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Abstract

Interrelationships between genetic and biochemical factors underlying ischemic stroke and ischemic heart disease are poorly
understood. We: 1) undertook the most comprehensive meta-analysis of genetic polymorphisms in ischemic stroke to date; 2)
compared genetic determinants of ischemic stroke with those of ischemic heart disease, and 3) compared effect sizes of gene-
stroke associations with those predicted from independent biochemical data using a mendelian randomization strategy.
Electronic databases were searched up to January 2009. We identified: 1) 187 ischemic stroke studies (37,481 cases; 95,322
controls) interrogating 43 polymorphisms in 29 genes; 2) 13 meta-analyses testing equivalent polymorphisms in ischemic
heart disease; and 3) for the top five gene-stroke associations, 146 studies (65,703 subjects) describing equivalent gene-
biochemical relationships, and 28 studies (46,928 subjects) describing biochemical-stroke relationships. Meta-analyses
demonstrated positive associations with ischemic stroke for factor V Leiden GIn506, ACE I/D, MTHFR C677T, prothrombin
G20210A, PAI-1 5G allele and glycoprotein Illa Leu33Pro polymorphisms (ORs: 1.11 — 1.60). Most genetic associations show
congruent levels of risk comparing ischemic stroke with ischemic heart disease, but three genes—glycoprotein llla, PAI-1 and
angiotensinogen—show significant dissociations. The magnitudes of stroke risk observed for factor V Leiden, ACE, MTHFR and
prothrombin, but not PAI-1, polymorphisms, are consistent with risks associated with equivalent changes in activated protein
C resistance, ACE activity, homocysteine, prothrombin, and PAI-1 levels, respectively. Our results demonstrate causal
relationships for four of the most robust genes associated with stroke while also showing that PAI-1 4G/5G polymorphism
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influences cardiovascular risk via a mechanism not simply related to plasma levels of PAI-1 (or tPA) alone.
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Introduction

Stroke is one of the leading causes of death, disability, and
health finance cost in both developed and developing world
countries [1]. Understanding the genetic contributions to ischemic
stroke 1s important not only so as to explain, or predict, the
minority of cases that occur in the absence of well-established risk
factors, such as smoking, hypertension and diabetes [2], but also to
account for wide variability of stroke incidence within individuals
who do harbour these common, acquired risk-factors [3].
Moreover, appreciating the biochemical basis for risk-associated
genes can motivate novel therapeutic strategies, including
pharmacogenomics [4].

As the cumulative number of studies reporting positive genetic
associations with stroke increases, the main challenges are deciding
which associations are reliable and robust, and then deciphering
the role of putative gene effects in terms of causation [5]. The
present study attempts to address these issues by firstly, presenting
the most comprehensive meta-analysis to date of all candidate
genetic polymorphisms associated with ischemic stroke. Secondly,
we relate these observed gene effect sizes with those predicted from
pathophysiologically-related studies.
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Since many of the candidate genes tested for an association with
ischemic stroke have originated from studies in ischemic heart
disease, and given overlapping pathophysiologies of these two
diseases [6], it is meaningful to investigate whether specific genetic
polymorphisms associate with clinical arteriopathic syndromes in
general, e.g. due to a tendency to stiffen arteries [7], or whether
certain genes exert organ-specific effects [8-10]. Furthermore,
where positive associations do exist between genes and stroke it is
critical to validate whether these effects are consistent with the risks
attributed to their putative biological intermediates. For example, if
a stroke-associated gene is also associated with a prothrombotic
tendency, then does the degree of thrombophilia imparted by the
genotype-in-question associate with a similar degree of risk of stroke,
using independent data sets? We attempted to answer this question
for all robust positive gene associations using a method based upon
mendelian randomization [11].

Results

Ischemic Stroke Candidate Gene Meta-Analysis
We identified 187 candidate genetic polymorphism case-control
studies (References S1), incorporating 37,481 ischemic stroke cases
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and 95,322 controls that fulfilled the inclusion criteria. Between
them, 43 polymorphisms were interrogated in 29 genes, with the
mean number of studies per candidate polymorphism being 6.6
(95% ClIs 4.4 — 8.8). For 23 out of the 43 candidate polymorphisms
(53%), the combined studies comprised >1000 cases (and >1000
controls) in aggregate. It is these that are focused on in the rest of
the results. Note that these represent 16 out of 29 candidate genes,
because for several genes more than one polymorphism was tested,;
PDE 4D (6 SNPs), angiotensinogen (2 SNPs) and HFE (2 SNPs)
being those for which there are >1000 pooled cases. Eighteen
polymorphisms (42% of the total; representing 11 genes) were
investigated by at least one study comprising a total sample size of
>1000.

Of the 23 genetic polymorphisms candidates tested in >1000
cases, six polymorphisms in six genes were found to show an
overall significant effect, with no significant between-study
heterogeneity (Figures 1-7). These were, in order of case-numbers:
factor V Leiden GIn506, angiotensin converting enzyme (ACE)
1I/D, methylene tetrahydrofolate reductase (MTHFR) C677T,
prothrombin G20210A, plasminogen activator inhibitor-1 5G
allele and glycoprotein IIla Leu33Pro. The summary ORs for

Stroke Genes

these genes ranged from 1.15 (95% CI: 1.06 — 1.25) for ACE 1I/D,
to 1.60 (95% CI: 1.28 — 2.00) for prothrombin G20210A. The
corresponding population attributable risks for the genes listed
above are, respectively: 1.8%, 3.9%, 3.1%, 1.9%, 11.2% and
5.8% (total: 27.5%). The remainder 17 polymorphisms that were
tested in >1000 pooled cases failed to demonstrate association
with ischemic stroke (Figure 7; Figures S1). Within this group, ten
polymorphisms showed between-study heterogeneity (p<<0.05).

Of the 20 candidate polymorphisms that were tested in <1000
cases, four were found to show positive associations: factor VII
R353Q (793 cases), protein Z G79A (741 cases), glycoprotein 1b-
alpha Met-Thr (564 cases), and intercellular adhesion molecule-1
E469K (356 cases).

For all of the above associations there was no publication bias
towards smaller studies, as indicated by non-significant (p>0.1)
regression intercepts in Egger funnel-plots of effect size against
sample variance [12].

