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Abstract: The phase transition of nanocomposite hydrogels made of N-isopropylacrylamide (NIPAm)
and clay (Laponite® XLS) was investigated under mechanical shear influencing the gelation.
The hydrogels were synthesized by free radical polymerization. For the processing of cross-linked gels,
the phase transition (liquid–solid) and its dependence on mechanical stress are of paramount
importance. On the one hand, the determination of the gel point (tg) is possible with rheometry and,
on the other hand, with dynamic light scattering (DLS). With rotational rheometry, by identifying
the abrupt increase of viscosity, the gel point is evaluated. The DSL is an alternative method to
rheometry, to investigate hydrogels under the action of the shear flow, to make results comparable to
the rheometric investigations, with and without shear. Experimental parameters were chosen based
on preparatory work to obtain comparable results regarding the determination of the gel point of a
radically polymerized NIPAm hydrogel.
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1. Introduction

There has been intense interest and progress in engineering soft, shape-transforming materials,
such as hydrogels. Polymer hydrogels responsive to stimuli have attracted increasing attention
as promising soft materials because they can have significant volume changes in response to
external stimuli. The main focus of research is on polymers that change their physical properties
drastically and discontinuously with temperature. Mainly, polymers that show thermosensitivity in
aqueous solutions [1–3]. The possible fields of application for thermoresponsive polymers are tissue
engineering [4], chromatography [5], drug release [6], bioseparation [7], sensor and actuator materials
for specialized applications [8].

In the technical application of this new class of materials, hydrogels, with their viscoelastic
behavior, the main focus is on improving the mechanical properties. Haraguchi et al. [9–11] reported
on soft hydrogels based on N-isopropylacrylamide (NIPAm) with exceptional tensile properties and
mechanical toughness. The hydrogels based on NIPAm are used for various applications and are
the most studied systems [1]. The NIPAm hydrogels with covalently cross-linked network structures
are radically polymerized. The polymerization is initiated by the redox system potassium persulfate
(PPS) and N,N,N′,N′-tetramethylethylendiamine (TEMED) in the presence of clay the Laponite® XLS
(synthetic layered silicate and platelets) [12–14]. The combination of clay (inorganic) with polymer
(organic) is called nanocomposite hydrogel (NC hydrogel). The NC hydrogels used in this work are
chemical gels as well as based on the organic NIPAm polymer and inorganic clay nanoparticles [15].
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The clay platelets in an aqueous solution act as a polyfunctional crosslinker of movable polymer
chains. These NC hydrogels are attractive for technical applications because of their improved
mechanical stability, compared to hydrogels without synthetic layered silicate. Shibayama et al.
concluded that “the high mechanical properties of NC gels are ascribed to “plane cross-linking” with
long PNIPA chains between platelets compared with those of conventional chemical gels having “point
cross-linking”. The generally accepted gel formation mechanism in the NIPAm–clay hybrid [12–16]
involves the formation of the “clay-brush particles”, i.e., clay aggregates with polymer chains adsorbed
on the surface of clay platelets, in the beginning of polymerization. Clay aggregates lead to a
reduction of optical transmittance (turbidity). Linking of these clay brushes takes place to form large
assemblies [12,17,18] and hydrogel clusters followed by gelation of the system. When the gel point (tg)
is reached, turbidity appears in the clear polymer solution. Continuation of the polymerization/gelation
and formation of long grafted chains result in a gradual homogenization and an increase in the
transparency of a system. The model of the gelation mechanism is based on measurements of viscosity
in the early pregel stage [19], changes in transparency during polymerization, and dynamic light
scattering (DLS) [20]. In particular, the effect of mechanical shear on the formation and properties of a
polymer/clay gel is still not understood.

