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Abstract

Triple-negative breast cancer (TNBC) is characterized by excessive accumulation of tumor-

infiltrating immune cells, including tumor-associated macrophages (TAMs). TAMs consist of

a heterogeneous population with high plasticity and are associated with tumor aggres-

siveness and poor prognosis. Moreover, breast cancer cells can secrete factors that influ-

ence TAM polarization. Therefore, this study aimed to evaluate the crosstalk between

cancer cells and macrophages in the context of TNBC. Cytokine-polarized M2 macrophage

were used as control. Distinct from the classical M2 macrophage, TAMs generated from

TNBC-conditioned media upregulated both M1- and M2-associated genes, and secreted

both the anti-inflammatory cytokine interleukin IL-10 and the proinflammatory cytokine IL-6

and tumor necrosis factor- α. Theses TNBC-induced TAMs exert aggressive behavior of

TNBC cells. Consistently, TCGA and MTABRIC analyses of human breast cancer revealed

upregulation of M1- associated genes in TNBC comparing with non-TNBC. Among these

M1-associated genes, CXCL10 and IL1B were revealed to be independent prognostic fac-

tors for disease progression. In conclusion, TNBC cells induce macrophage polarization

with a mixture of M1 and M2 phenotypes. These cancer-induced TAMs further enhance

tumor cell growth and aggressiveness.

Introduction

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, charac-

terized by negative expression of the estrogen receptor, progesterone receptor, and HER2.

Patients with TNBC have a relatively poor prognosis, owing to an aggressive tumor behavior

and the lack of molecular targets for therapy [1,2]. In addition, TNBC features a unique micro-

environment distinct from other breast cancer subtypes, including a high level of tumor-infil-

trating lymphocytes and tumor-associated macrophages (TAMs) [3]. TAMs originate from

peripheral blood monocytes and differentiate into macrophages following recruitment to
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tumor sites. Accumulated evidence suggests that TAMs are a heterogeneous and plastic popu-

lation, in which polarized TAMs can be identified as M1- and M2-like macrophages [4].

M1-like macrophages are known to release proinflammatory cytokines and chemokines such

as tumor necrosis factor (TNF)-α, interleukin [IL]-1β, and CXCL10 and exert antitumor activ-

ity, whereas M2-like macrophages produce anti-inflammatory cytokines such as IL-4, IL-10,

and IL-13 and are associated with tissue remodeling, angiogenesis, and immune suppression,

leading to tumor development [5,6].

Generally, TAMs exhibit characteristics similar to those of anti-inflammatory M2 macro-

phages, which enhance the aggressive features of several cancers [7]. Primary TNBC tissues express

high levels of CD163+ M2-like macrophages, and the expression of CD163+ in the tumor stroma

is associated with the absence of hormone receptors and increased aggressive features of breast

cancer [8,9]. Previous studies have also reported that TNBC cells educate primary monocytes

toward the M2-like macrophage phenotype by secreting high amounts of monocyte colony-stimu-

lating factor (M-CSF) [8,10]. By contrast, TAMs can secrete soluble factors including growth fac-

tors, cytokines, and chemokines such as transforming growth factor [TGF]-β, vascular endothelial

growth factor, M-CSF, IL-10, and CXCL10 to induce tumor progression and metastasis [11–14].

In this study, we aimed to evaluate the crosstalk between TNBC cells and macrophages. We

found that soluble factors obtained from a TNBC cell line modulate monocytes toward a

mixed population of M1- and M2-like macrophages. Unlike classical M2-polarized macro-

phage, these TAMs show an upregulation of M1-associated genes and secrete the proinflam-

matory cytokine IL-6. TNBC cells co-cultured with TAMs exhibited increased cell

proliferation and migration. Thus, our results support the complex interactions between mac-

rophages and TNBC in tumor development.

Materials and methods

Cell culture

The protocol and written informed consent for obtaining peripheral blood from healthy

donors were approved by the Institutional Review Board of the Faculty of Medicine, Chula-

longkorn University (IRB NO.437/62). The MDA-MB-231, MDA-MB-468, and MCF-7

human breast cancer cell lines and THP-1 monocytic cell lines, obtained from the American

Type Culture Collection (ATCC1, VA, USA), were grown in Dulbecco’s Modified Eagle

Medium (DMEM) (Gibco, NY, USA) and Roswell Park Memorial Institute (RPMI)-1640

medium (Gibco), respectively, at 37˚C in a humidified incubator with 5% carbon dioxide.

Both media were supplemented with 10% fetal bovine serum (FBS), 1% penicillin/streptomy-

cin, and 1X GlutaMAX (Gibco).

