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Neurons in the dorsal motor nucleus of the vagus (DMNV) are more severely affected by

axonal injury than most other nerves, such as those of the hypoglossal nucleus. However,

the mechanism underlying such a response remains unclear. In this study, we compared the

expression of fibroblast growth factor 1 (FGF1), a neurotrophic factor, between the DMNV

and the hypoglossal nucleus by RT-PCR and immunohistochemical analyses. RT-PCR

showed that the level of FGF1 mRNA expression in the DMNV was lower than that in the

hypoglossal nucleus (P0.01). Immunohistochemistry revealed that FGF1 was localized to

neurons. FGF1-positive neurons in large numbers were evenly distributed in the hypoglossal

nucleus, whereas FGF1-positive neurons were located in the lateral part of the DMNV.

Double immunostaining for FGF1 and choline acetyltransferase demonstrated that 22.7%

and 78% of cholinergic neurons were positive for FGF1 in the DMNV and hypoglossal nu-

cleus, respectively. A tracing study with cholera toxin B subunit (CTb) demonstrated that

cholinergic neurons sending their axons from the DMNV to the superior laryngeal nerve

were FGF1-negative. The results suggest that the low expression of FGF1 in the DMNV is

due to severe damage of neurons in the DMNV.

Key words: FGF, laryngeal nervous system, dorsal motor nucleus of vagus, hypoglossal nucleus,
cholinergic neurons

I. Introduction

The dorsal motor nucleus of the vagus (DMNV) con-

tains preganglionic parasympathetic neurons sending their

axons to the peripheral organs. These preganglionic neurons

are affected by axonal injury much more severely than most

other nerves [13, 15]. Navaratnam et al. reported that only

25% of neurons remain in rat 18 months after the injury of

the vagal nerve, whereas 75% of the neurons in the hypo-

glossal nucleus survive after the axonal injury [15]. The

reason why neurons in the DMNV are more severely dam-

aged by axonal injury remains unclear. However, there is a

possibility that some growth factors are involved in the de-

generative and regenerative processes that follow the axonal

injury. Among growth factors, fibroblast growth factors

(FGFs) are of great interest, because of their abundance

in the brain and their potent trophic effect on neurons [re-

viewed in 1 and 17].

FGF1, a member of the FGF family, is a strong mitogen

for glial cells and exerts potent trophic effects on neurons [4,

10, 12, 18]. Jacques et al. demonstrated that exogenous

FGF1 increased the number of axons regenerating the in-

jured vagal nerve and the number of neurons surviving in the
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DMNV at nine weeks after injury [10]. Since FGF1 lacks the

signal peptide, FGF1 is thought to be released upon cellular

injury and to have a trophic effect on damaged neurons [3,

9]. If this is true, the expression of FGF1 should be at a rela-

tively low level in neurons of the DMNV as compared to

neurons of other cranial nuclei, such as the hypoglossal

nucleus. To test this hypothesis, we have compared the level

of expression of FGF1 in the DMNV and in the hypoglossal

nucleus by reverse transcription-polymerase chain reaction

(RT-PCR) and immunohistochemical analyses.

II. Materials and Methods

Animals

This study was performed in accordance with the PHS

Policy on Humane Care and Use of Laboratory Animals, the

NIH Guide for the Care and Use of Laboratory Animals, and

the Animal Welfare Act (7 U.S.C. et seq.). The animal use

protocol was approved by the Institutional Animal Care and

Use Committee (IACUC) of Shiga University of Medical

Science. Four Wistar rats weighing 200–250 g were used in

this experiment. The animals were housed with food and wa-

ter available ad libitum under 12:12 hr light-dark schedule.

RNA analysis

Four rats were used for RNA analysis. Under sodium

pentobarbital anesthesia (80 mg/kg), the animals were per-

fused via the ascending aorta with 10 mM phosphate buff-

ered saline (PBS), pH 7.4. The brain was dissected out and

quickly frozen. Samples were cut into 40 m thick sections

and mounted on sterilized silane-coated glass slides. The

regions of the DMNV and of the hypoglossal nucleus

were punched out under a dissection microscope. Total RNA

was isolated from both the regions using TRIzol reagent

(Life Technology, Rockville, MD, USA). Prior to reverse

transcription, the total RNA was incubated for 1 hr with 10

units of RNase-free DNase I (Amersham Biosciences Corp.)

and 20 units of recombinant RNase inhibitor (Wako Pure

Chemicals, Osaka, Japan) at 37C, to eliminate any trace of

contaminating DNA. Five µg of total RNA was then reverse-

ly transcribed for the first strand cDNA synthesis using 80

units of SuperScript II (Gibco BRL, Gaithersburg, MD) and

500 pmol of oligo dT12–18 (Amersham Biosciences Corp.) as

primers.