In order to evaluate the relative efficiency of the candidate gene
method over time, we divided studies according to whether our
meta-analysis either identified, or failed to identify, a significant
association, and plotted pooled case numbers for each of the

Factor V Leiden Stroke Control Odds Ratio Odds Ratio
H 0, 0,
(ArgSOGGIn) Study or Subgroup Events Total Events Total Weight M-H, Random, 95% ClI _ M-H, Random, 95% CI

Halbmayer WM 1998 1 20 2 20 0.7% 0.47[0.04,5.69] ¢

GlIn+ vs ArgArg Ridker P 1995 8 209 42 704 47% 0.63[0.29, 1.36] —
Press RD 1996 4 161 2 54  1.3% 0.66 [0.12,3.72] *
Lopaciuk S 2001 3 100 10 238 21% 0.7110.19, 2.62]
Voetsch B 2000 5 114 7 119  25% 0.7310.23, 2.38] Y
Catto A 1995 15 348 14 247  49% 0.751[0.36, 1.58] L
Madonna P 2002 7 132 17 262 37% 0.8110.33, 2.00] .
Meseguer E 2004 5 312 4 204  2.0% 0.811[0.22, 3.07]
Juul K 2002 17 231 629 7907  7.5% 0.9210.56, 1.52] - T
Zunker P 2001 24 471 6 112  37% 0.95[0.38, 2.38] - 1T
Petrovic D 2003 4 96 5 115 20% 0.96 [0.25, 3.67]
Iniesta JA 1999 3 124 5 202 1.8% 0.9810.23, 4.16]
Sanchez J 1997 3 66 3 66 1.4% 1.00[0.19, 5.14]
Bentolila S 1997 8 125 8 134 32% 1.08 [0.39, 2.96] [ L
Van der Bom JG 1996 6 107 11 222 31% 1.14[0.41, 3.17] [ I —
Pezzini A 2005 6 163 5 158 24% 1.17[0.35, 3.91] N
Markus HS 1996 15 180 5 70  3.0% 1.18[0.41, 3.38] e B
Lalouschek W 2005 47 645 40 645 84% 1.19[0.77, 1.84] T
Szolnoki Z 2003 72 867 49 743 9.3% 1.28[0.88, 1.87] T
Nabavi DG 1998 19 225 12200 4.9% 1.4410.68, 3.06] -1
Lalouschek W 1998 8 99 5 9% 26% 1.60 [0.50, 5.08] R
De Stefano V 1998 4 72 6 199 21% 1.89[0.52, 6.91] >
Chimowitz MI 1996 4 53 16 397  26% 1.94[0.62, 6.05] -1 -
Buyru N 2005 1 29 0 20 04% 2.16[0.08, 55.68] * >
Hankey GJ 2001 10 219 4 205 25% 2.401[0.74,7.79] I
Rubattu S 2005 5 2% 2 286 14% 2.46[0.47,12.77] >
Aznar J 2004 2 49 5 294  14% 2.46[0.46, 13.05] >
Martinelli | 1997 5 155 2 155  14% 2.55[0.49, 13.35] >
Landi G 1996 4 95 3 19 1.6% 2.7410.60, 12.50] S B —
Kontula K 1995 9 236 1 87  0.9% 3.411[0.43, 27.32] >
Eterovic D 2007 10 120 3120 21% 3.55[0.95, 13.22] >
Margaglione M 1999 30 202 43 1036 7.6% 4.03 [2.46, 6.60] —_—
Albucher JF 1996 3 30 1 75  0.8% 8.22[0.82, 82.48] -
Total (95% CI) 6349 15582 100.0% 1.31[1.07, 1.61] <&
Total events 367 967

Heterogeneity: Tau? = 0.08; Chi? = 43.73, df = 32 (P = 0.08); I> = 27%

Test for overall effect: Z =2.57 (P = 0.01)
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Figure 1. Forest plots showing positive associations of ischemic stroke with the following genetic polymorphisms: Factor V Leiden

Arg506GiIn.
doi:10.1371/journal.pone.0009136.g001
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ACE Stroke Control Odds Ratio Odds Ratio

Study or Subgroup Events Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI
(D/I) Karagiannis A 2004 32 100 3% 100 21% 0.87[0.49, 1.57] _

DD vs I+ Tuncer N 2006 48 108 37 79 2.1% 0.91[051, 1.63] —_—
Cato AJ 1996 102 372 63 215 53% 0.91[0.63, 1.32] .
Pfohl M 1998 30 9 102 297 2.9% 0.94 [0.57, 1.55] I I
Gormley K 2007 85 299 177 600 7.7% 0.95[0.70, 1.29] .
Kostulas K 1999 30 96 28 93 1.9% 1.06 [0.57, 1.96] [
Dikmen M 2006 44 141 15 50 1.5% 1.06 [0.52, 2.14] N
Zee YL 1999 117 338 110 338  71% 1.10[0.80, 1.51] -1
Brenner D 2005 153 459 149 479 9.7% 1.11[0.84, 1.46] T
Agerholm-Larsen B 1997 131 452 2367 9038 16.7% 1.15[0.93, 1.42] ™
Slowik A 2004 20 70 36 140 1.8% 1.16[0.61, 2.20] N
Pera J 2006 102 368 138 556  8.1% 1.16 [0.86, 1.57] T
Mollsten A 2008 58 222 122 549  56% 1.24[0.86, 1.78] 1T
Szolnoki Z 2003 233 867 170 743 14.0% 1.2410.99, 1.56] ™
Ueda S 1995 127 488 41 188  4.5% 1.26 [0.84, 1.88] T
Peterlin B 2000 42 124 44 165 2.8% 1.41[0.85, 2.34] T
Sharma P 1994 33 100 17 73 1.6% 1.62[0.82, 3.22] =
Margaglione M 1995 54 101 43 109  24% 1.76 [1.02, 3.05] R
Markus HS 1995 36 101 30 137 22% 1.98[1.11, 3.51]
Total (95% CI) 4897 13949 100.0% 1.15[1.06, 1.25] ‘
Total events 1477 3724

Heterogeneity: Tau? = 0.00; Chi? = 13.50, df = 18 (P = 0.76); I*= 0%

Test for overall effect: Z = 3.20 (P = 0.001)

o=
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Figure 2. Forest plots showing positive associations of ischemic stroke with the following genetic polymorphisms: ACE D/I.

doi:10.1371/journal.pone.0009136.g002

largest polymorphisms against publication year (Figure 8 A and
B). This shows that the during the first decade of published studies
(1993 — 2003) candidate polymorphisms were predominantly those
found to be associated with stroke (according to our meta-analysis),
whereas more recently (2004+), an increasing number of studied
cases are for polymorphisms that show no association after
pooling. Such declining success of candidate-gene studies is also
seen by plotting the probability that cases were tested for
polymorphisms that were found after meta-analysis to be
assoclated, rather than unassociated, over time (Figure 8 C). We
note that there were no correlations between OR magnitude, or
study size, and publication date, when analyzing polymorphisms
individually or grouping as a whole (all p<<0.1).

