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Introduction

Imagine poultry farming and processing where everything 
is optimized by using intelligent autonomous systems with 
human workers remotely managing operations and only phys-
ically intervening when necessary. This vision is a potential 
reality for the future of poultry production where the ecosystem 
is fully automated and managed by constantly evolving artifi-
cial intelligence (AI). As shown in Figure 1, a paradigm shift 
will take place from a poultry production scheme of today to 
one that is highly intelligent, automated, and data-driven. That 

is, a scheme that is run by autonomous systems that can make 
decisions and act on their own based on inputs from sensors. 
The top of Figure 1 illustrates a future paradigm where poultry 
houses will be managed around the clock through a supervisory 
AI framework with associated sensors and robots; birds will be 
autonomously transported to processing plants. Rich data sets 
incorporating every moment in broiler and breeder production, 
transportation, and processing will be recorded in cloud ser-
vers, and AI will constantly process the input data and evolve 
over time, consistently making informed decisions. Versatile 
robots carry out most day-to-day tasks such as removing mor-
tality and monitoring flock behavior to ensure the growth and 
welfare of the birds. In addition, virtual and augmented reality 
systems allow remote management and manipulation of the 
systems in the poultry house.

There are several challenges to address before such a vision 
becomes a reality. With more sophisticated mechanical de-
vices, sensors, faster computers, and an abundance of data, it 
has never been more possible to revolutionize and tightly inte-
grate every aspect of the poultry production and processing. 
This article casts a very novel vision of the future of poultry 
production, describes current limitations, and introduces some 
ongoing research in the context of broiler and breeder produc-
tion and transportation that could signal a transformation in 
the future of animal protein production.

Challenges in Poultry Broiler and Breeder 
Management

Challenges facing broiler and breeder production today 
include labor shortages, disease outbreaks, food safety and 
quality, flock uniformity, and animal welfare. While the pro-
duction is projected to increase over time, with more people 
moving out of rural areas (Zahniser et al., 2018), labor short-
ages will continue to be a primary challenge. One way to alle-
viate this challenge is to deploy technological solutions that can 
support the growing demand for poultry meat.

Disease outbreaks and food safety are issues that have 
significant impacts on broiler and breeder production 

Implications

• Technological advances will ensure labor, economic, 
and environmental sustainability for a robust poultry 
broiler and breeder management system while 
enhancing animal welfare and production efficiencies.

• Poultry broiler production will be driven by highly 
adaptive artificial intelligence (AI) and data-driven sys-
tems, making it more resilient to anomalous events.

• The rapidly evolving development of advanced sensors, 
robotics, AI, and transportation systems will help us to 
address many of the challenges facing poultry broiler 
and breeder management.
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(Nuñez and Ross, 2019). It is estimated that the global loss 
since 2003 caused by high pathogenic avian influenza out-
breaks could be billions of  dollars (McLeod et  al., 2005). 
Moreover, farm workers can become a disease vector by 
unknowingly carrying pathogens and viruses from one 
poultry house to another and cross-contaminating flocks. 
Food safety challenges are responsible for an estimated 9.4 
million foodborne illnesses every year in the United States 
(Scallan et  al., 2011). Both food safety and disease out-
comes would be improved through rapid diagnostics and 
better predictive control.

Broiler production and processing are intricately inter-
twined. Processing systems as they exist today operate mostly in 
a fixed automation model. Equipment is adjusted based on the 
average weight of the incoming birds, where normal distribu-
tion is paramount. Inconsistencies in flock uniformity present 
challenges to this fixed automation model where the outliers in 
the anticipated distributions cause equipment malfunctions or 
result in yield loss during processing, affecting the bottom line. 
Tools and processes to better manage flock uniformity can dir-
ectly improve processing efficiency and yield.

There are also environmental concerns related to broiler and 
breeder production. The litter produced in broiler and breeder 
houses has high nutritional value (Bora et al., 2020). However, 
improper management and application can lead to a range 
of problems including nutrient leaching (Reddy et  al., 2008, 
Hubbard et al., 2020), soil acidification (Beausang et al., 2020), 
emission of harmful gases like ammonia (Joardar et al., 2020), 
and the spread of pathogens (Reddy et al., 2008). For instance, 

the Chesapeake Bay has suffered from phosphorus pollution 
and algae blooms over the last two decades as documented in a 
report released recently by the Environmental Integrity Project 
(Lamm et al., 2021).