The PCR primers used in this study are summarized in

Table 1. -actin mRNA was amplified as an internal control

of variable mRNA amounts. The primers for -actin PCR

were designed to encompass different exons, and were ex-

pected to yield a 266 bp PCR fragment. The reaction mixture

for PCR consisted of 2 ng/l of the template cDNA, 0.8 M

each of the primers, 0.2 mM of each of four deoxynucleotide

triphosphates and 2.0 U Taq polymerase (AmpliTaqGold,

Perkin Elmer Japan Co., Tokyo, Japan) dissolved in 1PCR

buffer containing 1.5 mM MgCl2. After heat activation for

10 min at 95C, the sample was amplified using the follow-

ing profile of thermal cycle: (1) denaturation at 95C for 30

sec, (2) annealing at 56C for 30 sec, and (3) extension at

72C for 60 sec. We performed the PCR for 28–30 cycles.

The PCR products obtained were electrophoresed on a 3%

agarose gel and stained with ethidium bromide. The staining

intensity and area of each fragment were measured by an

image analyzer (FMBIO-100, Hitachi Software Engineering

Inc., Yokohama, Japan). The relative mRNA level in each

band was calculated by comparison with the expression

level of the endogenous control -actin mRNA, which was

used as an endogenous control. The normality of the data

was first assessed by F-test. F-test showed that P values for

the levels of FGF1 and choline acetyltransferase (ChAT)

and for the ratio of FGF1 to ChAT were 0.0655, 0.4230,

and 0.3915, respectively. The mRNA levels of the DMNV

and hypoglossal nucleus were then compared in four rats

using Student’s t-test. Results were considered significant

at P0.05.

Tissue preparations for immunohistochemistry

Five Wistar rats weighing 200–250 g were used in this

experiment. Under deep anesthesia with sodium pento-

barbital (80 mg/kg body weight), the animals were trans-

cardially perfused with 10 mM PBS followed by ice-cold

4% formaldehyde (FA) in 0.1 M phosphate buffer (PB),

pH 7.4. The medulla oblongata was then removed from

each animal. The specimens were postfixed for 3 days in the

same fixative as used in perfusion, and then immersed for

24 hr in 0.1 M PB containing 15% sucrose and 0.1% sodium

azide for cryoprotection. The medulla oblongatae were cut

into 20 m-thick sections using a cryostat. Before staining,

these sections were kept for at least 4 days at 4C in 0.1 M

PBS, pH 7.4, containing 0.3% Triton X-100 (PBST).

Table 1. PCR primers used in this study

Gene Primer Sequence Corresponding gene sequence
Product size 

(GenBank file)

FGF1 Upper 5'-ATGGCCGAAGGGGAGATCACAACC-3' sense to 267–290 468 bp

Lower 5'-TTAGTCAGAAGATACCGGGAGGGG-3' antisense to 711–734 (RNHBGF1)

ChAT Upper 5'-TTCTTTGTCTTGGATGTTGTCAT-3' sense to 610–632 529 bp

Lower 5'-AACATTTCAACCTCAACCTTCTGG-3' antisense to 1115–1138 (from ATG codon*)

-Actin Upper 5'-GACCTCTATGCCAACACAGTGCTGT-3' sense to 2754–2778 259 bp**

Lower 5'-CTAGAAGCATTTGCGGTGCACGATG-3' antisense to 3108–3132 (RATACCYB)

* refers to references 2 and 7, ** excluding intron E.
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Primary antibody

The specificity and characterization of the antibodies

were done using Western blot analysis and an immuno-

absorption test.

Western blot analysis and immunoabsorption test

For Western blots, a male Wistar rat weighing 250 g

was perfused with 10 mM PBS, pH 7.4, under deep anesthe-

sia with sodium pentobarbital (80 mg/kg). The medulla ob-

longata was dissected out and homogenized in 5 volumes of

ice-cold 50 mM Tris-HCl (pH 7.4) containing 0.5% Triton

X-100 and protease inhibitors (Complete Mini, Roche Diag-

nostics, Mannheim, Germany; one tablet/10 ml). The homo-

genates were centrifuged at 12,000 g for 20 min at 4C. The

supernatants were collected as a crude protein fraction. Pro-

tein concentration was assayed using Lowry’s method [12].

