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Abstract

NMR studies can provide unique information about protein conformations in solu-

tion. In CASP14, three reference structures provided by solution NMR methods were

available (T1027, T1029, and T1055), as well as a fourth data set of NMR-derived

contacts for an integral membrane protein (T1088). For the three targets with NMR-

based structures, the best prediction results ranged from very good (GDT_TS = 0.90,

for T1055) to poor (GDT_TS = 0.47, for T1029). We explored the basis of these

results by comparing all CASP14 prediction models against experimental NMR data.

For T1027, NMR data reveal extensive internal dynamics, presenting a unique chal-

lenge for protein structure prediction methods. The analysis of T1029 motivated

exploration of a novel method of “inverse structure determination,” in which an

AlphaFold2 model was used to guide NMR data analysis. NMR data provided to

CASP predictor groups for target T1088, a 238-residue integral membrane porin, was

also used to assess several NMR-assisted prediction methods. Most groups involved

in this exercise generated similar beta-barrel models, with good agreement with the
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experimental data. However, as was also observed in CASP13, some pure prediction

groups that did not use any NMR data generated models for T1088 that better fit the

NMR data than the models generated using these experimental data. These results

demonstrate the remarkable power of modern methods to predict structures of pro-

teins with accuracies rivaling solution NMR structures, and that it is now possible to

reliably use prediction models to guide and complement experimental NMR data

analysis.

K E YWORD S

integral membrane proteins, structure determination, machine leaning, MipA, protein dynamics,
protein structure prediction, solution NMR

1 | INTRODUCTION

The remarkable performance of some protein structure prediction

groups in the 2020 Critical Assessment of Protein Structure Predic-

tion experiment 14 (CASP14) has set a new standard for protein

structure modeling.1 These breakthrough technologies exploit

advances in attention-based machine learning,2,3 contact prediction

based on sequence co-variance analysis using the massive data bases

of genomic sequence data,4–9 and the rapidly growing database of

experimental protein structures. In particular, in blind tests of protein

structure prediction accuracy on 96 CASP14 targets, the performance

of DeepMind AlphaFold2 (AF2)10 had an unprecedented high accu-

racy, assessed by backbone atomic coordinate global distance test

(GDT_TS) scores,11 of 0.88 ± 0.1, corresponding to a backbone atom

root-mean-squared deviation (RMSD) between predicted and experi-

mental protein structures of about 1.5 Å.1 Buried sidechain conforma-

tions in these blind predictions of protein structure are also generally

a remarkable good match between the predicted model and experi-

mental structure.12

In the previous 2018 CASP13 experiment, we explored the con-

cept of using incomplete “sparse” solution NMR data to assist protein

structure prediction methods.13 The aim of this earlier study was to

assess if advanced structure prediction methods could be combined

with the kinds of sparse NMR data that can be obtained on medium-

sized (20–50 kDa) proteins, which are otherwise challenging for struc-

ture determination by solution NMR. NOESY data typical of that eas-

ily obtained for 15N,13C-enriched, perdeuterated proteins up to about

40 kDa, were simulated for 11 CASP13 targets ranging in size from

80 to 326 residues, and used to generate tables of ambiguous con-

tacts using simple NOESY peak assignment protocols. These ambigu-

ous contact lists were provided, together with simulated 15N-1H

residual dipolar coupling (RDC) data and backbone dihedral angle

restraints obtainable from chemical shift data, to the CASP prediction

community for data-assisted prediction. Real NMR data collected for

a de novo designed protein were also used to generate ambiguous

contact tables and chemical-shift based backbone dihedral angle

restraints, that were also provided to CASP13 predictor groups,

including one set of (ambiguous) NMR-based contacts in which only

backbone resonance (no sidechain) assignments were available.

Guided by these “sparse” experimental NMR data, some CASP13 pre-

diction groups generated models more accurate than those produced

using more traditional protein NMR modeling methods.13

The best NMR-assisted models were also compared with the

best “regular” prediction (i.e., pure prediction) models provided by all

CASP13 groups. For 6 of 13 target data sets, the most accurate

model provided by any NMR-assisted prediction group was more

accurate than the most accurate model provided by any regular pre-

diction group, as expected. However, for the remaining 7 target data

sets, one or more regular prediction method provided a more accu-

rate model than even the best NMR-assisted model. Here, accuracy

was assessed by comparison with the reference X-ray crystal struc-

ture from which ambiguous contacts were derived, or the experi-

mental NMR structure determined with a much larger amount of

NMR data. Hence, for some of these blind structure predictions,

pure prediction methods provided more accurate models than either

traditional NMR structure determination or data-assisted prediction

methods that used these simulated or real sparse NMR data.13

Machine learning methods, and particularly the AlphaFold methods

(the progenitor of AlphaFold2), were particularly successful in

CASP13, providing accurate models even without any experimental

data.13

In CASP14, three reference structures provided by solution NMR

methods were available (targets T1027, T1029, and T1055), as well as

a fourth data set of NMR-derived contacts for NMR data-assisted

structure prediction (T1088). For the three CASP14 targets with refer-

ence structures provided by solution NMR methods, the best AF2

prediction results range from very good (GDT_TS_best = 0.90, for

T1055), to medium (GDT_TS_best = 0.67, for T1027), to poor

(GDT_TS_best = 0.47, for T1029). We explored the basis of these

results by comparing 1H–1H distance maps derived from these models

against the experimental NOESY peak lists using recall and precision

scores (RPF-DP scores).14,15 Models were also compared with back-

bone chemical shift data using the TALOS_N program,16 and RDC data

where available. These results demonstrate the remarkable accuracy

of some CASP14 prediction models, particularly AlphaFold2, and

reveal different reasons for the differences between experimental and
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prediction models for each target for which the reference struture

was determined by NMR methods.