Macrophage differentiation

THP-1 cells were stimulated with 100 nM phorbol 12-myristate 13-acetate (PMA) (Sigma-

Aldrich, Saint Louis, MO, USA) in RPMI medium for 24 h, followed by a 24-h rest period in

fresh RPMI-1640 media to allow differentiation into macrophages. For the generation of

TAMs, THP-1-derived macrophages were treated with 2 mL of conditioned media (CM) from

breast cancer cells for 48 h. For M2-like macrophage polarization, IL-4 and IL-13 were added

to fresh RPMI media for 48 h at a final concentration of 20 ng/mL and 20 ng/mL, respectively.

Breast cancer cell CM preparation

The TNBC cell lines MDA-MB-231 and MDA-MB-468 or the hormone-positive breast cancer

cell line MCF-7 were seeded at 5 × 105 cells per well in a 6-well tissue culture plate for 24 h.
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The cultured supernatant was removed and replaced with fresh RPMI media. To remove dead

cells, the cell-free supernatant was collected after 24 h of incubation and centrifuged at 400 × g

for 5 min. Fresh CM was prepared for each experiment.

Quantitative reverse-transcription polymerase chain reaction assay

Total RNA was extracted with the RNeasy Mini kit (QIAGEN, Hilden, Germany). RNA (1μg/

sample) was reverse transcribed to yield cDNA using the QuantiTect reverse-transcription kit

(QIAGEN). The synthesized cDNA was used as the template to measure the relative expres-

sions of these genes: CXCL10, IL-1B, TNF, TGFB1, TGFBR2, CCL22, CCL18, and IL10. Quanti-

tative reverse-transcription polymerase chain reaction was performed with StepOnePlusTM

(Applied Biosystems, MA, USA) using SYBR green (Applied Biosystems). The mRNA expres-

sions of the candidate genes were normalized to that of the reference gene human β-actin and

calculated as 2−ΔΔCt. The following primers were used in the amplification:

Flow cytometry

THP-1-derived macrophages were washed and resuspended with staining buffer (1X phos-

phate-buffered saline (PBS) containing 1% FBS). Cell pellets were incubated with anti-CD163

antibody (OTI2G12) (Abcam, Cambridge, UK) for 30 min at 4˚C. Cells were washed and

stained with fluorochrome-conjugated secondary antibodies, goat anti-mouse IgG H&L

(Alexa Flour1 488, ab150113, Abcam) for 20 min. After staining, all cells were washed twice

and analysis was carried out with flow cytometry (BD Accuri™).

Transwell co-culture assay

THP-1 cells were seeded and stimulated with PMA at a cell density of 5 × 105 cells/well on

Transwell inserts (0.4 μm pore size, Costar 3450; Corning, Inc., NY, USA), followed by a 24-h

rest period in fresh RPMI-1640 media. The THP-1 stimulated cells were then incubated with

Genes Primer sequence

β-actin F 5’-ACCGTGAAAAGATGACCCAG-3’

R 5’-AGCCTGGATGGCTACGTACA-3’

CXCL10 F 5’-GAAAGCAGTTAGCAAGGAAAGGT-3’

R 5’-GACATATACTCCATGTAGGGAAGTGA-3’

IL1B F 5’-GGCGGCATCCAGCTACGAAT-3’

R 5’-TCCTGGAAGGTCTGTGGGCA-3’

TNF F 5’-GCATGATCCGGGACGTGGAG-3’

R 5’-GGGGGCCGATCACTCCAAAG-3’

TGFBR2 F 5’-AAGTCGGATGTGGAAATGGA-3’

R 5’-CAGTGGATGGGCAGTCCTAT-3’

TGFB1 F 5’-AGGGCCCAGCATCTGCAAAG-3’

R 5’-CTGCGTGTCCAGGCTCCAAA-3’

IL10 F 5’-TGCCTTCAGCAGAGTGAAGA-3’

R 5’-GCAACCCAGGTAACCCTTAAA-3’

CCL22 F 5’-TCCTTGCTGTGGCGCTTCAA-3’

R 5’-CTCGGGCAGGAGTCTGAGGT-3’

CCL18 F 5’-ATGGCCCTCTGCTCCTGT-3’

R 5’-AATCTGCCAGGAGGTATAGACG-3’

https://doi.org/10.1371/journal.pone.0273044.t001

PLOS ONE TNBC induces macrophage with M1/M2 mixed phenotype

PLOS ONE | https://doi.org/10.1371/journal.pone.0273044 August 12, 2022 3 / 18

https://doi.org/10.1371/journal.pone.0273044.t001
https://doi.org/10.1371/journal.pone.0273044


either IL-4/IL-13 or conditioned media harvested from MDA-MB-231 cells for 48 h to gener-

ate cytokine-polarized M2 and TAMs as mentioned earlier. Subsequently, the Transwell

inserts containing the THP-1-derived macrophage were placed with MDA-MB-231 cells that

were pre-seeded overnight at a cell density of 5 × 105 cells/well in a Transwell-suitable 6-well

plate. After co-culturing for 72 h, the Transwell inserts were removed, and the MDA-MB-231

cells were harvested and subjected to cell proliferation and migration assays.