Comparison with Ischemic Heart Disease

Meta-analyses in myocardial infarction and/or ischemic heart
disease were found [13-22] for thirteen of the genetic polymor-
phisms tested in ischemic stroke for which there were >1000
pooled cases. Comparing odds ratios for each genetic polymor-
phism between ischemic cardiac disease and ischemic stroke
identified four profiles (Figure 9):

1) Polymorphisms associated with risk of both ischemic heart
disease and stroke: factor V Leiden GIn506, ACE 1/D,
MTHFR C677T, prothrombin G20210A. The 95%
confidence intervals (CIs) for ORs of ischemic stroke and
cardiac disease overlapped for all of these gene variants.

2)  Polymorphisms associated with risk of either ischemic stroke
or myocardial ischemia but not the other disease type — i.e.
dissociations: glycoprotein IIla Leu33Pro conferring a risk
for stroke, but not ischemic heart disease; PAI-1 4G- versus-
5G associated positively with cardiac disease, but negatively
with stroke, and angiotensinogen M235T posing a risk for
coronary stenosis, but a trend for protection against stroke.
The 95% ClIs for risk for all three polymorphisms were non-

@ PLoS ONE | www.plosone.org

overlapping comparing ischemic stroke with ischemic heart
disease, although restricting cardiac datasets to those in
which Caucasian ethnicity was definitely specified results in
marginal overlap for glycoprotein IIla Leu33Pro (ischemic
heart disease OR: 0.99 — 1.09) and angiotensinogen M235T
(coronary stenosis OR: 1.0 — 1.16).

3)  Polymorphisms associated with myocardial ischemia but not
ischemic stroke, but where confidence intervals clearly
overlapped. In these cases, we calculated the minimum case
number required for 90% power (and o= 0.05) assuming
the same effect size as in ischemic heart disease. This showed
that in all cases an inadequate sample size in stroke may
account for the lack of significance here (Figure 9; third
section, final column).

4)  Polymorphisms not associated with either ischemic stroke or
heart disease yet tested in >1000 cases of each disease viz.

interleukin-6 G174C [21] and HFE C282Y [22].

Comparison with Biochemically-Predicted Risk

For each of the stroke-associated genetic polymorphisms identified
by our primary meta-analysis we searched for: 1) studies providing
differential measurements of a biochemical marker - ie. an
intermediate phenotype, IP - related to the genotypic variants of
interest, among subjects without cardiovascular disease, and 2) studies
providing an estimate of ischemic stroke risk based upon incremental
change in the same IP. Such studies were available for the following
polymorphism — IP pairs: factor V Leiden - activated protein C
resistance, ACE D/I - ACE activity, MTHFR - homocysteine
levels, prothrombin G20210A - prothrombin levels, and PAI-1 4G/
5G - PAI-1 levels.

The number of studies providing differential IP levels according to
genotype ranged between 3 and 70, incorporating between 843 and
46,743 healthy subjects, for each genotype of interest. We performed
meta-analyses that pooled these biomarker level differences for each

February 2010 | Volume 5 | Issue 2 | 9136
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MTHFR Stroke Control Odds Ratio Odds Ratio
Study or Subgroup Events Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI
(C677T) Mcllroy SP 2002 163 2 71 03% 0.56 [0.05, 6.29] * >
TTvs C+ Reuner KH 1998 79 23 182 2.0% 0.58[0.24,1.40) — |
Duca F 1997 31 180 52 225 56% 0.69[0.42, 1.14] /T
Markus HS 1997 37 345 22 161 45% 0.76[0.43, 1.33] S
Salooja N 1998 21 242 16 173 3.2% 0.93[0.47, 1.84] I
Kostulas K 1998 13 126 13 126 2.3% 1.00 [0.44, 2.25] S
Sazci A 2006 9 92 25 259  24% 1.01[0.46, 2.26] S
Eikelboom JW 2000 25 215 23 205 4.0% 1.04 [0.57, 1.90] -
Lopaciuk S 2001 12100 26 238 29% 1.11[0.54, 2.30] -1
Szolnoki Z 2003 114 867 89 743 122% 1.11[0.83, 1.50] T
Press RD 1999 9 136 10 167 1.8% 1.11[0.44, 2.82] I
Lalouschek W 1999 1 9 10 96 1.9% 1.11[0.45, 2.76] I L—
Pezzini A 2002 4 3 4 36 07% 1.19[0.27, 5.19]
Sanchez-Marin B 2006 19 99 14 90 26% 1.29[0.60, 2.75] I I
Gross B 2000 14 84 15 112 24% 1.29[0.59, 2.85] -1
Gaustadnes M 1999 22 207 90 1084 5.7% 1.31[0.80, 2.15] T
Voetsch B 2000 17 114 14 119  2.6% 1.31[0.62, 2.81] N B
Margaglione M 1999 50 202 196 1036  9.5% 1.410.99, 2.01] —
Madonna P 2002 30 132 45 262 52% 1.42[0.84, 2.38] T
De Stefeno VV 1998 17 72 35 198 35% 1.440.75, 2.77] T
Slooter AJ 2005 26 193 69 764 59% 1.57 [0.97, 2.54] T
Harmon DL 1999 27 174 19 183 3.7% 1.59[0.85, 2.97] T
Pezzini A 2006 37 174 22 155 4.3% 1.63[0.91, 2.91] T
Hermans MP 2006 6 23 22 142 15% 1.93(0.68, 5.42] -1
Kristensen B 1999 1 80 3 41 09% 2.02[0.53, 7.69] N B —
Ucar F 2004 2 30 8 242  06% 2.09[0.42, 10.33] >
Soriente L 1998 22 60 39 182  37% 2.12[1.13, 4.00] e
Hassan A 2004 33 170 16 170  3.6% 2.32[1.22,4.40] I
Topic E 2001 7 56 1 124 04% 17.57 [2.11, 146.58] —_—
Total (95% Cl) 4454 7586 100.0% 1.26 [1.11, 1.43] *
Total events 634 923
ity: Tau2 = 0.01; Chi2 = = = S2=109 + + + +
Heterogeneity: Tau? = 0.01; Chi? = 31.18, df = 28 (P = 0.31); I* = 10% 02 05 1 7 5