Lastly, managing poultry welfare is an ever-evolving oppor-
tunity. Ammonia with levels higher than 50 ppm produced by 
excretion affects the bird’s respiratory system’s mucous mem-
branes, a vital tool to fight off  respiratory infections. Moreover, 
studies show that the presence of 50 and 75 ppm ammonia de-
pressed bird weight by 6% and 9%, respectively, as compared to 
0 ppm (Miles et al., 2004). The humane treatment of broilers 
during production and processing is also a priority. Routine 
pre-slaughter activities such as live catching and transport then 
live hang at the plant are some of the most stressful times for 
the bird during the production process, with known physio-
logical and behavioral effects (Mitchell and Kettlewell, 2009; 
Schwartzkopf-Genswein et al., 2012; Jacobs et al., 2017; Saraiva 
et  al., 2020). Researchers continue to better understand the 
natural behaviors and tendencies of birds and adapt growing 
environments to the birds’ preferences (Ferreira et al., 2020). 
The ability to sense these preferences and measure behaviors 
in an automated and intelligent fashion will allow for better 
environmental controls that not only improve animal welfare 
but can also help with overall flock performance. Managing the 
distribution of feed and water can also be a welfare issue, as 
dominance and pecking orders can prevent some birds from 
obtaining full nutrition (Zuidhof et al., 2017). The following 
sections cast a vision for the poultry farm of the future and 
how it will be enabled through intelligent automation.

Figure 1. Current state and the future of poultry broiler management, transportation, and processing.
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A Vision for the Poultry Production System of 
the Future

The broiler and breeder production system of the future 
could employ novel innovations in sensing, automated and ro-
botic systems, data collection, and analytics, all complemented 
by an evolving AI framework. Manual labor could become 
a knowledge workforce not physically present in the poultry 
house but equipped with an enhanced capability to remotely 
manage, make decisions related to anomalous events, and 
take actions to resolve issues. Robots and automated devices 
driven by sensors and intelligent classifiers leveraging AI and 
machine learning could provide most of the labor-intensive 
tasks. Autonomous mobile robots available around the clock 
perform routine tasks currently done by farm labor such as 
picking up floor eggs in breeder houses, removing mortality, 
aerating bedding materials, removing litter, and spraying litter 
amendments, vaccines, and disinfectants. Furthermore, these 
robots collect localized data non-stop as they constantly roam 
through the houses. Drones are deployed to rapidly scout and 
assess the broiler and breeder houses for current and emerging 
issues, providing sensor data and intelligence to ground robots 
for fast targeted response.

Disease and food safety-related issues could be detected and 
addressed early through a network of smart sensors that feed 
data to AI classifiers enabling rapid and targeted response to 
undesirable pathogens. An accurate and robust biosensor could 
detect the presence of potential viral and bacterial pathogens in 
air and feces in a real-time fashion, so timely interventions can 
be implemented. Disease-induced symptoms are also directly 
detected by monitoring the behaviors of birds through AI sup-
plied by real-time data. Based on historical data, AI predicts 
possible disease outbreaks before they occur. The historical 
data are also used to trace disease vector, mode of transmis-
sion, and other patterns, which improves the AI’s early warning 
capabilities that could help prevent future outbreaks. When a 
disease outbreak or pathogen infection of birds is detected or 
predicted, autonomous robotic systems are deployed quickly to 
apply proper interventions, to remove an infected or diseased 
bird from the flock, or to isolate a group of birds from others 
in the house into a segregated space. Preliminary research has 
shown that autonomous ground robots can come in close phys-
ical contact with birds (Usher et al., 2015), enabling a direct 
measurement of disease and food safety-related pathogens on 
the birds themselves.

From a sustainability perspective, future poultry farms could 
be equipped with technologies to extract higher value materials 
and nutrients from traditional waste. This includes advanced 
adsorbing material to capture ammonia from poultry house 
ambient air or bioreactors to remove phosphorous species from 
chicken litter to be used as soil amendments (Xu et al., 2017).

Animal welfare considerations could be significantly im-
proved by using intelligent automation systems that can cap-
ture real-time data. For instance, intelligent systems that 
process and classify images, videos, and audio of actual bird 
behaviors could drive a better understanding of environmental 

operational parameters such as temperature that impact wel-
fare by associating a pattern between the birds’ behaviors and 
the environmental condition over time. Smart infrastructure 
and autonomous robots equipped with chemical and biological 
sensors enable a collection of rich heterogeneous data which in 
turn can be used to 1) unveil birds’ natural preferences with re-
gard to growth conditions including lighting, air flow, and bed-
ding materials; 2) monitor the birds’ growth and health status 
through real-time biosensing; and 3) characterize the growing 
environment with respect to disease and pathogens as well as 
ammonia concentrations. In addition, AI may improve preci-
sion feeding systems as described in Zuidhof et al. (2017) by 
making a more informed decision for feed scheduling based on 
localized environmental, health, and behavioral data of indi-
vidual birds. This could allow better control of the growth and 
uniformity of flocks, aiding upstream processing.