As it is known, the gel point can be evaluated using rotational and oscillating rheometry [21].
The intersection of storage modulus G′ and loss modulus G” is used in the oscillating test to define the
gel point at which a higher storage modulus compared to the loss modulus is observed (G′ > G”) [22–27].
Using rotational rheometry, gel point is evaluated by identifying the abruptly increase of the viscosity.
The results of the rotation measurements provide a possibility to find a critical mechanical shear
(shear stress), which significantly influences the gel formation. Here, too, it could be shown that
mechanical stress during the phase transition has influences on the gelling time and, thus, on the
mechanical stability of the final hydrogel. For the NIPAm hydrogel with clay (Laponite® XLS) used
as cross-linker, rotation and oscillation measurements under a mechanical load have already been
successfully carried out in the past [27]. This work aims to compare rotational rheometry with dynamic
light scattering for measuring the gelation time in NC hydrogels to observe the mechanical shear
influence on the gel point. As the preparatory work [27] having shown, mechanical stress influences
on the gelling time. The gelling time without shear can only be determined with dynamic light
scattering and tilting tests. Therefore, the rheometric methods were compared with the DLS, which is
an alternative to examine the gel point without mechanical shear. The first studies on polymer networks
using DLS were carried out on gelatine gels several decades ago [28]. Gelling using DLS is indicated by
changing the form of the time–intensity correlation function (TCF or ICF). The TCF reveals a power-law
behavior at the gel point [16,29–31]. The unique feature of our current study was the measurement
with the DLS under shear flow. A self-made setup, allows determining the gel point in the resting
and dynamic state using a combination of two technically independent measuring techniques for the
first time. With the help of extensive sensitivity analysis in preparatory work, concrete measurement
parameters were set, which are required to obtain reproducible results. These rheometric results serve
as the basis for the comparison with the DLS.

2. Materials and Methods

2.1. Materials

N-isopropylacrylamide (NIPAm) monomer (stabilized with 4-Methoxyphenol (MEHQ)) was
purchased from TCI Chemicals (Eschborn, Germany) with a purity of >98%. Potassium persulfate
(PPS, Sigma Aldrich, St. Louis, MO, USA), N,N,N′N′-tetramethylethylenediamine 99.5% (TEMED,
Sigma Aldrich) and Laponite® XLS was purchased from BYK Additives and Instruments
(Wesel, Germany). The gels were prepared and equilibrated in Milli-Q deionized water (DIW–H2O).
The prepared solutions were deoxygenated by argon before polymerization.
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2.2. Hydrogel Polymerization

The gelation of the hydrogel based on NIPAm and clay (Laponite® XLS) was based on a free
radical polymerization with potassium persulfate (PPS) and TEMED [9,29]. The starting solution
consisted of 3 g Laponite® XLS (approximately 40 wt % in dry gel) were dispersed in 40 mL DIW–H2O
under constant stirring for 15 h. Then 5 g NIPAm were added, and the mixture was stirred for
another two hours. TEMED was dissolved in DIW–H2O under constant stirring for two hours to
achieve a concentration of 0.6 mol/L. Furthermore, the initiator, PPS, was dissolved in DIW–H2O
to achieve a concentration of 0.036 mol/L [27]. A molar ratio with a sample volume of 1 mL
(NIPAm): (TEMED): (KPS) = 8.8 × 10−4: 6 × 10−5: 3.7 × 10−6 was used.

2.3. Methods

Rheometric measurements were performed with an Anton-Paar Physica MCR 301 rheometer
(Anton Paar, Nuremberg, Germany) equipped with cone-plate geometry (diameter: 50 mm,
opening angle: 0.995◦). To perform the measurements, the three components (NIPAm-, PPS- and
TEMED-solutions) were mixed: 0.8 mL of NC hydrogel starting solution, 0.1 mL of the solved
TEMED and 0.1 mL of the solved PPS. Sample volume of 1 mL (NIPAm): (TEMED): (KPS) =

8.8 × 10−4: 6 × 10−5: 3.7 × 10−6. Subsequently, the mixture was immediately filled into the rheometer
gap with a syringe, and we started the measurement. The shear stress was set between 0.5 and 4.5 Pa
for the rotational rheometry. The starting point of the given times in the results presented refers to the
moment of the mixing. For these experiments, the rheometer was used in the controlled stress mode,
avoiding certain fracturing of the gel samples [27]. We performed all measurements at a constant
temperature of 293 K ensured by the Peltier unit.

