-
ipants for enrolment in clinical trials and in rationally 
determining the dosage of therapeutic agents.

Despite the excitement about these new approaches, 
pathologists and data scientists are advocating for cau-
tious scepticism in the interpretation of quantitative 
results derived from the application of image analysis 
techniques115–119. Similar caution is warranted when 
considering the potential clinical implementation of 
such approaches, recognizing that vigorous validation 
should always be an integral step of the deployment 

process126–130. Our understanding of the key drivers 
behind AI-​based determinations is still incomplete, and 
we still do not possess sufficiently developed tools to 
assess performance metrics or enforce QC measures in 
the clinical setting. As algorithms become available for 
clinical deployment, regulatory bodies will need to work 
closely with the other stake-​holders (such as patholo-
gists, computer scientists, nephrologists, pathology lab-
oratories and institutions) to establish a framework for 
their approval and implementation.

Limitations of sample size
As digital pathology becomes more widely accessible, the 
analytical tools of AI and ML will reveal new opportu-
nities with which to develop large-​scale, kidney-​centric 
data ecosystems, to combine datatypes and datasets for 
discovery and validation, and for the practice of precision 
nephrology (Table 2). However, ML models are based on 
learning patterns in data and require sufficient numbers 
of training examples, with the added observation that 
most AI-​driven solutions require large amounts of data 
during their training process to be both successful and 
generalizable. This requirement could prove to be a chal-
lenge in their application to rare kidney diseases, where 
sample sizes are inherently small. Fortunately, novel AI 
and ML approaches that can be applied to small train-
ing sets are now becoming available. These approaches 

Kidney
biopsy

procurement

Whole
slide
image

Hand-crafted pathomics

Discovery pathomics

Visual assessment

Pathomic
feature space

Machine-
learning models

Digital pathology

Analogue to digital conversion
The renal biopsy glass slide
(input) is converted into a 

digital WSI (output)

Knowledge extraction
The WSI (input) is transformed into

meaningful knowledge (output) 
using AI and visual assessment

Knowledge integration
Fused knowledge from WSI and other
domains (input) becomes actionable
intelligence for patient care (output)

Artificial intelligence Human intelligence Actionable intelligence

Clinical
knowledge

Other omics
knowledge

Digital
pathology-

derived
knowledge

Patient

Convolution and activation
Pooling Up-sampling

Data transcription Data translation

Data transcription Data translation

Fig. 3 | The nephropathology digital ecosystem. The digital ecosystem 
covers three phases: the digital pathology phase (analogue to digital 
conversion), the knowledge extraction phase, which relies on human  
and/or artificial intelligence (AI), and the actionable intelligence phase, in 
which integrated knowledge is applied to patient care. Each phase begins 
with input data and ends by generating output data that represent the 
input for the successive phase. In the digital pathology phase, glass slides 
from the renal biopsy sample (that is, the analogue input data), are 
converted into whole slide images (WSIs) (that is, digital output data). The 
WSIs represent the input data for the knowledge extraction phase, from 
which useful information is generated (output data). Knowledge 
extraction can be broken down into two types: human cognition and AI. 
AI techniques can be implemented as companion diagnostic tools 
alongside human cognition. Human cognition is employed when WSIs 

(input image data) are visually assessed or scored by a trained pathologist 
to generate diagnoses or morphological profiles as digital pathology- 
derived knowledge (output data). AI-​based machine vision comprises both 
hand-​crafted pathomics and discovery pathomics. For hand-​crafted 
pathomics, image data (input) is transcribed into pathomic signatures  
(the pathomic feature space) and then translated into digital pathology- 
derived knowledge (the output data) using machine-​learning models. For 
discovery pathomics, the image data (the input data) are transcribed or 
encoded into structured data and then decoded into an output signal (the 
output image data) using deep learning. Finally, in the actionable 
intelligence phase, the knowledge obtained from the digital images  
(input data) is integrated with other data types, for example, omics and 
clinical data, and used to diagnose, prognosticate and select targeted 
treatments (output data) for the patient.

Cluster analysis
Statistical data analysis 
technique that is aimed  
at grouping objects in 
homogeneous groups 
(clusters).

Subvisual features
Features contained in the 
digital images that cannot be 
captured by the human eye, 
and require the application  
of machine vision technology. 
Synonymous with pathomic 
feature extraction.