Future poultry transportation systems may eliminate the 
transport of live birds to minimize stressors such as phys-
ical discomfort, abnormal social settings, and other factors 
(American Veterinary Medical Association, 2016), which all 
contribute to significant stress accumulations. Activities as-
sociated with stunning and killing currently done at the pro-
cessing plant could also be moved upstream to the farm. To 
make this possible, robots herd the birds to a stunning station 
and shackle the stunned birds. A transportation system delivers 
the shackled birds while keeping track of individual birds so 
that each bird’s data collected during broiler and breeder man-
agement such as weights and health can be conveyed to the 
processing plant.

Technological Gaps Between the Current State 
and Envisioned Future

Recently, there has been an uptick in robot systems designed 
for operation in poultry houses (Ren et al., 2020). Most carry 
out specific or singular tasks. Examples include egg collection 
robots (Joffe and Usher, 2017) and disinfection robots (Feng 
et al., 2021). There is clearly a need for an automated robot that 
can execute a variety of tasks related to managing the houses. 
To control disease and ensure food quality and safety more effi-
ciently, there need to be low-cost biochemical sensors to detect 
pathogens and viruses rapidly and accurately. Current methods 
of avian flu detection that use virus isolation, real-time reverse 
transcriptase polymerase chain reaction (RRT-PCR), and 
antigen capture immunoassays have serious drawbacks. Virus 
isolation requires 5 to 7 d for results; RRT-PCR is only avail-
able through veterinary diagnostic laboratories and requires 
expensive equipment; and antigen capture immunoassays, even 
though quicker than the other two methods, are costly and in-
sensitive. Field-usable and rapid detection systems are needed 
to make timely intervention possible. In addition, vast amounts 
of data need to be collected to create an AI-driven model for 
predicting possible disease outbreaks. For localized sensing, the 
biochemical sensing should be tightly integrated with the robot 
localization for autonomous localized interventions. A way to 
identify individual birds is also needed to keep track of health 
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data for each of them, and a robot would need to safely con-
tact and interact with the birds to deploy vaccines and collect 
pathogen samples directly from the birds.

A real-time monitoring of the five domains of animal wel-
fare, which includes nutrition, environment, health, behavior, 
and mental state (Mellor et al., 2020), is required to improve 
poultry welfare outcomes. Currently, all five domains are 
loosely monitored and evaluated manually by workers with 
the small sample of data they can collect due to technological 
limitations. Specialty environmental sensors such as ammonia 
sensors that are currently available on the market often face 
issues such as short battery life, baseline drift, selectivity 
problems, false alarms, and a need for frequent recalibration. 
Moreover, the original intent of many of these commercial 
sensors was for personal safety monitoring targeting the de-
tection of low ammonia concentration, which is unsuitable for 
usage in poultry houses that often have high ammonia concen-
trations. A vast amount of data need to be collected, and AI 
algorithms need to be applied to autonomously recognize these 
behaviors in real time and assess the birds’ welfare. To do this, 
there needs to be a quantifiable metric and a standard way of 
evaluating welfare. Versatile robots are also needed to quickly 
respond to any undesirable events, and they need to be able 
to stimulate certain behaviors in birds. An extensive amount 
of study needs to be carried out to determine how robots are 
perceived by chickens and what the best way is to establish a 
communication between the two (Hubbard et al., 2020; Savage 
et al., 2000). An improvement in feeding management systems 
through data-driven methods and providing environmental en-
richment could also help reduce injurious pecking in poultry 
and captive birds (Dong et al., 2019).

Accomplishing the vision of fully automated and intelligent 
broiler and breeder management will require a supervisory AI 
and robotics framework capable of taking sensor data and expert 
knowledge inputs, processing these data, and converting them 
into tangible and actionable tasks to be carried out by robotic sys-
tems. Recent advancements in hardware and software including 
sensors, robots, 5G networks, and cloud infrastructures allow the 
collection of ample amounts of data from poultry houses. AI en-
gines that make decisions based on these input data to control 
automated systems will continuously improve through iterative 
machine learning. The improved AI can equip the data-collection 
system with new capabilities such as predictive control and de-
cision making. It can also inform engineers on how to improve 
system design so that the system can collect richer and more pre-
cise data, which in turn can be used for updating the AI itself. 
This iterative learning process will constantly occur over time and 
eventually bring the industry to the envisioned goal.