The gel point (tg) is the fast increase in viscosity over time and is given graphically in Figure 1a.
The blue curve is an example of the steep rise and the red curve with a flat increase of viscosity.
Figure 1b gives the graphical overview of starting point delay (SP), gel point (tg) and gelation time
(tgel). SP is the time from mixing, e.g., starting the radical polymerization by initiation with TEMED
and PPS until starting the measurement with the rheometer. In the case of a determining gel point
with rotational rheometry, it is necessary to define the rate of increase in viscosity. It was established
by preliminary research [27] that for low shear stresses, a steep and sudden increase of the viscosity
was measured, Figure 1a blue curve. For higher values a slow and flat increase of the viscosity was
present, Figure 1a red curve. We found that the definition of the gel point with 1 mPa·s/s at 293 K led to
reproducible, unambiguous and comparable results. In addition to tg the gelation time (tgel) and delta
t are plotted in Figure 1b. The gel time corresponds to the time from initiation until a macroscopic gel
is formed. For the calculation of delta t, 20 min was assumed for tgel. Delta t is the difference of tgel
and tg. In [27] the gel point found for very low shear stresses tg = 19.6 min. Further details regarding
the method and the examination of the gelation using this principle can be found in [27].

Dynamic light scattering measurements were performed with the ZetasizerNano from Malvern,
with a HE-NE Laser 633 nm, maximum 4 mW and the new back scattering method (NIBS) [32].
The sample was filled in disposable polystyrene cuvettes and capillary cells for testing under shear flow.
The folded capillary cell combines the advantages of the measurement accuracy of a capillary cell with
the user-friendliness of a disposable cell. The gel point was determined with DLS, because before the
gelation threshold was reached, a change in the DLS autocorrelation functions appeared. Further details
regarding the method can be found in [16,20,29–31]. Martin et al. demonstrated that the scattering
intensity–time correlation function g2(t) changed from a stretched exponential function to a power-law
function, i.e., g2(t) − 1 at the gel point [33,34]. The change in the correlation function is shown
graphically in Figure 2.
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A sample volume of 1 mL was used for the measurements in the resting state. The sample
was composed of 800 µL of a 1 mol/L NIPAm solution with dispersed clay (Laponite® XLS) with
approximately 40 wt % in dry gel, 100 µL catalyst (TEMED c = 0.6 mol/L) and 100 µL initiator
(PPS c = 0.03 mol/L). A molar ratio with a sample volume of 1 mL (NIPAm): (TEMED): (KPS) =

8.8 × 10−4: 6 × 10−5: 3.7 × 10−6 was used. The measurements under flow were then performed at
certain wall shear rates

.
γ providing shear stress comparable with the rheometric setup. The wall shear

rate was set up experimentally with a peristaltic pump via the volume flow
.

V. A hose peristaltic pump
from Medorex was used with a PVA 4.0 × 1.5 hose. TBE/106-1-6 with 106 mm pump head diameter,
one channel, 6 mL/min up to 2000 mL/min flow rate and 6 rollers. The measurement setup is given as a
schematic sketch in Figure 3.
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Figure 3. Setup of the dynamic light scattering (DLS) measurement under flow. Two three-way valves
(1) as input for NIPAm and output for bubbles with the hose (2) system, the pump (3) and the special
cuvette (4).

To do this, at least 3 calibration measurements were carried out. A sample volume of 60 mL was
used for the measurement. The sample consists of 48 mL of a 1 mol NIPAm solution with a mass
fraction of approximately 40 wt % of Laponite® XLS in the dry nanocomposite, 6 mL catalyst (TEMED
c = 0.6 mol/L) and 6 mL initiator (PPS c = 0.036 mol/L). The DLS measurements were as well carried
out at 293 K. The sample was mixed in a beaker and transferred with a syringe to the flow/hose system.
At the same time, the measurement was started at the DLS, because there was a 2-min delay in the start
time. The overall measurement time was 30 min, with 5 s per point at 12 points per minute. The digital
correlator has generated a correlation function per minute, i.e., the correlation function (1) in Figure 2
would correspond to a measuring time of one minute from 12 measuring points at an interval of 5 s.