Fifty g of the crude extracted protein, 50 ng of human

recombinant FGF1 (140 amino acid form, M.W. 15.8 kDa;

Wako Pure Chemicals, Osaka, Japan) and prestained Preci-

sion protein standards (Bio-Rad, Hercules, CA) were elec-

trophoresed on a 15% sodium dodecyl sulfate-polyacryla-

mide gel under a reducing condition, and then transferred

to a polyvinylidene difluoride membrane (Immobilon-P,

Millipore, Tokyo, Japan). The membrane was blocked for 1

hr with 5% skim milk in 25 mM Tris-buffered saline (TBS,

pH 7.4) at room temperature, and further incubated over-

night with the monoclonal antibody against FGF1 (1 g/ml)

in 25 mM TBS containing 1% skim milk at room tempera-

ture. After washing with 25 mM TBS containing 0.1%

Tween-20 (Bio-Rad, Hercules, CA), the membrane was re-

acted for 2 hr with a peroxidase-coupled F (ab')2 anti-mouse

IgG (Histofine, Nichirei Corp., Tokyo, Japan; diluted 1:50).

Peroxidase labeling was detected by incubating with 0.02%

3,3'-diaminobenzidine in 50 mM Tris-HCl buffer (pH 7.6)

containing 0.3% nickel ammonium sulfate.

For immunoabsorption test, the FGF1 antibody at the

same dilution as used for immunohistochemistry was pre-

incubated overnight at 4C in 0.5 ml of PBST with or

without 10 g/ml of the human recombinant FGF1. The

FGF1/IgG complex was removed by incubation for 1 hr at

room temperature with 0.5 ml of heparin-Sepharose beads

(Amersham Pharmacia Biosciences Corp., Piscataway, NJ)

and centrifugation at 15,000 rpm for 20 min at 4C. The

supernatant was used as the immunostain in the immuno-

histochemical analysis described below.

FGF1 immunohistochemistry

Before staining, the sections were incubated for 30 min

in PBST containing 0.5% hydrogen peroxide at room tem-

perature in order to quench endogenous peroxidase. After

several washes with PBST, the sections were incubated with

the mouse monoclonal antibody against FGF1 (1 g/ml) at

4C for 2 days. The sections were washed as above and in-

cubated for 1 hr with biotinylated anti-mouse IgG (diluted

1:1000 in PBST; Vector Laboratories, Burlingame, CA,

USA) at room temperature. The sections were washed as

above and incubated for 1 hr with avidin-biotinylated perox-

idase complex (diluted 1:4000 in PBST; Vector Laborato-

ries) at room temperature. After washing above, a purple

color was developed with 0.02% 3,3'-diaminobenzidine and

0.3% nickel ammonium sulfate in 50 mM Tris-HCl buffer

(pH 7.6). The free-floating sections were mounted on gela-

tin/chrome-coated glass slides and air-dried.

Double immunofluorescence for FGF1 and ChAT or pChAT

We used double immunofluorescence staining to visu-

alize FGF1 and ChAT simultaneously. The sections were

incubated for 2 days at 4C with a mixture of mouse anti-

FGF1 monoclonal antibody (1 g/ml) and goat anti-ChAT

antibody (AB-144p, diluted 1:1000; Chemicon Internation-

al, Temecula, CA, USA). The sections were incubated for 4

hr at room temperature with a mixture of Alexa 488-conju-

gated anti-mouse IgG (1:500; Molecular Probes, Eugene,

OR, USA) and Alexa 594-conjugated anti-goat IgG (1:500;

Molecular Probes). PBST was used to dilute the antibodies

and wash the sections between each step. The free-floating

sections were mounted on gelatin-coated glass slides and

examined under a confocal laser-scanning microscope (Bio-

Rad, Hercules, CA, USA) as described previously [7, 16].

Image analyses

The image data were obtained from ten sections of two

rats. We measured areas of all nucleated neurons positive for

FGF1 (87 cells in the DMNV and 261 cells in the hypo-

glossal nucleus) or ChAT (385 cells in the DMNV and 302

cells in the hypoglossal nucleus) using the National Insti-

tutes of Health Image software on a Windows computer.