Ongoing Efforts to Close the 
Technological Gaps

Researchers in the Georgia Tech Research Institute’s (GTRI) 
Intelligent Sustainable Technologies Division have been working 
for several decades in an effort to close the gaps described above. 
The following sections highlight technologies developed in robotics, 

computer vision, audio processing, machine learning, chemical and 
biological sensing, and transportation systems that could have major 
impacts on achieving the poultry production system of the future.

Broiler and Breeder House Robotics

Several years were spent developing and evaluating an auto-
mated ground vehicle and a drone for operation in broiler and 
breeder house facilities. Early efforts proved that operation of 
both aerial and ground-based robot systems was not detrimental 
to the welfare of the flocks (Usher et al., 2015). Shortly thereafter, 
routines enabling smart automation for a ground robot were de-
veloped and successfully demonstrated allowing it to navigate 
among a flock of chickens and interact directly with them through 
nudging, which encourages chickens to move out of the way.

Shown in Figure 2 is the ground robot platform developed 
at GTRI. The platform consists of a four-wheeled commercial-
off-the-shelf  (COTS) chassis equipped with a computer, a lidar, 
2D and 3D cameras, an ultrasonic-based localization system, 
and a COTS robot arm with a suction cup end effector. The 
platform also has a suite of environmental sensors capable of 
recording temperature, relative humidity, ambient light levels, 
and several gasses such as CO2, CO, CH4, LPG, and NH3.

With the high-accuracy ultrasonic-based robot localization 
system, custom routines were developed to allow the robot to 
search a space for egg picking, guaranteeing full coverage of the 
floor area. This is achieved by enabling the robot to remember 
which areas of the house it has already traversed, allowing it to 
explore new areas each time it iterates between fixed waypoints. 
In this way, the robot can search the entire house with a very 
limited number of pre-defined waypoints to go to, allowing for 
a very simple and non-technical configuration.

AI algorithms were trained to classify eggs and chickens, as 
shown in Figure 3, and equipment in the house allowing the robot 
to have awareness of its surroundings (Joffe and Usher, 2017). In 
addition to locating objects of interest, the localization system al-
lows the robot to mark and store these locations in a map of the 
poultry house to provide to a farmer. This functionality, combined 
with the environmental sensing capabilities, can enable a farmer to 
know the locations and environmental conditions of problem areas 
in a house. For breeder operations, this might include the locations 

Figure 2. Ground robot research system for commercial farms.
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where floor eggs are regularly found, potentially allowing the farmer 
to adjust the conditions and reduce the potential of floor eggs.

The egg detection AI and 3D depth sensor allow the robot 
to perceive and localize eggs with respect to itself. This com-
bined with the COTS robot arm allows for autonomous de-
tection and removal of floor eggs in poultry breeder houses. 
The robot has been tested doing a variety of fully autonomous 
operations including navigation and egg picking for over 200 h.

Audio Sensing

Researchers have developed a system for assessing the con-
ditions and welfare of  broiler chickens through audio. Using 
audio signals captured in poultry houses as shown in Figure 4,  
researchers demonstrated the ability to detect illnesses such as 
laryngotracheitis, infectious bronchitis, as well as the bird’s re-
sponse to stress due to temperature and ammonia. This was 
accomplished using digital signal processing, AI, and machine 
learning techniques (Carroll, 2018). The result of  this work 
has been the formation of  a startup company, AudioT, which 
has the goal of  commercializing the work to provide manage-
ment tools that provide quantitative welfare measures. This 
would provide the farmer and broiler manager with informa-
tion to manage the birds in a more holistic manner. Eventually, 
through repeated expert input, the supervisory AI framework 
could automatically deploy necessary interventions.

Ammonia Sensing

GTRI researchers have developed a multi-function sensor 
system (Lotfi et al., 2019) with a machine learning-based robust 
and reproducible analysis component for continuous ammonia 
level monitoring as shown in Figure 5. The novel electro-thermal 
gas sensor is based on joule heating of an electrically conductive 
element and measuring the resistance change of the element 
which is a function of heat loss rate (Lotfi et al., 2019). When 
electrical power dissipation takes place in the suspended sensor 
heater in gas, the thermal conductivity of the gas surrounding 
the heater defines the rate of heat loss. Therefore, the steady 
state temperature of the heater is a function of the gas ambient 
thermo-physical properties. In order to improve the sensor’s limit 

of detection and sensitivity, a fully differential 3-omega (Lotfi 
et al., 2019) has been developed to enhance the limit of detection 
by magnifying the resistance change of the microbridge with a 
minimum noise amplification. Compared to traditional chem-
ical sensors, electro-thermal sensors have faster response times, 
lower power consumption, and are highly durable and low cost.