Fused morpho-​omic 
signatures
The integration of 
patient-​specific data derived 
from multiple omic domains 
(e.g. pathomics, genomics, 
transcriptomics and 
metabolomics) to define 
patient-​specific phenotypes.
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use methodologies such as data augmentation, whereby 
computational perturbations (usually of a spatial or 
colorimetric nature) are used to increase the variation 
of a training set to improve model generalization; new 
approaches to high-dimensional data clustering131, 
whereby samples are grouped into similar categories 
on the basis of intrinsic data properties without the 
need for labelled training examples; or unsupervised 
machine-​learning processes, which provide reasonably 
robust image segmentation performance when used to 
identify normal renal histological primitives100,118. All 
these capabilities, taken together, represent a promis-
ing future for these new computational tools, and we  
expect that they will augment the clinical practice of 
both nephrology and pathology in the near future.

The limitations of ML approaches for use on small 
datasets will also be addressed by the development of 
robust learning health-​care systems. Aided by AI technol-
ogy, learning health-​care systems rely on the data-​driven 
generation of knowledge to enable the practice of 
evidence-​based medicine132–136. Implementation of this 
technology-​driven health-​care model will facilitate 
the sharing of data and ML hyper-​parameters (that is, 
parameters that refer to the model selection task or to 
the quality and speed of the learning-​process algorithm) 
between institutions, leading to aggregate models with 
better potential for generalizability. Furthermore, the 
continued establishment and management of large 
international nephrology consortia will also have a key 
role in the success of AI applications in rare kidney dis-
eases. Given the nature of ongoing consortium-​driven 
kidney research, which is most typically based on 
cross-​institutional and multi-​omics data13,137, it is highly 
likely that these consortia will serve as the blueprint for 
future collaborative AI endeavours in the renal space 
that operate at scale.

Training of medical professionals
Renal pathologists will have a critical role in establish-
ing the digital nephropathology ecosystem, developing 
clinically relevant ML and AI algorithms, and deploy-
ing such algorithms in routine clinical practice. Renal 
pathologists are the subject matter experts in renal his-
tology and, as such, they will need to work closely with 
data and machine vision scientists to design studies and 
protocols, ensure that relevant WSI datasets are made 
available, annotate WSI libraries, and finally curate, val-
idate and interpret the data that arise from these efforts. 

It will be critical for pathologists to be well-​versed in 
AI and ML applications and methods, including their 
limitations, so that these powerful tools can be applied 
to clinical practice quickly, effectively and reliably. 
Owing to the interdisciplinary nature of integrated 
computational pathology, the need for nephrologists to 
acquire new knowledge and skills is equally germane, as 
these individuals represent the penultimate consumers 
of this new class of information as generated by these 
approaches. Acknowledgment that AI will be integral 
part of medicine is the first step towards the re-​design 
of curricula for medical schools and residency or fel-
lowship training programmes to address the current 
inadequacy in preparing medical professionals for the 
imminent future138 (Table 2).

Conclusions
We can borrow concepts and analogies from biology to 
summarize the transformative process that is beginning 
to affect the nephropathology community. This trans-
formative process is based on a variety of events that 
represent the first decisive steps in the long anticipated 
pathway towards a new digitally enhanced ecosystem139. 
Humans are learning to operate within the confines of 
this new paradigm, as represented by digital avatars  
of living components, the operability of which is closely 
linked to the non-​living components of their environ-
ment. These biotic and abiotic constituents are linked 
together by new, interdependent cycles, dynamisms 
and flows. The next-​generation nephropathology is 
expected to operate within this new digital ecosystem 
and apply artificial (augmenting) intelligence tools to 
implement human–machine synergistic protocols in 
clinical practice to better categorize, predict and prog-
nosticate kidney diseases, and to identify candidates for 
conventional or novel therapeutic approaches. The crit-
ical steps needed for the success of this transformational 
process ultimately depend on practitioners in the field 
being open to acquiring new skills, and the adaptation 
of practice patterns to support the new discovery envi-
ronments made possible by these technologies. Most 
importantly, it will be essential for renal pathologists 
and nephrologists to understand both the strengths and 
inherent limitations of digital pathology technologies 
and, at the same time, be willing to invest the time and 
effort needed to shoulder their adoption.
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Learning health-​care 
systems
Systems built around 
evidence-​based medicine and 
on knowledge generation 
processes embedded in daily 
clinical practice. They rely on 
interdisciplinary approaches  
to generating large electronic 
health datasets, which are used 
to generate new knowledge by 
research, resulting in quality 
improvement of patient care.

Computational pathology
The science that includes big 
data generation and analysis, 
image processing, data mining 
and data fusion of digital 
pathology data.
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