Cell proliferation assay

MDA-MB-231 cells were harvested after the Transwell co-culture assay for the measurement

of cell proliferation. MDA-MB-231-treated cells were seeded in a 96-well plate at a concentra-

tion of 5 × 103 cells/well in 100 μl of DMEM. The cell proliferation reagent WST-1 (Sigma-

Aldrich) was added at 10 μl/well, and the plate was incubated for 4 h. Cell viability was mea-

sured at 24, 48, and 72 h, according to the manufacturer’s instructions.

Cell migration assay

MDA-MB-231 cells were harvested after the Transwell co-culture assay and seeded into

96-well plates at a density of 5 × 104 cells/well. After overnight incubation, a wound was cre-

ated by scratching the cell monolayer using a 10-μL pipette tip. The remaining cells were

washed thoroughly with PBS to remove cellular debris and incubated at 37×C in serum-free

media. The wound space was photographed under a phase-contrast microscope (IX51 with

DP70, Olympus, Tokyo, Japan) at 0, 6, 12, and 24 h. The total wound area at each time point

was determined using ImageJ software and presented as the relative value to 0 h, as previously

described [15].

Cytokine measurement

THP-1-derived macrophages were treated with CM from breast cancer cells or cytokines IL-4/

IL-13 for 48 h, as described earlier. The cultured supernatant was removed, washed with PBS,

and replaced with fresh RPMI media. After 24 h, to remove dead cells, the cultured superna-

tant was collected and centrifuged at 400 × g for 5 min. The cultured supernatant collected

from THP-1 cells was stimulated with PMA for 24 h, followed by fresh RPMI media for 24 h

that served as control. For quantitative detection of cytokine proteins, cell-free supernatant

was assayed using the BD™ Cytometric Bead Assay (Becton Dickinson, NJ, USA), including

IL-4, IL-10, TNF-α, and IL-6. The assay was performed according to the kit’s instruction man-

ual provided by the manufacturer.

TCGA and METRABRIC Datasets analysis

Gene expression analyses in primary breast cancer tissues and patient clinical data from

METABRIC [16] and TCGA [17] were retrieved from cBioPortal [18]. Boxplot analysis was

used to compare the mRNA level between two cancer types, TNBC and non-TNBC, catego-

rized by ER, PR, and HER2 status. The number of tissues analyzed in all boxplots was 1,904 in

METABRIC (1605 non-TNBC, 299 TNBC) and 1,093 in TCGA (978 non-TNBC, 115 TNBC).

Kaplan-Meier survival analysis was performed using METABRIC study. Nine hundred fifty-

two patients with available data of gene expression and time to disease-free were included. The

mRNA expression was categorized as low and high levels comparing to median expression.

Logrank test p-value was used for survival analysis. Cox regression model was used for univari-

ate and multivariate analyses of gene expression level, pathological stage (0–IV), and cancer

type (TNBC, non-TNBC). Boxplot and survival analyses were generated using R program.
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Statistical analysis

Results were generated from three or more independent experiments. Values are presented as

mean ± standard error of the mean (SEM). Data with three or more groups were analyzed sta-

tistically by one-way analysis of variance and Tukey’s multiple comparisons test. For compari-

son between two groups, a two-tailed unpaired t-test was used. A value of p� 0.05 was

accepted as significant (�p< 0.05; ��, p< 0.01; ���, p < 0.001; ����, p< 0.0001).

Results

TNBC cells induce tumor-associated macrophages with characteristics of a

mixed M1 and M2 phenotype

TAMs play critical roles in tumor progression. In TNBC, the infiltration of macrophages in

the tumor tissue promotes disease progression and leads to a poor prognosis [19]. To examine

the crosstalk between TAMs and TNBC cells, the human monocytic leukemic cell line THP-1

was used to generate an in vitro model of TAMs. THP-1 cells were differentiated into macro-

phages by PMA stimulation for 24 h, followed by treatment with CM obtained from two

TNBC cell lines, namely, MDA-MB-231 and MDA-MB-468, to generate TAMs, as described

in Fig 1A. As previous observations suggested that most TAMs closely resemble M2 macro-

phage, PMA-stimulated THP-1 cells were polarized into M2 macrophages with IL-4 and IL-

13, as previously described [20]. This population served as a positive control for the compari-

son of THP-1-differentiated TAMs induced by TNBC-CM. Through flow cytometry, we ana-

lyzed the expression of CD163, a surface marker expressed on M2 macrophages. Consistent

with previous reports [8], TAMs generated by incubation in TNBC cell CM expressed signifi-

cantly higher CD163 levels than THP-1-derived macrophages (control). The percentage of

CD163+ cells in TNBC-induced TAMs was similar to those of M2-polarized macrophages

using IL-4 and IL-13 (Fig 1B and 1C).