After assessing the normality of the data, the statistical

differences were determined by Student’s t-test. Results

were considered significant at P0.05.

Cholera toxin B subunit (CTb) tracing

Under anesthesia with sodium pentobarbital (40 mg/kg

body weight), 1% cholera toxin B subunit (CTb; List Bio-

logical Lab., Campbell, CA, U.S.A.) was injected with a

Hamilton syringe into the right superior laryngeal nerve of

each animal as a neuronal tracer. After 5 days, the animals

were deeply anesthetized and perfused with 10 mM PBS

followed by ice-cold 4% formaldehyde in 0.1 M PB. The

medulla oblongata was removed and processed for immuno-

histochemistry as above.

Double immunofluorescence for FGF1 and CTb

For simultaneous visualization of FGF1 and CTb, we

employed a double immunofluorescence method using the

mouse anti-FGF1 antibody and goat anti-choleragenoid anti-

body. The sections were incubated for 3 days at 4C with a

mixture of the mouse anti-FGF1 antibody (1 g/ml) and goat

anti-choleragenoid antibody (diluted 1:100,000; List Bio-

logical Lab.). After washing with PBST several times, the

sections were incubated for 4 hr at room temperature with

mixture of Alexa 488 conjugated anti-mouse IgG (1:500;

Molecular Probes) and Alexa 594 conjugated anti-goat IgG

(1:500; Molecular Probes). After washing with PBST, the
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free-floating sections were mounted on gelatin-chrome-

coated glass slides and then examined under the confocal

laser-scanning microscope (Bio-Rad).

III. Results

RT-PCR analysis

Figure 1 shows a typical example of RT-PCR experi-

ments with primer sets for FGF1 (Fig. 1A), ChAT (Fig. 1B)

and -actin (Fig. 1C). The expression of ChAT and -actin

mRNAs appears to be almost the same in the DMNV and

the hypoglossal nucleus, whereas the expression of FGF1

mRNA appears lower in the DMNV than in the hypoglossal

nucleus. Semi-quantitation of the data showed that the

expression of FGF1 and ChAT mRNAs was lower in the

DMNV than the hypoglossal nucleus (P0.01, Table 2). The

ratio of FGF1 mRNA to ChAT mRNA was significantly

lower in the DMNV than the hypoglossal nucleus (P0.01,

Table 2).

Specificity of the FGF1 antibody

On Western blot analysis, the mouse monoclonal anti-

FGF1 antibody stained the 15.8 kDa recombinant FGF1

(140 amino acid form) and a single band with a molecular

weight of about 16.5 kDa in rat medulla oblongata (Fig. 2A).

As reported previously [18], the antibody clearly stained the

cytoplasm of some neurons (Fig. 2B), and the staining was

abolished when the antibody was preabsorbed with 10 g/ml

of FGF1 (Fig. 2C).

Distribution of FGF1 in rat DMNV and hypoglossal nucleus

Figure 3 shows the distribution of FGF1-positive neu-

rons in rat DMNV and hypoglossal nucleus. In agreement

with the RT-PCR data, there were fewer FGF1-positive neu-

rons in the DMNV than in the hypoglossal nucleus. Positive

neurons were seen mainly in the lateral part of the DMNV

(arrows in Fig. 3A and B). In the hypoglossal nucleus,

FGF1-positive neurons were evenly distributed rostro-

caudally (Fig. 3A and B).

Figure 4 shows the typical examples of double immu-

nostaining for FGF1 (green) and ChAT (red). Most of the

ChAT-positive neurons in the hypoglossal nucleus con-

tained FGF1. In the DMNV, a small number of ChAT neu-

rons in the lateral part were positive for ChAT and a large

number of ChAT-positive neurons in the medial part were

negative for FGF1 (Fig. 4). Quantitatively, 22.7% and 78%

of ChAT-positive neurons were positive for FGF1 in the

DMNV and hypoglossal nucleus, respectively (Table 3). In

the hypoglossal nucleus, areas with FGF1-positive neurons

and ChAT-positive neurons were of approximately the same

size, whereas in the DMNV, areas of FGF1-positive neurons

were significantly smaller than areas of ChAT-positive

neurons (Table 4).