Test for overall effect: Z = 3.49 (P = 0.0005)

Protection Risk

Figure 3. Forest plots showing positive associations of ischemic stroke with the following genetic polymorphisms: MTHFR C677T.

doi:10.1371/journal.pone.0009136.9003

of the six genotype — IP pairs (Figures 10 — 15), with the weighted
mean differences, and 95% Cls, summarised in Figure 16 (2™
column).

The number of studies providing estimates of ischemic stroke
risk relative to incremental changes in the above IPs ranged
between 1 and 9, incorporating between 245 and 1688 cases, and
459 and 30574 controls. Where more than one study existed that
provided an estimate of IP — stroke risk, we performed a meta-
analysis that combined these ORs (Figures 10 and 13 — 15; lower
forest plots), whilst first adjusting each value to the pooled estimate
of biomarker level change for the genotype comparison of interest
(see above), assuming a log-linear relationship. In the case of ACE
activity and homocysteine levels, a single estimate of biomarker -
stroke risk was extracted from a single study [23], and previous
meta-analysis [24], respectively, and then scaled in the same way.
The results of these calculations for expected risk of the genotype
comparisons of interest (Figure 16, 4™ column) were then
compared with the observed risk for each of the same genotype
contrasts, based upon data used in the first part of this paper (5
column).

As an example, Factor V Leiden 506 mutation ArgGln, relative
to wild-type ArgArg, is associated with a weighted mean average of
0.74 APTT ratio decrease in the activated protein C resistance test
in healthy subjects (Figure 10, upper). Independent data from
1schemic stroke case — control studies suggest that a 0.74 decrease

@ PLoS ONE | www.plosone.org

in APTT ratio using the same test is associated with a risk odds-
ratio of 1.31 (1.11 — 1.54) (Figure 10, lower). This estimated OR 1is
very close to the observed OR of 1.30 (1.11 — 1.51) noted from our
carlier meta-analysis (Figure 1).

For each of the gene — biomarker pairs (Figure 16), the mean
level of expected risk fell close to, and certainly within the 95%
confidence intervals, the observed risk, with the exception of PAI-
1. For this latter pairing, the expected risk of the genotype
comparison 5G5G vs 4G4G based upon PAI-1 levels was
significantly lower than that observed. This arose because whilst
PAI-1 levels are found to be higher in stroke than in controls, the
5G5G genotype — that itself is associated with elevated stroke risk
relative to 4G4G - was associated with a ~25% reduction in PAI-1
levels relative to 4G4G. This result was unaffected by whether
PAI-1 levels were derived from antigen concentration or enzyme
activity data. We also estimated expected stroke risk on the basis of
tPA levels, and its relationship with the PAI-1 4G/5G genotype.
The 5G5G relative to 4G4G genotype was assocliated with a slight,
albeit non-significant, increase in tPA levels, which itself is
independently associated with stroke. However, the expected
stroke risk using tPA data was also less than that observed.

Discussion

The current study takes a meta-analytic approach to identify the
totality of candidate genetic polymorphisms reliably associated
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Prothrombin Stroke Control Odds Ratio Odds Ratio
(G2021 OA) St.udy or Subgroup Events Total Events Total Weight M-H, Random, 95% ClI _ M-H, Random, 95% ClI

A+ vs GG Iniesta JA 1999 1 124 4 202 11% 0.40[0.04, 3.64] .
Egan RA 2000 0 38 13 635 0.7% 0.60[0.03, 10.26] * »
Lopaciuk S 2001 2 100 5 238 2.0% 0.95[0.18,4.99] *
Rubattu S 2005 12 294 12 286 8.0% 0.97[0.43, 2.20] -1
Reuner KH 1998 3 13 8 354 3.0% 1.01[0.26, 3.88]
Szolnoki Z 2003 5 867 4 743 31% 1.07 [0.29, 4.01]
Ridker P 1999 11 259 69 1774 12.7% 1.10[0.57, 2.10] B
Margaglione M 1999 10 202 43 1036 10.8% 1.20[0.59, 2.43] N
Smiles A 2002 6 182 12 453  54% 1.25[0.46, 3.39] D
Madonna P 2002 10 132 16 262 8.0% 1.26 [0.56, 2.86] I
Lalouschek W 2005 3 136 2 136 1.6% 1.51[0.25,9.19] >
Lalouschek W 1998 8 96 5 96 4.0% 1.65[0.52, 5.25] N
Bentolila S 1997 8 125 5 134  41% 1.76 [0.56, 5.54] I R
Lichy C 2002 5 19% 5 362 34% 1.87[0.53, 6.54] I
Hankey GJ 2001 8 219 4 205 3.6% 1.91[0.56, 6.43] D
Meseguer E 2004 12 295 4 204 41% 2.12[0.67, 6.67] .
Voetsch B 2000 6 114 3 119 27% 2.15[0.52, 8.80] S B —
Gomez-Garcia EB 2002 5 49 4 87 29% 2.36[0.60, 9.23] —_
Martinelli | 1997 5 155 2 155  2.0% 2.55[0.49, 13.35] I B —
Pezzini A 2005 9 163 3 1588  3.1% 3.0210.80, 11.37] I e —
Eterovic D 2007 9 120 3 120 3.0% 3.16[0.83, 11.98] T
Aznar J 2004 4 49 7 294  33% 3.64[1.03, 12.95] 2
Botto N 2007 8 97 3 160 29% 4.70[1.22,18.18] _—
De Stefeno V 1998 8 72 5 198 4.0% 4.83[1.52,15.28] _—
Halbmayer WM 1998 2 2 0 20 0.6% 5.54[0.25, 123.08] >
Total (95% ClI) 4235 8431 100.0% 1.60[1.27, 2.01] 2
Total events 160 241

