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A computational system for the prediction and classif ication of human G-protein
coupled receptors (GPCRs) has been developed based on the support vector ma-
chine (SVM) method and protein sequence information. The feature vectors used
to develop the SVM prediction models consist of statistically signif icant features
selected from single amino acid, dipeptide, and tripeptide compositions of pro-
tein sequences. Furthermore, the length distribution difference between GPCRs
and non-GPCRs has also been exploited to improve the prediction performance.
The testing results with annotated human protein sequences demonstrate that this
system can get good performance for both prediction and classif ication of human
GPCRs.
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Introduction

G-protein coupled receptors (GPCRs) are a class of
transmembrane proteins that can be bound by struc-
turally diverse ligands to activate a variety of cellular
signaling cascades, which play important roles in cel-
lular signal transduction. For the pharmaceutical in-
dustry, GPCRs are one of the most important classes
of drug targets. More than 50% of drugs currently
available on the market act through GPCRs (1 ). Hu-
man GPCRs can be grouped into four families as A,
B, C, and frizzled/smoothened (fz smo) based on the
specificity of their ligands (2 , 3 ). Although a number
of GPCRs have been identified in the human genome,
there is still room for finding novel GPCRs. Further-
more, hundreds of the identified GPCRs still remain
orphaned (with unknown ligand specificity) or poorly
characterized. Computational methods are frequently
used to facilitate the identification and characteriza-
tion of receptors, which could lead to the discovery of
novel signal transduction pathways and provide new
insights into the disease process and drug discovery.

A number of strategies have been developed for
the prediction and classification of GPCRs, includ-
ing the pairwise sequence alignment method (4 ), the
Bayes network method (5 ), the hidden Markov model
(HMM) method (6 , 7 ), and the support vector ma-
chine (SVM) method (1 , 8 , 9 ). All of these methods
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have been widely used for solving various problems re-
lated to biological sequences. For the prediction and
classification of GPCRs, however, the performance of
these methods is still not very effective owing to the
complexity that many GPCRs with analogous func-
tions have resulted from convergent evolution (7 ) and
there might exist some higher-order relationships be-
tween GPCR sequences and their functions (10 ).

In this study, the SVM method and a three-step
strategy were applied to develop a computational sys-
tem for the prediction and classification of human
GPCRs. Firstly, the length distribution difference be-
tween human GPCRs and non-GPCRs was analyzed
and a length-based filtration system was constructed
to filter out the sequences whose lengths are quite
different from those of GPCRs. Secondly, an SVM-
based GPCR prediction system was developed to dis-
criminate GPCRs from non-GPCRs using composi-
tional features of protein sequences. Finally, an SVM-
based GPCR classification system was constructed to
further judge which subfamily a potential GPCR se-
quence might belong to.

Results and Discussion

Length distribution of GPCRs

Using all of the annotated human protein sequences
(including 653 GPCRs and 10,845 non-GPCRs)
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provided by UniProt (ftp://cn.expasy.org/databases/
uniprot), the length distributions of GPCRs and non-
GPCRs were analyzed in this study (Figure 1). It is
clear that the length distribution of human GPCRs is
quite different from that of non-GPCRs.

Based on the above length distribution difference
between GPCRs and non-GPCRs, a filtration method
was adopted to filter out the sequences whose lengths
are quite different from those of GPCRs. By this
method, nearly 1/3 non-GPCRs (3,119 out of 10,845)
can be filtered out at the cost of missing only about
0.6% of GPCRs (4 out of 653). Furthermore, some
of the filtered non-GPCRs belong to the non-GPCR
transmembrane proteins that are usually difficult
to be discriminated from GPCRs. Therefore, this
length-based filtration method can improve the per-
formance of GPCR prediction.

Performance of GPCR prediction

For the prediction of GPCRs, an SVM-based system
was developed using statistically filtered single amino
acid and dipeptide composition features of protein se-
quences. The dataset used to train this system con-
sisted of 597 GPCRs (positive samples) and 1,825
non-GPCRs (negative samples). To evaluate its pre-
diction performance, this system was applied to dis-
criminate the 653 human GPCRs from 10,845 non-

GPCRs. Three measures including sensitivity (Sn),
specificity (Sp), and Matthews correlation coefficient
(MCC) were utilized to evaluate the prediction accu-
racy. Let TP (true positive) and TN (true negative)
be the number of correctly predicted positive and neg-
ative samples, FP (false positive) and FN (false neg-
ative) be the number of incorrectly predicted positive
and negative samples, respectively, then Sn, Sp, and
MCC are defined as:

Sn = TP/(TP + FN)
Sp = TN/(TN + FP )
MCC = TP×TN−FP×FN√

(TP+FP )×(TP+FN)×(TN+FP )×(TN+FN)

The results of discriminating 653 human GPCRs from
10,845 non-GPCRs are shown in Figure 2.

The results demonstrate that our GPCR predic-
tion system can discriminate human GPCRs from
non-GPCRs with a specificity of 97.2%, a sensitivity
of 95.4%, and an MCC value of 0.96. This perfor-
mance is very close to that of the method developed
by Bhasin and Raghava (1 ) using dipeptide composi-
tion features and evaluated with the same datasets. In
addition, further analysis of prediction results reveals
that the false positives are mainly other transmem-
brane proteins, suggesting that how to distinguish
GPCRs from other transmembrane proteins is impor-
tant for further improving the performance of GPCR
prediction.