It is not possible to control the shear stress in the hose system of the DLS setup. Thus, a wall shear
rate

.
γc (1/s), which corresponds to the shear stress of 0.5 Pa used in rheometry, should be determined

and set up in the corresponding DLS experiments. This can be done setting up the volumetric flow
.
γ = 45 (mL/min) (Equation (1)) [35]. With a simplified assumption: horizontal tube, stationary and
laminar flow, and ideal viscous and incompressible liquid, according to the relationship between
Hagen and Poiseuille [35]. Calculated shear rate

.
γc = 105 (1/s) for a shear stress of 0.5 Pa and the

comparable shear rate
.
γm = 119 (1/s) during real measurement. This shows the difference in shear

rates with volume flow specifications. The hose of the DLS setup has a circular cross-sectional area
with a radius of R = 2 mm. The resulting wall shear rate in the flow experiment

.
γm is determined

experimentally. The volume flow changes due to the speed of the pump and the contact pressure.
After we adjusted both on the pump, the actual volume flow is determined using the flow rate using
a balance.

.
γc =

4·
.

V
π·R3 and

.
V =

.
γ·π·R3

4
(1)

A peristaltic pump was used for this, in which the volume flow
.

V is to be set manually via the
speed control, which leads to some differences compared to the calculated values.

3. Results

3.1. Determination of the Gel Point Using Rotational Rheometry

It is an approved method to determine gelling by the fast increase in viscosity over time [27,36].
The rotational rheometry is characterized by a constant rotational speed of the sample geometry during
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an examination. By determining the gel point, it is necessary to define the rate of increase in viscosity.
It was determined by preliminary research [27] that the definition of the gel point at 1 mPa·s/s at 293 K
leads to reproducible results. Accordingly, gelling behavior depends on the respective shear stress.
Results of measurements using different shear stress τ are presented in Figure 4. The respective shear
stress τ strongly influences the gelation of the investigated hydrogel system. At first glance, it seems
paradoxical that the gelation time decreases with increasing shear. As we know from our previous
work [27] that the gelation increase with increasing shear. We prepared a measurement series with
9 data points for τ = 0.5 up to τ = 4.5 Pa. The results are shown in Figure 4.
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The data points represent several independent measurements, meaning different starting solutions and
measurement days. The red fit using a linear behavior is for the data points 0.5–1.5 Pa; in blue, using a
linear fit between data points 2–4.5 Pa can be regarded as a guide for the eye.

The first fit in red between data points 0.5 and 2 Pa shows a decrease of tg, which leads
to the assumption of a critical shear stress, lower than expected 4.75 Pa, as mentioned in [27].
Further investigations were performed and figured out to prove the hypothesis. We made a visual
check of the sample after the measurement by opening the measuring set up. With low shear stress,
a homogeneous hydrogel film could be observed on the measurement geometry. The proportion of
liquid increased with increasing shear stress τ > 1.5 Pa.

The proportion of liquid leads to the assumption that the reaction mixture is no longer completely
polymerized, and the formation of a macroscopic network is prevented, i.e., gel formation is
suppressed. Above the critical shear stress, a constant tg can be observed with an accuracy of ± 2 min.
Accurately, gelation is suppressed. That is illustrated in Figure 5, and the exact value for the critical
shear stress can be derived τc = 1.5 Pa. With undisturbed gelling, we know that a macroscopic polymer
network is formed after 20 min (tgel) [27]. We checked this value with simple tilting tests. With tgel =

20 min delta t is determined as the difference between tg and tgel (see Figure 1b). The results of
the calculated delta t are presented in Figure 5 where delta t get a constant value of 4 ± 2 min from
τc = 1.5 Pa. The reason is the destruction or prevention of gelling due to the mechanical influence,
a complete polymer network cannot form. This assumption is confirmed when the measurement
geometry was opened after the measurement. The plate was covered with 40% liquid polymer solution
at a shear stress of 1.5 Pa. With increasing shear stress, the liquid fraction also increased until it
remained completely liquid. A linear increase of delta t until the critical τc = 1.5 Pa (in Figure 5 the fit
in red) and then reaching constant value above τc with delta t 4 min ± 2 min (Figure 5 the blue fit).
An exact determination of the gel point is no longer possible because there is no longer a macroscopic
network. For the investigated NIPAm with Laponite® XLS system, a critical value of τc = 1.5 Pa was



Micromachines 2020, 11, 462 7 of 13

found. The following studies were performed at a temperature of 293 K and shear stress of τ ≤ 1.5 Pa,
to guarantee the comparability with DLS under flow.Micromachines 2020, 11, x 7 of 13 
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The findings of this study support the assumption that the gelation is a mechanism that can
be strongly influenced by mechanical shear. Owing to this finding, further influencing factors were
investigated. The repeatability was ±2 min by the determination of the gel point. With the following
studies, we enhanced the measurement method for better comparability with the DLS. Due to the bits
of knowledge that clay aggregates are formed at the beginning of polymerization, investigations of SP
are from paramount importance.