Heterogeneity: Tau? = 0.00; Chi? = 18.34, df = 24 (P = 0.79); I>= 0%
Test for overall effect: Z = 3.96 (P < 0.0001)

N
o1

02 05 1
Protection Risk

Figure 4. Forest plots showing positive associations of ischemic stroke with the following genetic polymorphisms: prothrombin
G20210A.
doi:10.1371/journal.pone.0009136.9004

with ischemic stroke. Furthermore, we show how these results Meta-Analysis of Genetic Polymorphisms in Ischemic

compare with the same polymorphisms in ischemic cardiac Stroke
disease, and test their causal relationship with likely biochemical Since our last comprehensive meta-analysis of gene effects in
intermediaries. These points are discussed in turn. ischemic stroke [25], the size of the pooled study sample from
Stroke Control Odds Ratio Odds Ratio
PAI-1 Study or Subgroup  Events Total Events Total Weight M-H, Random, 95% Cl M-H, Random, 95% CI
(4G /5G) Wiklund PG 2005 232 622 520 1306 11.2% 0.90 [0.74, 1.09] -t
5G vs 4G Allele Balta G 2002 83 160 304 562 53% 0.91[0.64, 1.30] -
Kucurabaci B 2008 195 394 82 160 5.0% 0.9310.65, 1.35] T
Adamski M 2009 352 780 268 582 10.2% 0.96[0.78, 1.20] T
Attia J 2007 145 342 151 364 6.8% 1.04[0.77, 1.40] -1
Van Goor ML 2005 119 246 116 246 5.3% 1.05[0.74, 1.50] -1
Jood K 2005 569 1200 548 1200 13.4% 1.07[0.91, 1.26] ™
Elbaz A 2001 449 922 419 922 12.0% 1.14[0.95, 1.37] ™
Catto AJ 1998 534 1100 150 354  8.9% 1.28[1.01, 1.63] _'_
Saidi S 2007 239 432 268 564  8.5% 1.37[1.06, 1.76] —
Hindorff LA 2002 4 82 353 770  35% 1.3710.87, 2.16] T
Endler G 2000 125 274 86 230 52% 1.4010.98, 2.01] T
Hoekstra T 2002 68 118 517 1140 47% 1.64[1.12, 2.40] -
Total (95% ClI) 6672 8400 100.0% 1.11[1.01,1.22] l’
Total events 3154 3782 . . . .
ity 2= - Chi2 = = = -2 = 379 } } } }
Heterogeneity: Tau? = 0.01; Chi? = 19.03, df = 12 (P = 0.09); I* = 37% 02 05 5 4

Test for overall effect: Z = 2.25 (P = 0.02) Protection Risk

Figure 5. Forest plots showing positive associations of ischemic stroke with the following genetic polymorphisms: PAI 5G allele.
doi:10.1371/journal.pone.0009136.9g005
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Figure 6. Forest plots showing positive associations of ischemic stroke with the following genetic polymorphisms: glycoprotein llla
Leu33Pro.
doi:10.1371/journal.pone.0009136.9g006

Gene Model No.of Pooled No. of OR  Genotype-at-risk
(Polymorphism) tested studies Cases/ Controls (95% Cls) frequency
Factor V Leiden D 33 6349 / 15582 - 1.31 6.2

(Arg506Gin) (1.07-1.61)
ACE R 19 4897 / 13949 ’ 1.15 26.7
(DD) (1.08-1.25)
MTHFR R 29 4454 | 7586 ’ 1.26 12.2
(C677T) (1.11-1.43)
Prothrombin D 25 4235/ 8431 ’ 1.60 28
(G202104) (1.27-2.01)
PAI-1 Allele 13 3336 /4200 L 3 1.11 44.8
(5G) (1.01-1.22)
Glycoprotein llla D 13 2563 / 3688 <9 1.24 29.2
(Leu33Pro) (1.08-1.41)
PDE 4D D 1" 4774 / 5708 0.95* 30.6
(SNP 45) (0.67-1.35)
Apolipoprotein E Allele 19 3050/ 12327 1.02* 28.8
(E4) (0.79-1.32)
Factor Xlll R 8 2526 /2371 1.12 6.33
(LeuLeu) (0.80-1.57)
Angiotensinogen R 5 1882 /9792 0.94 16.7
(M235T) (0.82-1.09)
Glycoprotein 1b-a R 4 1749 /1615 1.52* 71.0
(Kozack seq. TT ) (0.68-3.38)
e-NOS D 4 1527 /1817 1.07 11.8
(Glu298Asp) (0.85-1.35)
Interleukin-6 D 8 1434 / 1563 1.20% 33.4
(G174C ) (0.81-1.76)
HFE D 5 1354 / 12308 0.94 115
(C282Y) (0.77-1.16)
Angiotensin D 4 120271516 1.23* 444
receptor (0.74-2.04)
(A1166C)
Factor Vil D 5 1112 /2765 1.14* 257
(R353Q) ’ ; | ;  (077189)
0.2 0.5 OR f;!l’ Risk 2 s * Inter-study heterogeneity p < 0.05

Figure 7. Summary of meta-analyses testing associations of candidate genetic polymorphisms with ischemic stroke. Table reports
genetic model tested (D - dominant; R - recessive); numbers of studies; numbers of pooled cases and controls; ORs with 95% confidence intervals,
and at-risk genotype frequency.

doi:10.1371/journal.pone.0009136.9g007
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Figure 8. Trends in success of candidate gene approach. A: Numbers of pooled cases published over time testing for polymorphisms
positively associated with stroke according to the present meta-analyses. B: As for A, but for polymorphisms found to show no stroke association
according to the present meta-analysis. C: Changes in time of probability that cases were tested for polymorphism subsequently found to show

association (red) or no association (green) with stroke.
doi:10.1371/journal.pone.0009136.9008

which we were able to extract genetic polymorphism frequency
data has more than doubled (from ~18000 to ~37000 cases), as
has the number of genetic polymorphisms in which more than
1000 cases have been tested for each (from 8 to 23). In order to
increase reliability [5] we confined our results to gene variants
studied in over 1000 patients, and to studies where ischemic stroke
was confirmed radiologically, and that were based predominantly
in Caucasian adults. We discounted studies where there was
publication bias, and applied random-effects models to allow for
between-study heterogeneity. After applying these criteria we
found positive associations with polymorphisms in the following six
genes: Factor V Leiden, ACE, MTHFR, prothrombin, PAI-1, and
glycoprotein-II1.