We used CTb tracing to determine if in the DMNV,

cholinergic neurons sending their axon to the larynx contain

FGF1. As seen in Figure 5, FGF1-positive neurons were a

different subpopulation from CTb-positive neurons (Fig. 5).

IV. Discussion

RNA analysis

RT-PCR analysis showed that the level of FGF1

mRNA expression was lower in the DMNV than that in the

hypoglossal nucleus, while the expression of -actin mRNA

did not differ between the two nuclei. Unexpectedly, ChAT

mRNA was expressed at a lower level in the DMNV than in

the hypoglossal nucleus. The reasons behind this observa-

tion are unclear. However, because the area of the DMNV is

smaller than that of the hypoglossal nucleus, it is possible

that surrounding areas were included when we punched out

the DMNV. Thus, we calculated the ratio of FGF1 mRNA to

ChAT mRNA. The ratio was also significantly lower in the

DMNV than in the hypoglossal nucleus.

Fig. 1. RT-PCR analysis using primer sets for FGF1 (A), ChAT (B)

and -actin (C) amplification. H and D indicate samples from the

hypoglossal nucleus and the DMNV, respectively. M indicates

molecular marker.

Table 2. Relative levels of FGF-1 and ChAT mRNAs in the DMNV

and hypoglossal nucleus

FGF-1

Hypoglossal nucleus 69912.51598.1

DMNV 34174.04390.0*

ChAT

Hypoglossal nucleus 64016.513852.8

DMNV 45524.512265.6*

FGF-1/ChAT

Hypoglossal nucleus 110.521.2

DMNV 79.925.2*

* P0.01 (n4).
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Characterization of FGF1 antibody

On Western blot analysis, the FGF1 monoclonal anti-

body was recognized with the 15.8 kDa of recombinant

human FGF1 (140 amino acid form) [5]. In rat medulla ob-

longata homogenate, both antibodies detected a single band

with a molecular weight of 16.5 kDa, which corresponds to

the molecular weight of a native form of FGF1 reported in

previous studies [20, 21, 22]. Although the 140 amino acid

form of FGF1 was first purified from bovine brain [5], the

native form of FGF1 is thought to be extended at the N-

terminal end [11].

To prepare the reagent for the immunoabsorption test,

we used heparin-coated sepharose beads to remove the

FGF1/FGF1 antibody complex, because FGF1 often reacts

Fig. 2. Detection of FGF1. (A) Western blot analysis of recombinant FGF1 (140 amino acid form, 15.8 kDa; lane 1) and crude protein extract

from rat medulla oblongata (50 g protein loaded; lane 2) with mouse anti-FGF1 antibody (diluted to 1 g/ml). M indicates molecular marker.

(B) Immunostaining for FGF1 in rat medulla oblongata with mouse anti-FGF1 antibody (diluted to 1 g/ml). (C) Preabsorption of the mouse

anti-FGF1 antibody with 10 g/ml of recombinant FGF1 abolishes staining of FGF1 in rat medulla oblongata.

Fig. 3. FGF1 immunoreactivity in the medulla oblongata at bregma levels of −13.30 mm (A) and 13.80 mm (B). Bar200 m.
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with heparan sulphate in tissues. Staining of medulla oblon-

gata sections for FGF1 was abolished using the antibody

preabsorbed with 10 g/ml of FGF1. These results indicate

that the anti-FGF1 antibody stains FGF1 in rat tissues.

Comparison of FGF1 expression between the DMNV and the 

hypoglossal nucleus

The RT-PCR results were corroborated by the results of

the immunohistochemical examination, which showed a

lower expression of FGF1 in the DMNV than the hypoglos-

sal nucleus. In the hypoglossal nucleus, 78% of cholinergic

neurons were positive for FGF1, while only 22% of cholin-

ergic neurons in the DMNV contained FGF1. In the DMNV,

FGF1-positive neurons were distributed mainly in the lateral

part of the nucleus. Such areas in the DMNV contain many

preganglionic cells sending their fibers to the ileum and

colon [19]. Previous reports indicated that neurons pro-

jecting to the larynx are distributed to the rostral part of the

DMNV [6, 23], but details of the studies were not shown.

The present study, which uses CTb tracing, demonstrated

that FGF1-positive neurons were a different subpopulation

from neurons projecting their axons to the larynx.