The influence of the starting point delay (SP) was examined experimental. Figure 6 show the
results when the SP was varied from 2, 5, 8 and 12 min with the same initial viscosity of the monomer
solution. As the SP increased, the gelling time increased. The reason for this is the adsorption of
the reactive components on the clay platelets, as described in [1]. By resting the reaction mixture,
the prepolymerization phase was not disturbed, so that it took longer for the polymer chains to come
together in a network. This led to an almost linear increase in the gelling time.
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Figure 6. This figure shows the influence of the starting point delay (SP): linear increase in the gel time
with increasing SP. SP was varied from 2, 5, 8 and 12 min with the same initial viscosity and shear stress
τ = 1.5 Pa at 293 K.

Furthermore, the dependence of viscosity on gelation time is essential. Initial viscosity depends
on the one hand, on temperature, and on the other hand, on the content of the solved reactants.
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Therefore we decided to variate the viscosity by variation of NIPAm quantity. We produced monomer
solutions with double monomer content and investigated the influence of increasing viscosity on
the gelation. The observed starting viscosity varies with different monomer solutions, even at the
same concentration. The causes are the self-polymerization of NIPAm by atmospheric oxygen and
temperature differences in the measuring geometry, although its temperature is controlled. The avoiding
temperature influence could not be optimally guaranteed, even by preheating the sample in a water
bath to measuring temperature. Due to the high consumption, the subsequent purchase of the
starting materials is inevitable, and the open measuring geometry cannot prevent self-polymerization.
Consequently, an SP of 2 min was always measured.

The doubling of the monomer content leads to an enormous increase in viscosity. An example of
standard value with a viscosity of 2.6 mPa·s led to tg = 17.76 ± 1.4 min and double concentration with a
viscosity of 25 mPa·s a tg = 24.43 ± 0.98 min was found. The gel time increased with increasing viscosity.
The resulting higher viscosity slowed down the diffusion of the educts. Therefore, monomers could
move through the mixture more slowly. Consequently, the polymerization was slower. We detected
that during the aging of the NIPAm solution the viscosity increase, because of self-polymerization.
At the beginning, day 1 the NIPAm–clay system with a viscosity of η = 2.7 mPa·s we found a
tg = 15.08 ± 0.28 min and day 14 a NIPAm–clay system with η = 10 mPa·s and tg = 20.2 min ± 1.39 min
was measured. Our data corroborated the self-polymerization of the monomer solution that led to
chain growth and thus minimized crosslinking. This led to an extension of the network formation
and the polymerization was slowed down. Therefore, the monomer solution was freshly prepared
before each measurement to measure at an initial viscosity of 2.5–3.5 mPa·s. The rate-determining
step in radical polymerization is the formation of radicals, the rate can be accelerated by increasing
the initiator concentration. Persulfate gives two radicals, so doubling the initiator means four-times
that much radicals. Accordingly, the gelation time became approximately 4 times shorter. See Table 1;
these findings proved our hypothesis. An example for doubling the initiator concentration is shown in
Table 1, which led to the faster radical formation and, thus, to a shortened gelation time.

Table 1. Influence of the initiator concentration on the gelation time.

At Initial Initiator Concentration At Double Initiator Concentration

tg x 17.8 ± 1.57 min 4.86 ± 0.35 min
1 T = 293 K, τ = 1.5 Pa.

Our gelation time was within 10% of the theoretically expected value. The initiator concentration
significantly affected the gelation time.