As well as identifying two further genetic associations not
identified reliably in our earlier meta-analysis [25], our study
supports the validity of the meta-analysis technique by finding very
similar effect sizes for the four positive associations identified
previously in the face of an increase in patient numbers by
approximately 50%. There was no reduction in effect size
comparing the current results with those from five years earlier
[25] as is sometimes observed [26]. A difference in our result for

@ PLoS ONE | www.plosone.org

the PAI-1 polymorphism relative to a recent meta-analysis [27]
can be explained by our more rigorous inclusion criteria that
restricted data to Caucasian-predominant populations [28], and
confirmed cerebral infarcts [29].

Whilst the effect size of each positive gene association was small
(odd ratios of 1.11 to 1.60), the overall contribution that genetic
factors make towards stroke is likely to be relatively large given the
frequency of these risk variants in the general population (from 3
to 45% each). The sum of the population attributable risks across
all the gene associations identified here was ~30%. These results
are in keeping with models of common complex diseases in which
relatively small numbers of common polymorphisms, each with
only small hazard ratios, can account for large proportions of
population attributable risk [30]. By contrast, certain well-
described single-gene mutations may confer a high relative risk
of stroke, e.g. CADASIL, but contribute very little to overall stroke
occurrence by virtue of their rarity.

It is likely that future discovery of disease-associated genes will rest
increasingly with genome-wide association studies (GWAS), rather
than candidate-gene strategies [9]. For example, the recent finding
from genome-wide searches that polymorphisms on chromosome 9p
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receptor IS: 4 1202/ 1516 1.23(1.09-1.39) —_—y 7200 cardiac
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05 1 2
* dala on heart disease extracted from OR for Risk
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Figure 9. Risk of genetic polymorphisms compared between ischemic stroke (IS) and ischemic heart disease (IH) or myocardial
infarction (MI). Contrasts represent per-allele effects except where indicated. Polymorphisms are grouped into those showing consistent
associations for both types of disease; those showing dissociated effects; and those showing a significant risk of heart disease but not stroke. For the
latter the minimum sample numbers estimated to achieve 90% power based upon each polymorphism’s effect size for ischemic heart disease are

shown.
doi:10.1371/journal.pone.0009136.g009

are associated with myocardial infarction, has prompted preliminary
testing of the same polymorphisms in ischemic stroke [31,32]. In fact,
we found that an increasing proportion of recruited cases to
candidate-gene studies over time are testing genetic polymorphisms
that, after pooling over large numbers, fail to show associations. This
is unlikely to reflect a publication bias towards positive results
amongst earlier publications since we found no association between
effect magnitude, or sample size, and publication date; moreover, the
summary ORs for candidate polymorphisms have not changed
significantly over five years [25]. In the last two years the overall
number of candidate-gene studies, and recruited patients, has fallen
that may reflect increasing inefficiency in selecting candidate genes
and increased employment of GWAS strategies.

Comparison of Genetic Effects with Ischemic Heart
Disease

Given overlapping pathological substrates for ischemic heart
disease and ischemic stroke, as well as a common set of acquired
risk factors and treatment strategies [9], we expected a broadly
similar set, and relative strength, of genetic associations. For the
majority of polymorphisms reported here this is what was found.

@ PLoS ONE | www.plosone.org

Polymorphisms were found to impose similar degrees of risk for
ischemic heart disease and stroke, or were found to show no
associations for both. In some cases, a similar risk was found for
both disease types, but significance was only achieved for ischemic
heart disease, probably due to inadequate power of pooled stroke
studies.

Three genetic polymorphisms tested in both ischemic heart
disease and ischemic stroke showed differing effects between
diseases that did not seem to arise from inadequate power in either
group. We are cautious in our interpretation of these apparent
disease ‘dissociations’ as the two sets of meta-analyses are not strictly
controlled for confounders such as age, sex, or co-morbidities, and
case ascertainment methods differ, as are likely to be the thresholds
at which coronary versus cerebrovascular ischemia manifest
themselves clinically. Nevertheless, both our meta-analyses in
stroke, and those cited in heart disease, are based predominantly
in non-selective Caucasian adult populations; required both clinical
and confirmatory diagnostic procedures; and checked for publica-
tion bias. Furthermore, in the cases of PAI-1 and angiotensinogen
polymorphisms, it is difficult to account for how the same genotype
could produce opposite effects on risk comparing the two disease types
on the basis of confounding or bias alone.
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Figure 10. Forest plots showing quantitative relationship between genetic polymorphisms and associated biochemical variables
for: Factor V Leiden and activated Protein C resistance ratio. Additional forest plots are shown in Figures 10, and 13- 15 that relate set
changes in biochemical variables (determined from the first set of meta-analyses within each figure) with risk of stroke. For MTHFR and ACE this

relationship is determined from a single study each.
doi:10.1371/journal.pone.0009136.g010

Further studies, ideally within the same populations, will be
needed to confirm whether these three gene-disease dissociations
are real, or whether they reflect methodological differences. The
fact that these dissociations relate to proteins in three different
physiological systems, viz. platelets (glycoprotein Illa), clotting
(PAI-1) and blood pressure (angiotensinogen) - for which there also
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disease in terms of these three pathophysiologies has support from
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Figure 11. Forest plots showing quantitative relationship between genetic polymorphisms and associated biochemical variables
for: ACE D/I and ACE activity. Additional forest plots are shown in Figures 10, and 13- 15 that relate set changes in biochemical variables
(determined from the first set of meta-analyses within each figure) with risk of stroke. For MTHFR and ACE this relationship is determined from a

single study each.
doi:10.1371/journal.pone.0009136.g011
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Figure 12. Forest plots showing quantitative relationship between genetic polymorphisms and associated biochemical variables
for: MTHFR and homocysteine levels. Additional forest plots are shown in Figures 10, and 13- 15 that relate set changes in biochemical variables
(determined from the first set of meta-analyses within each figure) with risk of stroke. For MTHFR and ACE this relationship is determined from a

single study each.
doi:10.1371/journal.pone.0009136.9g012

other sources. For example, ischemic stroke relative to ischemic
heart disease has a stronger relationship with hypertension
[33,34], whilst the protective profile of anti-platelet and throm-
bolytic drugs differs between these two diseases [9,35]. Genetic
influences on ischemia may also differ according to vessel size [10].