Preganglionic neurons in the DMNV are much more

severely affected by axonal injury than most other nerves

[13, 15]. For example, eighteen months after injury of the

vagal nerve, only 25% of the neurons could be found in rat

Fig. 4. Double immunostaining for FGF1 and ChAT in the medulla oblongata. (A) FGF1-immunoreactive neurons (green) are seen in the

DMNV and hypoglossal nucleus. (B) ChAT-immunoreactive neurons (red) are observed in the DMNV and hypoglossal nucleus. (C) Merged

image of (A) and (B). Bar200 m.

Fig. 5. Double immunostaining for FGF1 and CTb in the DMNV. (A) FGF1-immunoreactive neurons (green) and (B) CTb-immunoreactive

neurons (red) are seen in the DMNV. (C) Merged image of (A) and (B). Bar200 m.

Table 3. Quantitation of FGF1 and ChAT in the DMNV and hypo-

glossal nucleus

DMNV Hypoglossal nucleus

FGF1/ChAT ChAT/FGF1 FGF1/ChAT ChAT/FGF1

22.7% 93.1% 78.0% 81.8%

Table 4. Area-frequency distribution of FGF1-positive and ChAT-

positive neurons in the DMNV and hypoglossal nucleus

DMNV (m2) Hypoglossal nucleus (m2)

FGF1 976.6373.2* 1843.4502.3

ChAT 1233.9388.5 1946.7582.2

* P0.01 (between FGF1 and ChAT-positive neurons).
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DMNV, whereas 75% of the hypoglossal nucleus neurons

had survived [15]. The reason why neurons in the DMNV

are severely damaged by axonal injury remains unclear.

However, our results suggest that the low expression of

FGF1 in neurons in the DMNV may be responsible for their

susceptibility to axonal injury. The study by Jacques et al.

who reported that a single administration of FGF1 into the

injured axon of the vagus enhanced the survival of neurons

in the DMNV [10], supports this possibility. Thus, FGF1

supplementation may be useful in the treatment of vagal

nerve injury.

V. Conclusion

RT-PCR analysis and immunohistochemistry demon-

strated a lower expression of FGF1 in the DMNV than the

hypoglossal nucleus. CTb tracing confirmed that FGF1 was

not localized to cholinergic neurons sending their axon to

the larynx. Since FGF1 is released from damaged neurons

and acts as a trophic factor, the low expression of FGF1 in

the DMNV may account for the susceptibility of pregangli-

onic parasympathetic neurons to axonal injury.

VI. References

1. Baird, A. and Böhlen, P. (1990) Fibroblast growth factors. In

“Peptide Growth Factors and Their Receptors I”, ed. by M. B.

Sporn and A. B. Roberts, Springer-Verlag, Berlin, pp. 369–418.

2. Brice, A., Berrard, S., Raynaud, B., Ansieau, S., Coppola, T.,

Weber, M. J. and Mallet, J. (1989) Complete sequence of a cDNA

encoding an active rat choline acetyltransferase: a tool to investi-

gate the plasticity of cholinergic phenotype expression. J. Neuro-

sci. Res. 23; 266–273.

3. Eckenstein, F. P., Shipley, G. D. and Nishi, R. (1991) Acidic and

basic fibroblast growth factors in the nervous system: distribution

and differential alteration of levels after injury of central versus

peripheral nerve. J. Neurosci. 11; 412–419.

4. Figueiredo, B. C., Piccardo, P., Maysinger, D., Clarke, P. B. and

Cuello, A. C. (1993) Effects of acidic fibroblast growth factor on

cholinergic neurons of nucleus basalis magnocellularis and in a

spatial memory task following cortical devascularization. Neuro-

science 56; 955–963.

5. Gimenez-Gallego, G., Conn, G., Hatcher, V. B. and Thomas, K.

A. (1986) The complete amino acid sequence of human brain-

derived acidic fibroblast growth factor. Biochem. Biophys. Res.

Commun. 138; 611–617.

6. Hinrichsen, C. F. L. and Ryan, A. T. (1981) Localization of laryn-

geal motoneurons in the rat: morphological evidence for dual in-

nervation? Exp. Neurol. 74; 341–355.

7. Hirota, R., Itoh, K., Yaoi, T., Bamba, H., Uno, T., Hisa, Y. and

Fushiki, S. (2005) Molecular changes in neurons of rat nucleus

ambiguus after axotomy, as revealed by a novel method of in vivo

fluorescence neuronal labeling combined with single-cell RT-

PCR. Acta Histochem. Cytochem. 38; 229–235.