We then quantified the mRNA level of classical M1 markers (CXCL10, IL-1β, and TNF-α)

and alternative M2 markers (TGF-β1, TGF-βR2, CCL22, CCL18, and IL10) relative to THP-

1-derived macrophages (control). Cytokine-polarized M2 macrophages demonstrated a signifi-

cant upregulation of CCL18 and modest expression of M1-associated genes, confirming the char-

acteristics of the M2 phenotype (Fig 2A and 2B). Interestingly, MDA-MB-231-polarized TAMs

exhibited a distinct gene expression profile of M2 phenotype with upregulation of TGF-β1 but no

increase in CCL18. Besides, an abundance of M1 associated gene expression including CXCL10,

IL-1β, and TNF-α were observed (Fig 2A and 2B). The elongation of macrophages correlates with

a reduction of proinflammatory cytokines and polarization of macrophages toward the M2 phe-

notype [21]. In this study, we observed that M2-polarized THP-1 exhibited pseudopodia forma-

tion, whereas unstimulated THP-1 and THP-1-derived macrophages displayed a large, round,

single-cell morphology (Fig 2C). However, MDA-MB 231-induced TAMs displayed a mixed

morphology of rounded and elongated cells. Moreover, analysis of cytokines secretion revealed

that M2-polarized macrophages secreted high levels of IL-4 and low levels of IL-6 and TNF-α,

which are M1 mediators that stimulate a proinflammatory immune response [22]. Unlike

M2-polarized macrophages, TNBC-induced TAMs secreted a substantial level of IL-10, IL-6, and

TNF-α, while IL-4 was barely detected (Fig 2D). Taken together, the results of gene expression,

cell morphology, and cytokines secretion have demonstrated that TNBC may induce overlapping

and mixed populations of THP-1 derived TAMs. In addition, the mixed M1/M2 phenotype was

also observed in primary monocytes that were treated with CM from two different TNBC cell

lines; MDA-MB-231 and MDA-MB-468, as indicated by an upregulation of both M2 (CD206)

and M1 (CD282, CD284) surface markers (S1 Fig).
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Fig 1. Generation of TNBC-induced TAMs. (A) THP-1 cells were PMA-treated for 24 h and washed with RPMI media for another

24 h. The conditioned media collected from breast cancer cells were used to treat differentiated THP-1 and incubated for 48 h to

generate TAMs. The illustration was created with BioRender.com. (B) Flow cytometry-based analysis of TAMs and M2-induced

THP-1-derived macrophages for the expression of the surface marker CD163 as compared with an isotype control. Control, THP-

1-derived macrophages with RPMI media alone; TAMs, THP-1-derived macrophages treated with MDA-MB-231 CM and
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TNBC-induced TAMs increase breast cancer cell proliferation and

migration

In the TNBC microenvironment, tumor stromal cells including macrophages secrete several

factors that can promote tumor growth and metastasis [23]. As TNBC-induced TAMs exhib-

ited M1/M2 phenotype heterogeneity and produced the tumor-promoting cytokine IL-6, we

sought to evaluate the effects of TNBC-induced TAMs on TNBC growth. THP-1-derived mac-

rophages, M2-polarized macrophages, or MDA-MB-231-induced TAMs were co-cultured

with MDA-MB-231 in a Transwell system that allowed the exchange of soluble factors (Fig

3A). After 72 h of co-culture, MDA-MB-231 cells were subjected to WST-1 assay to ascertain

their proliferation rate. As displayed in Fig 3B, TAMs with a mixed M1/M2 population signifi-

cantly enhanced the proliferation of TNBC cells, eliciting a fold change similar to that of

M2-polarized macrophages.

MDA-MB-468 CM; and M2, THP-1-derived macrophages treated with IL-4 (20 ng/mL) and IL-13 (20 ng/mL) cytokines. (C) The bar

graph represents the mean and SEM from four different experiments with significance level at �p< 0.05, �p< 0.05, ��p< 0.01, and
���p< 0.001. TAMs, tumor-associated macrophages; CM, conditioned media; PMA, phorbol 12-myristate 13-acetate; TNBC, triple-

negative breast cancer, RPMI, Roswell Park Memorial Institute.

https://doi.org/10.1371/journal.pone.0273044.g001

Fig 2. TNBC-induced TAMs contain a mixed population of M1 and M2. (A-B) THP-1 derived macrophages were

treated with MDA-MB-231 conditioned media (TAMs) or IL-4/IL-13 (M2) for 48 h. The mRNA expression level of

(A) M1 markers (CXCL10, IL-1β, and TNF-α) and (B) M2 markers (TGFβ1, TGFβR2, CCL22, CCL18, and IL10) were

quantified relative to THP-1-derived macrophages (control). The relative expression level was normalized to the level

of the human β-actin gene. (C) Morphological observation under microscope of THP-1 cells treated under various

conditions; MDA-MB 231 conditioned media (TAMs), IL-4 and IL-13 (M2), PMA stimulated THP-1 alone (control).