A B
Fig. 1 The length distributions of human GPCRs (A) and non-GPCRs (B).

Fig. 2 The results of discriminating 653 human GPCRs from 10,845 non-GPCRs.
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Performance of GPCR classif ication

For the classification of GPCRs, an SVM-based sys-
tem was developed using statistically filtered single
amino acid, dipeptide, and tripeptide composition
features of protein sequences. A dataset containing
all of the 451 ligand-known huamn GPCRs (395 for
family A, 30 for family B, 15 for family C, and 11
for family fz smo) was used to train and test this sys-
tem. The measures to evaluate the classification per-
formance include Sn, Sp, and accuracy (Acc), which
is defined as:

Acc = (TP + TN)/(TP + TN + FP + FN)

The classification performance of this system is
given in Table 1. For the purpose of comparison,
the performance of Bhasin and Raghava’s method
(1 ) when tested with the same data and evaluated
with the same measures is also shown in Table 1.
The results demonstrate that the classification perfor-
mance of our system is better than that of Bhasin and

Raghava’s method that only exploits dipeptide com-
position features, suggesting that our method, which
selects suitable features from single amino acid, dipep-
tide, and tripeptide composition features, is more
effective for GPCR classification.

Materials and Methods

System flowchart for GPCR prediction

and classif ication

Figure 3 is the system flowchart for GPCR prediction
and classification, which includes three steps: (1) Us-
ing a length-based filtration system to filter out se-
quences whose lengths are quite different from those
of GPCRs. (2) Using a GPCR prediction system to
discriminate GPCRs from non-GPCRs. (3) Using a
GPCR classification system to judge which subfamily
a potential GPCR sequence might belong to.

Table 1 Performance Comparison of Human GPCR Classif ication

Family Our method Bhasin and Raghava’s method

Acc Sp Sn Acc Sp Sn

A 0.995 0.992 1 0.995 0.992 1

B 0.989 1 0.967 0.966 1 0.900

C 1 1 1 0.897 1 0.400

fz smo 0.979 1 0.917 0.938 1 0.750

Fig. 3 System flowchart for GPCR prediction and classification.
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Length-based filtration system

According to the length distribution difference be-
tween human GPCRs and non-GPCRs as shown in
Figure 1, a simple determinant function is currently
adopted in the length-based filtration system to filter
out sequences whose lengths are quite different from
those of GPCRs. That is, protein sequences shorter
than 250 amino acids or longer than 1,600 amino acids
are considered as non-GPCRs. However, it might be
a better solution to build a probabilistic model for the
length distribution and to consider it as an additional
feature in the GPCR prediction system.

GPCR prediction system

The GPCR prediction system is based on an SVM
model with the feature vector consisting of statisti-
cally filtered single amino acid and dipeptide com-
position features of protein sequences. The datasets
used to develop this system consisted of 597 pos-
itives samples selected from all 653 annotated hu-
man GPCRs by excluding fragments and redundant
sequences, and 1,825 negative samples randomly se-
lected from human non-GPCRs according to the
length distribution of GPCRs. The selection of suit-

able features is the kernel for developing an effective
prediction model. Previous studies have revealed that
the dipeptide composition feature seems to be sig-
nificant for discriminating GPCRs from non-GPCRs
(1 ). However, we found that some of the 400 dipep-
tide compositions exhibit insignificant differences be-
tween GPCRs and non-GPCRs, and that adding sin-
gle amino acid composition features could improve the
prediction performance of SVM models. To select sig-
nificant features for GPCR prediction, the following
method was used in this study to calculate the sig-
nificance value for each of the single amino acid and
dipeptide composition features. For a feature x, its
significance value u is defined as:

u(x) =
|µ(x)G − µ(x)N |√

σ(x)2
G

nG
+ σ(x)2

N

nN

where G and N denote GPCRs and non-GPCRs, re-
spectively; µ is the average frequency of feature x; σ

is the variance of feature x; and n is the number of
samples. The u value distributions for single amino
acid and dipeptide composition features are shown in
Figures 4 and 5, respectively. In this study, features
with u value higher than 10 were selected for devel-
oping the GPCR prediction model.

Fig. 4 The µ value distribution of single amino acid composition features.

Fig. 5 The µ value distribution of dipeptide composition features.
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In this study, the SVM prediction model was de-
veloped using the freely available software SVM light
(11 ). The radial basis function (RBF) was chosen as
the kernel, and the two related parameters γ and C
were set to 0.125 and 3, respectively.

GPCR classif ication system

For the classification of GPCRs, four “one-versus-
rest” SVM models were developed for the four GPCR
subfamilies, respectively. A GPCR sequence will be
predicted as a member of the subfamily whose SVM
model can get the highest output for this sequence.
GPCR sequences rejected by all subfamily SVM mod-
els will be classified as orphan GPCRs (oGPCRs).
To obtain better classification performance, the fea-
tures used to develop the above SVM models were se-
lected from single amino acid, dipeptide, and tripep-
tide composition features using the same method as
described in the last section.
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