3.2. Dynamic Light Scattering

3.2.1. Dynamic Light Scattering without Mechanical Load

The comparison under increasing mechanical stress is made more difficult by the fluctuation in
the viscosity of the monomer solution. Therefore, a single monomer solution was used with all further
measurements, i.e., for the calibrations measurements with rheometry, DLS and the measurements with
mechanical shear. Within Figure 7 was the first figure calibration measurement (first run) to determine
the gel time with the DLS in the resting state (without a flow/shear). The shape of the correlation
function changed between 16 and 17 min (red curve) after the start of the reaction (black curve).
The blue curve corresponded to 1 min after the change in the shape and the green curve corresponded
to 1 min before the change. The dashed line is the correlation function 20 min after the initiation.
The yellow arrow shows the direction of the change in the curve shape, i.e., reaction order.
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Figure 7. First calibration measurement with DLS to determine the gel point without shear. A change
of TCF of NIPAm, PPS and TEMED solution during its gelation process occurred.

The results of the measurement were plotted double logarithmically. The calibrating measurement
with DLS was performed at 293 K and a set starting point delay of 2 min. At the beginning, we observed
the drop of the black line in Figure 7; that is what we expected for the colorless liquid monomer
solution. After around 15 min, we see a linearization of the green line because of the local turbidity of
the sample by the cluster forming.

Further, a sharp and short reduction of the optical transmittance during the polymerization to
NC gels is known from Ferse et al. The shape of TCF red line with 17 min changes drastically from a
falling exponential to linear behavior at the gelation threshold. At the gel point, the shape changed
from a falling curve to a linear line. However, the gelling, the building of a macroscopic cluster,
was not complete. Therefore, the blue line is shown, almost parallel to the dashed line, which is the
measurement result of the final gel. We proved the reproducibility with a second and third calibration
measurements presented in Figure 8a,b.
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Figure 8. Calibration measurements (a—second run, b—third run) to determine the gel time with the
DLS in the resting state (without a flow). (a) The shape of the correlation function changes in 16–17 min
after the start of the reaction; red curve. The blue curve; corresponds to 1 min after the change in the
shape, and the green curve corresponds to 1 min before the change. (b) The shape of the correlation
function changes in 17–18 min after the start of the reaction; red curve.

Figure 8a shows the results of the second calibration measurement in the resting state with the DLS,
and Figure 8b, the third calibrating measurement. Analogously to Figure 7, the curve of the correlation
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function changed several minutes after the start of the chemical reaction with adding of the initiator.
In Figure 8 is in each diagram, three correlation functions shown and plotted double logarithmically.

The green line is the TCF before the change in the shape appeared. The red line is the TCF at
the gel point, measurable by the reduction of the optical transmittance. The blue line is given to
demonstrate that the gelling process is not final and the red line marks the gel point. In Figure 8a the
red line corresponds to the correlation function 16–17 min after the initiation, and Figure 8b shows the
gel point in 17–18 min after the start.

The reproducibility of the measurement was observed within the conducted calibration. With the
same monomer solution or the same viscosity, the identical gelation time was measured in three
independent runs. The gelation time of 17± 1 min without mechanical influence serves as a reference for
the measurement in the shear flow. Figures 7 and 8 show that the shape of the curves (i.e., TCF) changes
slowly and not suddenly, which corresponds to the process of the gelation, which is a phase transition.

3.2.2. Dynamic Light Scattering under Mechanical Shear

By increasing the volumetric flow to 45 mL/min with the peristaltic pump, we were able to
increase the mechanical shear in the measuring set up (Figure 3) of the DLS measurement set up
under flow. First mixing of the reactants in a beaker. With the input of the reactants (through the
valve), the measuring was started. The preparatory work: mixing reactants and inserting to the setup,
was timed of 2 min, respectively starting the time delay.

Figure 9 shows the result of the DLS measurements under a shear flow at a volumetric flow of
45 mL/min. The volumetric flow in the hose led to a wall shear rate of approximately 120 1/s and
was comparable to a shear stress of less than 0.5 Pa. An observed change in the correlation function
corresponded to the time of approximately 15 min. The gel point at 15 min after initiation, earlier than
expected. That is leading to the assumption that further influencing factors exist that influence or
expedite the gelling.
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3.3. Discussion