Comparison of Genetic Effects with Biochemical Markers
of Risk

For each of the positive gene associations with ischemic stroke
that we identified, we performed further analyses using separate
data to establish whether the putative biochemical intermediaries
of these gene variants are associated with equivalent quantitative
levels of risk. The method used here was based upon mendelian
randomization in which one starts with an observational
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association between an environmental (e.g. biochemical) factor
and disease, and then secondarily investigates whether a
concordant level of risk occurs for a genotype that simulates the
environmental factor - thereby making a stronger case for the
factor being causative of the disease [36]. In the current paper, we
start with positive gene-stroke associations and then subsequently
interrogate independent biochemical data with the expectation of
finding concordant levels of risk.

For the four strongest positive gene-stroke associations— factor V
Leiden, MTHFR, ACE and prothrombin - concordance between
observed risk and that predicted from their associated biochemical
changes was found. Moreover, the mean levels of predicted and
observed risks for these genotypes lay very close to each other.
Importantly therefore, we show here, for the first time, that the
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Figure 13. Forest plots showing quantitative relationship between genetic polymorphisms and associated biochemical variables
for: Prothrombin G20210A and prothrombin levels. Additional forest plots are shown in Figures 10, and 13- 15 that relate set changes in
biochemical variables (determined from the first set of meta-analyses within each figure) with risk of stroke. For MTHFR and ACE this relationship is

determined from a single study each.
doi:10.1371/journal.pone.0009136.g013

four genetic variants most reliably associated with ischemic stroke
are also associated with biochemical changes that themselves are
related to equivalent levels of risk. This concordance both validates
our original gene — stroke positive associations, and furthermore,
suggests that the risk imparted by each genotype variant is the
direct consequences of each gene’s understood biochemical
actions. The fact that each of these genes exerts biochemical or
haematological changes that are measurable systemically (i.e. from
venous plasma samples), rather than being specifically cerebro-
vascularly based, is in keeping with our other finding that these
four gene variants exert similar levels of risk on ischemic heart
disease as on ischemic stroke. In the case of the concordant
relationship between MTHFR genotype and homocysteine in
their separate associations with stroke risk, we have replicated our
earlier findings in the face of more than a fourfold increase in
meta-analysis size [11].

In contrast to concordant gene-biochemical risk estimates
observed for the four largest genetic associations, we observed a
discordant gene — biochemical relationship for the PAI-1 4G/5G
polymorphism. Specifically, the variant 5G5G, relative to 4G4G,
was associated with an elevated risk of ischemic stroke, but decreased
PAllevels. However, in separate case-control studies, stroke - as well
as atherothrombosis and ischemic cardiac disease [37,38] - is
associated with ncreased PAI-1 levels. Indeed we saw earlier how in
ischemic heart disease, it is the 4G allele - associated with higher
PAI-1 levels — that 1s associated with risk. The expected risk of stroke
of the 4G/5G PAI polymorphism was also less than that observed
using tPA levels, that are strongly influenced by PAI-1 levels.

There are several possible explanations for the apparent PAI-1
gene-biochemical paradox in the case of stroke. Firstly, it is possible
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that the PAI-1 5G allele association with stroke is false, e.g. because
of reporting bias. However, it is unclear why such a false association
should emerge in the opposite direction to that expected from
ischemic cardiac disease and PAI-1 level data, and Egger’s
regression test argues against publication bias here [12]. Secondly,
the finding that 5G polymorphism depresses PAI-1 levels over the
course of the subject’s life may have different pathophysiological
mmplications, e.g. by predisposing to stroke, than the same
depression of PAI-1 levels found at a single point in later life, when
this is found to be protective [36]. A third possibility is that the PAI-
1 genetic 4G/5G polymorphism is associated with a brain-specific
factor that influences stroke more strongly than does its actions on
PAI-1 levels. This may occur because of linkage disequilibrium with
an as-yet unidentified gene [39], or because of pleiotropy [36]. For
example, while raised PAI-1 levels in plasma may raise thrombotic
risk, raised PAI-1 levels in carotid vessel wall may serve to stabilise
atheromatous plaques [40]. If the PAI 4G/5G polymorphism
influences both tissue and plasma PAI-1 levels, whilst the latter is
also unduly influenced by environmental variables [41], this could
explain the paradox. Furthermore, postulating that PAI-1 4G/5G
exerts different phenotypic effects on cerebral versus other vascular
beds might explain why its influences on ischemic stroke and
ischemic heart disease are in opposite directions.

Conclusion

The current study provides a comprehensive meta-analysis of
common genetic polymorphisms associated with ischemic stroke
that were identified through the candidate gene approach. The
results serve as an important comparator to emerging genome-wide
association studies [9,31,32], which would be expected to converge
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Figure 14. Forest plots showing quantitative relationship between genetic polymorphisms and associated biochemical variables
for: PAI-1 5G/4G and PAI-1 levels. Additional forest plots are shown in Figures 10, and 13- 15 that relate set changes in biochemical variables
(determined from the first set of meta-analyses within each figure) with risk of stroke. For MTHFR and ACE this relationship is determined from a

single study each.
doi:10.1371/journal.pone.0009136.9014

upon similar genetic associations to those shown here, as well as to
identify genes not previously implicated with cardiovascular disease
pathogenesis. Since a major purpose of eclucidating genetic
influences on stroke (as for any complex disease) is to gain insights
into its pathophysiology, we show here how pooled gene association
data can be meaningfully compared with separate data relating the
same genetic effects with both a pathophysiologically-related disease
(here, ischemic cardiac disease) and biochemical intermediaries.