Bright-field images were displayed at 20× magnification of phase contrast microscopy. Scale bar, 100 μm. (D) The

culture supernatant harvested from PMA-stimulated THP-1 treated with MDA-MB 231 conditioned media (TAMs

MDA-MB-231), MDA-MB-468 conditioned media (TAMs MDA-MB-468), PMA-stimulated THP-1 treated with IL-4

and IL-13 (M2), and PMA stimulated THP-1 alone (control) were analyzed by CBA assay to measure the

concentrations of TNF-α, IL-6, IL-4, and IL-10. Data are represented as the mean ± SEM of three independent

experiments, with significance level at �p< 0.05, �p< 0.05, ��p< 0.01, and ���p< 0.001. TAMs, tumor-associated

macrophages; TNBC, triple-negative breast cancer; IL, interleukin; TNF, tumor necrosis factor; PMA, phorbol

12-myristate 13-acetate.

https://doi.org/10.1371/journal.pone.0273044.g002
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Then, we determined whether TAMs could promote TNBC cell migration, which is a criti-

cal step in tumor metastasis. We used a wound-healing assay to determine the total wound

area at each time point, as previously described [15]. The migratory activity of MDA-MB-231

was measured at 6, 12, and 24 h after the infliction of a scratch wound to exclude the cell prolif-

eration effect (Fig 4A). TAMs generated from MDA-MB-231-CM and cytokine-polarized M2

macrophages significantly increased the mobility of TNBC cells (Fig 4A and 4B). Thus, our

results suggest that TAMs with a mixed M1/M2 phenotype could promote cell proliferation

and migration in TNBC cells similar to that of IL-4/IL-13-polarized M2 macrophages.

TNBC but not HR+ BCA secrete high amounts of IL6

A study revealed that BCA with different molecular characteristics distinctly influenced mac-

rophage phenotype and function [10]. Thus, we sought to investigate the phenotype of TAMs

induced by hormone receptor-positive (HR+) BCA. We observed that TAMs polarized by CM

collected from HR+ BCA (MCF-7 cells) demonstrated an upregulation of M2-associated

genes, including TGF-b1 and CCL22. However, M1-associated proinflammatory mediator

Fig 3. TAMs increase TNBC cell proliferation. (A) Schematic diagram of the Transwell assay. THP-1 monocytes

were seeded on the Transwell insert and differentiated to macrophage. TAMs were generated by treating THP-

1-derived macrophage with CM for 48 h. Transwell inserts containing TAM were co-cultured with MDA-MB-231

seeded in 6-well plate and incubated for 72 h. (B) Cell proliferation rate evaluated by WST-1 assay. Data are calculated

as fold change to time 0 and represented as mean ± SEM of 3–4 independent experiments, with significance level at
�p< 0.05. TAMs, tumor-associated macrophages; TNBC, triple-negative breast cancer; CM, conditioned media.

https://doi.org/10.1371/journal.pone.0273044.g003
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Fig 4. TAM promotes the migratory activity of TNBC cells. (A) Representative images of the wound migration assay

of MDA-MB-231 cells measured at 0 h, 6 h, 12 h, and 24 h under a phase-contrast microscope. (B) Time course of

wound closures expressed as the remaining wound area relative to time point 0 h. Data are represented as mean ± SEM

of 3–4 independent experiments, with significance level at �p< 0.05 vs control. TAMs, tumor-associated macrophages;

TNBC, triple-negative breast cancer.

https://doi.org/10.1371/journal.pone.0273044.g004
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genes including CXCL10, IL-1b, and TNF-a were significantly downregulated in MCF-

7-induced TAMs (Fig 5A). Compared with TNBC-induced TAMs and IL-4/IL-13-polarized

M2 macrophages, the cytokine gene profile of HR+-induced TAMs was related to those of

cytokine-polarized macrophages, whereas TNBC-TAMs exhibited a unique differentially

Fig 5. TNBC but not HR+ BCA secrete high amounts of IL6. (A) mRNA expression levels of M1 markers (CXCL10,

IL-1β, and TNF-α) and M2 markers (TGFβ1, TGFβR2, CCL18, CCL22, and IL10) of MCF-7 CM-induced TAMs. (B)

Heat map of the mRNA expression levels of TAMs induced by the conditioned media from MDA-MB-231, MDA-MB-

468, or MCF-7, and IL-4/IL-13 polarized macrophages (M2). (C) Quantitative detection of cytokines IL4, IL10, IL6,

and TNF-α from the conditioned-media of MDA-MB-231, MDA-MB-468, and MCF-7 using CBA assay. (D) The

mRNA expression levels of CXCL10, IL-1β, TNF-α, and CCL22 were measured in TAMs generated from MCF-7-CM

supplemented with rhIL-6 1000 pg/mL. Data are represented as mean ± SEM of three independent experiments, with

significance level at �p< 0.05, ��p< 0.01, ���p< 0.001, ����, and p< 0.0001. TAMs, tumor-associated macrophages;

TNBC, triple-negative breast cancer; CM, conditioned media; TNF, tumor necrosis factor; IL, interleukin.

https://doi.org/10.1371/journal.pone.0273044.g005
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expressed gene profile (Fig 5B). These results support previous evidence that TNBC regulated

distinct macrophage phenotype and biological response.