8. Ishii, K., Oda, Y., Ichikawa, T. and Deguchi, T. (1990) Comple-

mentary DNAs for choline acetyltransferase from spinal cords of

rat and mouse: nucleotide sequences, expression in mammalian

cells, and in situ hybridization. Brain Res. Mol. Brain Res. 7;

151–159.

9. Ishikawa, R., Nishikori, K., Furukawa, Y., Hayashi, K. and

Furukawa, S. (1992) Injury-induced reduction of acidic fibroblast

growth factor levels in the distal parts of rat sciatic nerve. Neuro-

sci. Lett. 135; 113–116.

10. Jacques, T. S., Skepper, J. N. and Navaratnam, V. (1999) Fibro-

blast growth factor-1 improves the survival and regeneration of

rat vagal preganglionic neurones following axon injury. Neuro-

sci. Lett. 276; 197–200.

11. Jaye, M., Howk, R., Burgess, W., Ricca, G. A., Chiu, I-M.,

Ravera, M. W., O’Brien, S. J., Modi, W. S., Maciag, T. and

Drohan, W. N. (1986) Human endothelial cell growth factor:

cloning, nucleotide sequence, and chromosome localization.

Science 233; 541–545.

12. Laird, J. M., Mason, G. S., Thomas, K. A., Hargreaves, R. J. and

Hill, R. G. (1995) Acidic fibroblast growth factor stimulates

motor and sensory axon regeneration after sciatic nerve crush

in the rat. Neuroscience 65; 209–216.

13. Lewis, P. R., Jones, P. B., Breathnach, S. M. and Navaratnam, V.

(1972) Regenerative capacity of visceral preganglionic neurons.

Nat. New Biol. 236; 181–182.

14. Lowry, E. C., Blumberg, J. M., Rhea, R. L. and Ranson, J. P.

(1951) Serum levels of orally administered penicillin. U. S.

Armed Forces Med. J. 2; 265–270.

15. Navaratnam, V., Jacques, T. S. and Skepper, J. N. (1998) Ultra-

structural and cytochemical study of neurons in the rat dorsal

motor nucleus of the vagus after axon crush. Microsc. Res. Tech.

42; 334–344.

16. Ogane, N., Yasuda, M., Hayashi, H., Kameda, Y., Minematsu, T.,

Itoh, J. and Osamura, R. Y. (2005) Utility of confocal laser scan-

ning microscopy (CLSM): With reference to interpretation in

immunostaining. Acta Histochem. Cytochem. 38; 267–271.

17. Reuss, B. and von Bohlen und Halbach, O. (2003) Fibroblast

growth factors and their receptors in the central nervous system.

Cell Tissue Res. 313; 139–157.

18. Sasaki, K., Tooyama, I., Li, A. J., Oomura, Y. and Kimura, H.

(1999) Effects of an acidic fibroblast growth factor fragment ana-

log on learning and memory and on medial septum cholinergic

neurons in senescence-accelerated mice. Neuroscience 92; 1287–

1294.

19. Satomi, H., Yamamoto, T., Ise, H. and Takatama, H. (1978)

Origins of the parasympathetic preganglionic fibers to the cat

intestine as demonstrated by the horseradish peroxidase method.

Brain Res. 151; 571–578.

20. Stock, A., Kuzis, K., Woodward, W. R., Nishi, R. and

Eckenstein, F. P. (1992) Localization of acidic fibroblast growth

factor in specific subcortical neuronal populations. J. Neurosci.

12; 4688–4700.

21. Thomas, K. A., Rios-Candelore, M. and Fitzpatrick, S. (1984)

Purification and characterization of acidic fibroblast growth fac-

tor from bovine brain. Proc. Natl. Acad. Sci. U S A. 81; 357–361.

22. Tooyama, I., Hara, Y., Yasuhara, O., Oomura, Y., Sasaki, K.,

Muto, T., Suzuki, K., Hanai, K. and Kimura, H. (1991) Produc-

tion of antisera to acidic fibroblast growth factor and their appli-

cation to immunohistochemical study in rat brain. Neuroscience

40; 769–779.

23. Wallach, J. H., Rybicki, K. J. and Kaufman, M. P. (1983) Ana-

tomical localization of the cells of origin of efferent fibers in the

superior laryngeal and recurrent laryngeal nerves of dogs. Brain

Res. 261; 307–311.