Chemical Sensing for Disease Detection

Researchers have developed a novel rapid detection biosensor to 
identify avian flu (Xu et al., 2007), which is inexpensive, portable, 
and able to detect several different avian strains simultaneously and 
within minutes. The sensor chip consists of two channels: a sensing 
channel and a reference channel. The sensing channel is coated 
with antibodies specific to avian flu, whereas the reference channel 
is coated with non-specific antibodies. The avian flu-specific anti-
bodies are designed to capture a protein on the surface of the virus; 
the reference channel acts as a control designed to minimize the im-
pact of non-specific interactions, changes in temperature, pH, and 
mechanical motion. The sensor then uses a process called interfer-
ometry to detect and measure the presence of viral particles.

In this process, light from a laser diode is coupled into an 
optical waveguide and travels under the reference and sensing 
channels. This creates an electromagnetic field above the wave-
guides, which is sensitive to the interaction between antibody 
and antigen. In the presence of viral particles, water molecules 
are displaced by the binding of antigen to the antibody-coated 

Figure 3. Sample results of AI classifier.

Figure 4. Audio system for monitoring poultry welfare.
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waveguide surface, which introduces a change in the velocity 
of the light passing through the waveguide. At the end of the 
waveguide, the light from the sensing and reference channels is 
combined, creating an interference pattern. A simple detector 
captures this pattern, and by looking at the associated phase 
shift, the system can determine the amount of virus present.

On-Farm Slaughter and Transport

As part of the efforts to rethink the future of poultry pro-
cessing and production, researchers have been investigating 
poultry processing concepts that have the potential to dramatic-
ally improve broiler welfare, minimize manual poultry handling 
to reduce labor requirements, lower transportation costs, 

improve process sustainability, and implement novel techno-
logical advancements.

In the design of this new process, live transport was elimin-
ated, thus reducing stress and significantly reducing the amount 
of manual handling of live broilers. For this re-envisioned pro-
cess, a paradigm that moves stunning and killing tasks from the 
processing plant to the farm was proposed. This required the de-
sign of a mobile Farm Processing and Transport (FPaT) system 
consisting of two mobile units: a Processing Trailer and Transport 
Trailer built on standard 53-ft trailers as shown in Figure 6.

Proposed changes represent a radical departure from the cur-
rent well-established process. Currently, researchers from the 
University of Georgia, Auburn University, USDA-ARS, and 
Georgia Tech are looking at the implications stemming from the 

Figure 6. Farm processing and transportation system.

Figure 5. In-house environmental monitoring system.
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proposed process on meat quality and food safety. Preliminary re-
sults suggest that there are no significant differences in major food 
quality matrix such as physical properties and myopathy scores, 
visual properties, water-holding capacity, marination performance, 
and yield and texture properties between carcasses processed using 
traditional techniques and the proposed new approach. However, 
there is more investigation that needs to be done, and the research 
team is currently performing work related to FPaT processing.

In addition to improved broiler welfare and reduced manual 
broiler handling, there are other benefits currently under inves-
tigation associated with the FPaT system such as reduced water 
use due to reduced scalding requirements since the carcasses are 
being aged before processing, which can make the defeathering 
process (Mead, 2004) easier. Improved yield efficiency can be 
achieved by accurate accounting of the number of carcasses 
and weight distribution to subsequently informing a processing 
plant of a product that is coming ahead of time to customize 
carcass processing. To minimize cross-contamination between 
loads, the system is equipped with a washdown system that is 
used before carrying a different load. Furthermore, this system 
improves transportation safety. This is done by eliminating 
shifting loads since all carcasses are shackled and fixed in place, 
which is typical for the current poultry transport system.

Conclusion

The future of broiler and breeder production is ripe with pos-
sibilities for transformational change. Innovation will lie in highly 
adaptive artificial intelligence and data-driven systems together with 
advances in sensing, robotic, and transportation technologies. This 
emergence of novel research and development is poised to reshape 
the broiler production and processing ecosystem by solving chal-
lenges from labor shortages and disease control to food safety and  
flock uniformity, while ensuring environmental sustainability  
and enhancing animal welfare. The ultimate goal being a robust 
and resilient broiler and breeder management system equipped to 
address anomalous events, ensuring a secure protein supply.
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