Then, we determined the cytokine secretion profile in TNBC and HR+ BCA cell lines. Cul-

tured supernatants from MDA-MB-231, MDA-MB-468, and MCF-7 cells were collected and

the levels of IL-4, IL-10, IL-6, and TNF-α were quantified. MDA-MB-231 cells secreted large

amounts of IL-6 compared with MDA-MB-468 and MCF-7 cells. The level of secreted IL-6

was also significantly higher in MDA-MB-468 cells than in HR+ MCF-7 cells. We found that

the levels of IL-4, IL-10, and TNF-α were not significantly different among the three cell lines

(Fig 5C). To address the possibility that a high IL-6 level may contribute to the M1/M2 mixed

phenotype of TAMs educated by MDA-MB-231, we polarized PMA-stimulated THP-1 with

MCF-7-CM in the presence of rhIL-6 at 1000 pg/mL and quantified the mRNA level of related

genes. We hypothesized that the addition of exogenous rhIL-6 may result in the upregulation

of proinflammatory cytokines in MCF-7 induced TAMs. However, only a significant reduc-

tion of CCL22 gene expression with the addition of IL-6 in the MCF-CM polarized condition

was observed, but the mRNA expressions of M1-associated genes including CXCL10, IL1B,

and TNF were not different between MCF-7-TAMs and MCF-7-TAMs supplemented with

rhIL-6.

M1-associated genes are upregulated in human TNBC tissues

Collectively, our data demonstrate the upregulation of M1-associated genes in TNBC induced

TAMs but not in the HR+ BCA cells. To consider whether this phenomenon correlate to breast

cancer environment in humans, differential gene expression analyses of M1- and M2-associ-

ated genes were analyzed in TNBC versus non-TNBC tissues from patients using two indepen-

dent public databases, METRABRIC and TCGA (Fig 6A). Three M1-associated genes,

including CXCL10, IL1B, and TNF were significantly upregulated in TNBC tissues in both

datasets. Additional cytokine genes including IL-4, IL-10, and IL-6 were also analyzed. In con-

sistency with the in vitro result, IL6 showed significantly high level in TNBC comparing to

non-TNBC tissues. Furthermore, we performed Kaplan-Meier survival analyses of patients

bearing high versus low levels of M1-associated genes (Fig 6B). Interestingly, high CXCL10
level was significantly associated with shorter disease-free period, whereas high IL1B level was

associated with delayed disease progression. Univariate and multivariate analyses were per-

formed with tumor stage and cancer type as covariates (Table 1). The results showed that

expression levels of CXCL10 and IL1B were significantly prognostic of disease-free survival

independently of other clinical factors.

Discussion

In the tumor microenvironment, TAMs, originating from blood monocytes, are recruited to

tumor tissues by factors secreted by tumor cells and the tumor stroma and constitute the

majority of tumor-infiltrating immune cells. Given the high plasticity and diversity of mye-

loid-lineage cells, the tumor milieu, depending on the location, tumor type, and local stromal

cells, shapes the polarization and biological function of TAMs [24–26]. By contrast, TAM infil-

tration is a poor prognostic factor and associated with aggressive tumor characteristics [27–

29]. This crosstalk between cancer cells and TAMs is widely validated in ex vivo experiments

where human monocytic leukemic cells (THP-1) were co-cultured with cancer cells or cancer

CM.

THP-1 monocytes can be differentiated in vitro using PMA into macrophage-like cells that

resemble functional mature macrophages [30–32]. Genin et al. reported that PMA-differenti-

ated THP-1 can be polarized into M1 or M2 macrophages with expression profiles similar to

PLOS ONE TNBC induces macrophage with M1/M2 mixed phenotype

PLOS ONE | https://doi.org/10.1371/journal.pone.0273044 August 12, 2022 11 / 18

https://doi.org/10.1371/journal.pone.0273044


those of polarized primary monocytes. Moreover, these THP-1 M2-like macrophages pre-

vented an apoptotic response to etoposide in two cancer cell lines, namely, HepG2 and A549

[20]. Multiple evidence also indicates that CM from cancer cells regulate the differentiation of

THP-1 monocytes into tumor-promoting M2-like macrophages [33,34].