Methods

1: Genetic Polymorphism - Ischemic Stroke Association
Meta-Analysis

Electronic databases (Medline; EMBASE; Google Scholar) were
searched upto January 1, 2009 for all case-control studies
evaluating any candidate genetic polymorphism in ischemic
stroke. Search words used were: cerebrovascular disease, brain infarction,
stroke and cerebral ischemia in combination with polymorphism, genetic,
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mutation, genotype and genes. All languages were searched and
translated when necessary. Additional studies were sought from
references, citations and from the PubMed option ‘Related
Articles’, for each identified study.

Inclusion criteria were studies that: 1) employed case-control
methods where ischemic stroke was analyzed as a dichotomous trait;
both retrospective and prospective cohort designs were included; 2)
confirmed the diagnosis of ischemic stroke with neuroimaging, and
3) were based in Caucasian populations, so as to minimise inter-
racial heterogeneity [28]. Studies were excluded if: 1) patients were
aged under 18 years; 2) only quantitative traits or intermediate
phenotypes were being investigated, or 3) genotype frequency was
not reported. For duplicate publications, the smaller data set(s) were
discarded. For studies with more than one control group, the most
appropriate control group was used.

Data were analyzed using software for preparing Cochrane
reviews (Review Manager, 25; Comprehensive Meta Analysis
v2.2.023). For each genetic polymorphism for which data were
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Figure 15. Forest plots showing quantitative relationship between genetic polymorphisms and associated biochemical variables
for: PAI-1 5G/4G and tPA levels. Additional forest plots are shown in Figures 10, and 13- 15 that relate set changes in biochemical variables
(determined from the first set of meta-analyses within each figure) with risk of stroke. For MTHFR and ACE this relationship is determined from a

single study each.
doi:10.1371/journal.pone.0009136.9015

available from at least two studies, a meta-analysis was carried out.
For each gene variant, a pooled odds ratio (OR) and 95% confidence
intervals were calculated using random-effects [42] models, to
estimate association strength. Tests for heterogeneity [43], and
publication bias [12] were performed with significance set at
p<<0.05. Random-effects results are reported throughout. In order to
improve reliability, we only present here results for polymorphisms
tested in >1000 pooled cases [5]. The proportion of cases in the
population that could be attributed to a particular genetic variant
(population attributable risk or PAR) was estimated as follows:
PAR =100 x [Prevalence(OR — 1)/(Prevalence (OR — 1)+1)]. The
prevalence of exposure was estimated as the genotype frequency
among pooled controls.

We also sought to determine temporal trends in the success of the
candidate-gene approach by determining the pooled number of cases
recruited into studies that tested for polymorphisms that were either
associated, or not associated, with stroke according to our meta-
analysis, and then plotting this against study publication year.
Moreover, for every publication year, we calculated the probability
that cases were tested for a polymorphism that demonstrated either a
significant, or no, association by our meta-analysis. This analysis is
restricted to polymorphisms for which there were >1000 pooled cases.

2: Ischemic Stroke — Ischemic Heart Disease Genetic
Comparison

For each genetic polymorphism tested in ischemic stroke
(with >1000 cases), we searched the literature for the most recent
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meta-analysis testing for the same polymorphism in myocardial
infarction and/or ischemic heart disease, based predominantly in
Caucasian populations. For all polymorphisms showing a positive
assoclation with ischemic stroke there was an equivalent published
meta-analysis in ischemic heart disease/myocardial infarction. For
each polymorphism for which a cardiac meta-analysis existed we
calculated the pooled random-effects OR of ischemic stroke for the
equivalent genotype (or per-allele) comparison using our own
meta-analysis.

3: Gene - Intermediate Phenotype Comparison

For each positive genetic association identified from the meta-
analysis in part 1, we performed a separate analysis that produced
an estimate of expected risk based upon genotype — biochemical,
and biochemical — stroke, association studies, using the principle of
mendelian randomisation [11]. Firstly, we searched the medical
literature for two further types of study: 1) those relating each
genetic polymorphism with a quantitative measure of the most
strongly-associated biochemical or hematological marker - i.e. an
intermediate phenotype, IP, for the gene in question - in
populations free from cardiovascular disease, and 2) those relating
an incremental change of the same IP with risk of ischemic stroke.
For example, for the ACE polymorphism we searched for: 1) (ACE
OR angiotensin converting enzyme) AND (gene OR. genetic OR  genotype
OR polymorphism OR mutation), in combination with (ACE OR
angotensin converting enzyme) AND (activity OR level); and 2) (ACE OR
angiotensin converting enzyme) AND (activity OR level) in conjunction
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doi:10.1371/journal.pone.0009136.9g016

with (cerebrovascular disease OR brain infarction OR stroke OR cerebral
ischemia). As for part 1, we restricted studies to those based in adults
from predominantly Caucasian populations.

From these two sets of studies we performed two types of
analyses: 1) From the first set of studies we extracted from each the
difference in levels (or biological activity) of the IP between the two
homozygous variants, or between the wild-type and heterozygous
variants in cases of dominant polymorphisms. These values were
entered into a meta-analysis to obtain a weighted mean average
using a random-effects model. For those IPs where different
measurement units had been employed between studies (viz. ACE
activity; prothrombin levels, plasminogen-activator inhibitor-1
levels and tissue plasminogen activator levels) we calculated the
percentage change for the rarer, relative to the commoner,
genotype. 2) From the second set of studies we obtained an OR of
ischemic stroke for a given change in the level of that IP used in
the first analysis. Where studies reported different ORs for
different ranges of IP level, we chose the OR reported for the
range closest to that applying to the control group (i.e. healthy
population). The ORs between studies were pooled using a generic
inverse variance procedure in which the logarithms of the ORs are
weighted according to variance in a random-effects model. Since
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the ORs reported between these studies usually refer to different
amounts of IP change, we first scaled the OR values for each study
in proportion to the pooled change in IP level for the genotype
comparison of interest (from the first analysis) assuming a log-
linear relationship [11]. For the relationship between homocyste-
ine levels and ischemic stroke we used a summary OR from a
previous meta-analysis [24].
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