In this study, we first tried to specify the factors influencing the gel time. We showed the most
important influencing factors such as the viscosity, which depends on the content and the temperature
of the reactants. Besides, we improved or developed the ideal measurement conditions to obtain
reproducible results. First we have to discuss the result of the DLS in the resting state. Unlike as
expected, gelation appears in the resting state earlier, compared to tgel with 20 min [27]. I presumed
that the laser light of DLS locally heated the sample. The radical polymerization was faster due to local
heating of the sample, and local turbidity appears. We proved this with a laser λ = 632.8 nm He-Ne
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laser (Spectra Physics) with a maximum power output of 4.5 mW. By filling 1 mL reactants solution
into the transparence cuvette and pointing the laser beam on the cuvette. In the area where the laser
beam pointed to the solution, a local turbidity was visible. The turbidity disappeared 20 min after the
initiation when the polymeric network was formed. This turbidity led to a change in the correlation
function. We obtained by DLS under flow a gelation time of about 15 ± 1 min and by rheometry with a
higher mechanical shear of about 15.3 min. The slight difference in the gelation time obtained by DLS
to the rheometric characterizations could be accounted to the influencing factors mentioned in the
shown studies. The initial viscosity was the influencing factor to the gelling time and respectively to
the measured gel point. The viscosity depending on the temperature, e.g., differences in the sample
temperature led to different initial viscosity. The sample must have the same temperature in each
measurement. Therefore, a constant and controlled temperature is necessary during rheometric and
DLS measurements with the Peltier unit of the rheometer guaranteed and the DLS has an integrated
thermostat, too. However, the DLS measuring set up was self-made (see Figure 3) with no possibility
to control the temperature of the sample in the hose. That could lead to fluctuations in temperature
and following a different initial viscosity.

We illustrated the influence of fluctuation in viscosity with experiments with increased viscosity
and resulting in extended gelling times. Not only temperature also the aging of the monomer solution
led to an increase in viscosity. Based on this sensitivity analysis, the conditions of the measurements
with the DLS are determined to receive comparable results. In [37] further explanation, answering the
question of whether the “microscopic” gel point is the same as the “macroscopic” gel point determined
using rheometry, is provided. The gel point of gelatine was evaluated in [37], where the sol–gel
process took place due to the decrease of the temperature. In the context of the gelatin study, it was
shown that the gelation temperature obtained by DLS and by rheometry corresponded to each other.
The results corresponded with the accuracy of 1 K. In our current work, we could conclude that
the effect of mechanical shear on gelation time, determined by DLS and rheometry, was consistent.
Nonetheless, DLS and rheometry were comparable. Due to the process-related differences, there
may be deviations in the measurement result. With the DLS, only partial temperature-controlled
measurements were possible under flow, because the hose with the sample was outside of the DLS
(see Figure 3) hose. Moreover, the non-uniform cross-section in the cuvette led to a shear gradient and
thus to different shear rates. Compared to the rheometer, a significantly higher shear rate could be
assumed. Since tg = 15 min with DLS corresponded to a shear rate of 1.5 Pa.

4. Conclusions

In the present work, the viscosity increase using rotational rheometry, as well as the
correlation function using the DLS during the radical gelation, were determined on the system
N-isopropylacrylamide (NIPAM)/clay in a concentration ratio of 10.4/7 wt %. The initiator concentration
was chosen in such a way that rapid gelation was to be expected, and thus measuring times were
reduced from 120 min in previous work [27] to 20 min in this work to observe the sol–gel conversion.
Before measurements could be carried out at the DLS, previous rheometric measurements carried out
to identify and eliminate the influencing factors on the gelation. This is temperature, viscosity, aging
and quantity of the educts. The determination of the gelation point with the DLS was carried out in
the resting state and under shear flow with a wall shear rate corresponding to the shear stress used
in the rheometrical measurements. Results obtained with these different methods were comparable,
if the same monomer solution, on the same day, at the same temperature was used. However, there is
still a need to better understand the influence the mechanical stress during gelling on the resulting
structure–property relationships. An approach is to study and compare the mechanical properties of
finished gels that are treated with and without mechanical stress. It should not be forgotten that the clay
content influences the network of the resulting gel. Therefore, investigations with different clay contents
are necessary. The reproducibility of the exact gelation time is negatively influenced by atmospheric
oxygen. Therefore, all measurements should be repeated in the absence of oxygen, with a technically
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optimized set up. This can reduce the self-polymerization of the NIPAm. Furthermore, temperature
influence must be examined in detail.
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