In breast cancer, THP-1 treated with CM from MCF-7 or MDA-MB 231 cells results in the

differentiation of THP-1 cells toward macrophages and increases the mRNA expression of

M2-type macrophage markers, including CD163 and IL-10 [35]. In this study, we consistently

reported that CM from MDA-MB-231 cells induced PMA-stimulated THP-1 to express

Fig 6. Upregulation of M1-associated genes in human breast cancer. (A) The differential gene expression analyses of

M1- and M2-associated genes in tumor tissues from patients with breast carcinoma retrieved from METABRIC and

TCGA studies. Boxplot analyses of indicated genes in TNBC versus non-TNBC. Mann−Whitney U-test, two-sided p-

value; ����p< 0.0001; �p< 0.05; NS, p� 0.05. (B) Kaplan-Meier survival curves of indicated genes categorized as low

and high mRNA levels comparing to median expression. Median disease-free survival (red, low; black, high) and

Logrank p-value are showed.

https://doi.org/10.1371/journal.pone.0273044.g006

Table 1. Univariate and multivariate cox regression model using METABRIC database.

Variables Reference Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value

CXCL10 Level (�median) Low (< median) 0.67 (0.57−0.78) 5.63 × 10−7 0.70 (0.57−0.85) 4.42 × 10−4

IL1B Level (�median) Low (< median) 1.22 (1.04−1.43) 0.0130 1.31 (1.09−1.60) 0.0045

TNF Level (�median) Low (< median) 1.07 (0.91−1.25) 0.4034 1.15 (0.95−1.39) 0.1551

Tumor stage (I–VI) Stage 0 2.12 (1.84−2.44) < 0.0000 2.02 (1.75−2.32) < 0.0000

Cancer type (TNBC) Non-TNBC 1.37 (1.12−1.68) 0.0025 1.18 (0.92−1.51) 0.1885

HR, hazard ratio; CI, confidence interval; Each variable was analyzed in 1,904 breast cancer patients.

https://doi.org/10.1371/journal.pone.0273044.t002
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CD163 on the cell surface and upregulate the immunosuppressive cytokine TGFβ1 and its cog-

nate receptor TGFβR2. In contrast to THP-1-derived macrophages polarized by IL-4/IL-13,

TNBC-induced TAMs demonstrated high expressions of M1-associated genes, including that

of CXCL10, IL-1b and TNF-a. We also observed less pseudopodia formation in TNBC-induced

TAMs than in IL-4/IL-13-polarized M2 macrophages. Our results indicate that soluble factors

secreted by TNBC cells induce the polarization of THP-1-derived macrophages into a distinct

TAM population with defining characteristics of M1 and M2 types. This phenomenon appears

to be preserved in TNBCs because we did not observe the upregulation of M1-associated genes

in HR+ MCF-7 induced TAMs. This is in agreement with the finding of a previous study that

THP-1 cells exposed to basal-like breast cancer cells in a co-culture system exhibit the upregu-

lated gene expression of both M1 and M2 macrophage markers [36]. More importantly, Holl-

men et al. [2015] performed a whole-transcriptome sequencing of human monocytes co-

cultured with MDA-MB-231 or T47D [ER+] BCA cells and revealed that different BCA types

distinctly educate macrophage phenotypes and functions. ER+ BCA-activated macrophages

display upregulation of acute-phase inflammatory signal, IL-17 signaling, while TNBC-acti-

vated macrophages exhibit downregulation of the citrulline pathway associated with nitric

oxide [NO] production [10]. The mixed polarization of M1/M2 type in THP-1 treated with

tumor-soluble factors was also observed in colorectal cancer, in which CM from several colon

cancer cell lines enhanced the phagocytic activity of THP-1 cells [25] and induced the produc-

tion of cytokines and chemokines typical of both M1 and M2 macrophages, including IL-1β,

MCP-1, IL-6, and IL-10 [37].

At the protein level, we reported that TNBC-induced TAMs but not M2-polarized macro-

phage secrete large amounts of IL-6 and TNF-α. The abundance of IL-6 and TNF-α was com-

parable between MDA-MB-231 and MDA-MB-468 cells. TNBC-induced TAMs also secrete

high levels of IL-10 but not IL-4. A study revealed that TAMs infiltrating TNBCs secrete IL-10,

which contributes to tumor progression [38]. In our study, M2-polarized macrophages

secreted significant amounts of IL-4, which are proposed to possess anti-inflammatory and

tumor-promoting properties [39]. However, only a small amount of IL-10 in the culture super-

natant of M2-polarized macrophages was detected. We examined the CM of MDA-MB-231

and detected a very small amount of IL-4. This absence of IL-4 in MDA-MB-231-CM could be

attributed to the different phenotypes of TNBC-activated TAMs from M2-macrophages polar-

ized by IL-4/IL-13. Chan et al. analyzed cytokine expression using MILLIPLEX assay in

human breast cancer cell lines and reported that MDA- MB-231 cells secreted moderate and

low amounts of IL-4 and IL-13, respectively [40].

In line with previous findings [40], TNBC cell lines significantly secreted higher amounts of

IL-6 than did the HR+ BCA cell line. The magnitude of IL-6 production by TNBC cells is cor-

related with aggressive behavior, where MDA-MB-468, a less aggressive cell line, secretes a

much lower level of IL-6 than MDA-MB-231. Several tumor cells, including breast cancer

cells, can secrete IL-6, the upregulation of which is generally associated with poor prognosis

and a low survival outcome [41,42]. Previous evidence also revealed IL-6 promotes TNBC cell

survival [43], increases breast cancer stemness [44], and contributes to chemoresistance of

MDA-MB 231 cells [45]. Furthermore, primary macrophages secrete IL-6, which in turn

increase IL-6 secretion from cancer cells [46], where IL-6 is shown to perpetuate this vicious

cycle by generating more aggressive M2 macrophage polarization by activating Stat3 phos-

phorylation [44,47]. In the present study, we investigated the influence of IL-6 on the distinct

characteristics of TNBC-induced TAMs by the generation of TAMs with MCF-7-CM-contain-

ing rhIL-6 at a similar concentration found in the MDA-MB-231-CM. However, the addition

of IL-6 did not upregulate M1-associated genes in MCF-7-induced TAMs, suggesting that

multiple mediators contribute to the complexity of macrophage polarization induced by breast
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cancer. Interestingly, the incorporation of IL-6 downregulates CCL22 in MCF-7-induced

TAMs. CCL22 is expressed in alternative (M2) macrophage [48,49] and in many types of can-

cer [50–52]. The functional role of CCL22 in cancer immunity involves recruiting Tregs to the

tumor stroma by binding to its cognate receptor CCR4 [53,54]. A previous study suggested

that CCL22 is downregulated by the TH1 cytokine IFNγ [55]. The mechanistic interaction

between IL-6 and CCL22 in TNBC should be explored for further investigation. Future experi-

ments such as the incorporation of IL-6 neutralizing antibody or the deletion of IL-6 with

siRNA could be necessary to determine the role of IL-6 in the polarization of TNBC-educated

TAMs.

Finally, the results from in vitro experiments were validated by analyses of two independent

patient databases that showed a significant greater M1-associated genes expression in TNBC

than non-TNBC. The expression level of IL6 was also significantly higher in TNBC compared

with non-TNBC tissues, whereas IL4 level was not different between cancer types. This result

supported our finding that TNBC cells secreted large amounts of IL-6 comparing to non-

TNBC cells. Interestingly, the expression of CXCL10 have strong prognostic value for disease-

free survival in the breast cancer human cohort, suggesting a critical contribution of this mole-

cule in breast cancer outcomes.

In summary, our results demonstrate that TNBC cells but not HR+ cells induce a distinct

population of M2-like TAMs that express M1-associated genes and secrete a considerable

amount of IL-10 and IL-6, which in turn promotes breast cancer cell proliferation and metas-

tasis. Although these TNBC-induced TAMs exhibit a differential gene expression profile, their

tumor-promoting effects were similar to those of M2 macrophages polarized by IL-4 and IL-

13. One of the limitations in this study is the lack of M1 and M2 associated enzymes and pro-

teins analyses. Nevertheless, the M1/M2 mixed phenotype on TNBC-induced TAMs were

demonstrated by gene expression, cellular morphology, and cytokines profile of THP-1

derived macrophage as well as surface expression of M1 and M2 markers on primary mono-

cytes. Moreover, analysis of patient database follows the in vitro finding where M1 associated

genes are upregulated in TNBCs particularly the key marker CXCL-10 which is negatively cor-

related with disease-free survival. Together, our results suggest the complexity and heterogene-

ity of TAMs and their negative roles in TNBC.
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S1 Fig. TNBC conditioned media induces mixed phenotype of primary human monocytes.

Monocyte are isolated from PBMC using CD14 magnetic bead. Primary CD14+ monocytes

were incubated with RPMI media only (control), MDA-MB 231 conditioned media (TAMs

MDA-MB-231), MDA-MB-468 conditioned media (TAMs MDA-MB-468), or IL-4 (20 ng/

mL) and IL-13 (20 ng/mL) cytokines (M2) for 48 h. (A) Monocyte-derived macrophages

expression level of M1 (CD282 and CD284) and M2 (CD206) surface markers were analyzed

by flow cytometry as compared with an isotype control. (B) The bar graph represents the

mean and SEM of M1 and M2 markers from three different experiments with significance

level at �p< 0.05, �p< 0.05, ��p< 0.01, and ���p< 0.001.
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