2 | METHODS

2.1 | Knowledge-based structure validation

Structure quality assessment included analysis of knowledge-based

structure quality scores, including Ramachandran backbone analysis,17

ProCheck dihedral angle analysis for both backbone dihedral angles

and all dihedral angles (i.e., backbone and sidechain),18 ProsaII,19

Verify3D,20 and Molprobity,21 using the Protein Structure Validation

Software suite (PSVS) server.22 Knowledge-based dihedral angle anal-

ysis was restricted to well-defined residues, defined by the method of

Cyrange23 as recommended by the wwPDB NMR structure validation

task force.24 For each of these knowledge-based structure quality

assessment metrics, Z scores are reported relative to the

corresponding raw scores obtained for a set of 252 X-ray crystal

structures each of <500 residues, and with resolution ≤ 1.8 Å, R factor

≤ 0.25, and R-free ≤ 0.2822; positive Z scores correspond to

knowledge-based structure quality scores better than the average

score in this set of reference structures. Generally speaking, accept-

able NMR-based models have Z scores > �3.0 for ProCheck (back-

bone), ProCheck (backbone plus sidechain), ProsaII, and MolProbity,22

while Verify3D scores for accurate structures are more variable and

dependent on the protein fold, but generally have Z scores > �5.0.

2.2 | NMR restraint violation analysis

NMR distance and restraint violations were assessed consistently

using experimental distance restraint lists generated by different pro-

grams and available in the Protein Data Bank using the PDBStat soft-

ware.25 Model agreement with backbone chemical shift data

deposited in the BioMagResDatabase was assessed using the Talos_N

program.16

2.3 | RDC Q scores

The RDC Q score (or quality factor)26 was used to quantify the extent

of agreement between a structure and measured dipolar couplings. A

Q score below 0.2 can be used as a rule of thumb to indicate adequate

agreement between the model and the RDC data. Q scores are calcu-

lated using the following equation:

Qscore¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iW
2 Di,obs�Di,calð Þ2

N�D2
a 4þ3R2

h

� �
=5

vuut

W is the weighting factor; N is the number of dipolar couplings; Da is

the axial component of the orientation tensor; and Rh is the

rhombicity of the orientation tensor. RDCs and Q scores were back-

calculated from models using single-value decomposition tools avail-

able on DC: Servers for Dipolar Coupling Calculations (https://spin.

niddk.nih.gov/bax/nmrserver/dc/svd.html).

2.4 | RPF-DP scores for CASP14 NMR structures
and prediction models

RPF-DP scores are a set of fast and sensitive structure quality assess-

ment measures which can be used to evaluate how well a 3D struc-

ture model fits with NOESY peak and chemical shift data, to assess

the correctness of the fold and accuracy of the structure.14,15 RPF-DP

scores provide a type of NMR R-factor, in which models are compared

against NMR NOESY data. They have been described previously,14,15

but as they play a key role in this work, we provide an overview of

these model versus data structure quality assessment metrics here.

The RPF-DP score algorithm is outlined schematically in Figure 1.

Nodes represent all protons listed in the resonance assignment table.

Edges connect the nodes and represent all potential associated NOEs

from the NOESY peak lists, within a chemical shift match tolerance. In

constructing the ambiguous graph GANOE (shown on right side of

Figure 1) each NOESY cross peak (p) may be ambiguously assigned to

one or more proton pairs, as determined by chemical shift degenera-

cies and match tolerances. The solution graph, GNOE, corresponding

F IGURE 1 DP scores in CASP14. Schematic description of RPF-
DP scores. In this analysis, the graph G with nodes corresponding to
all assigned 1H's and edges representing all short (<5 Å) 1H–1H
distances in a structure model (left), is compared with a graph GANOE

(right), in which nodes again correspond to all assigned 1H's and edges
describe all possible assignments for each NOESY cross peak. TPs are
edges common to both G and GANOE, false positives (FPs) are edges
present in G but not in GANOE, and false negatives (FNs) are the set of
edges in GANOE representing the multiple possible assignments of a
NOESY cross peak, none of which are present in G. These metrics are
used to compute recall (R), precision (P), and F-measure as shown in

the figure and outlined in the Methods Section. The F-measure is the
harmonic mean of the recall and precision. The Discriminating Power
(DP) is a normalized F-measure corrected to account for the F-
measure expected for a random-coil chain (DP = 0) and the best F-
measure possible considering the completeness of the NMR data
(DP = 1.0).15 Accurate structures generally have DP for individual
models > 0.60
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to the true 3D structure, is a subgraph of GANOE. Given complete

NOESY peak lists and resonance assignments, for each NOESY cross

peak p, at least one of its possible proton pair assignments has a

corresponding edge in GNOE. For each structure model (shown on left

side of Figure 1), a distance network graph G is calculated from the

summation distances (sum of inverse sixth powers of individual

degenerate proton–proton distances), assuming uniform effects of

nuclear relaxation processes. Nodes are connected by an edge in G if

the corresponding interproton summation distance in the model struc-

ture is ≤ dNOE_max, where dNOE_max is the (estimated) maximum dis-

tance detected in the NOESY spectrum. Summation distances are

used to address the lack of stereospecific assignments of prochiral

methylene proton pairs, sets of protons that are degenerate (e.g., the

three hydrogens of a methyl group, degenerate methylene protons, or

degenerate resonances of Tyr or Phe), or combinations of these kinds

of ambiguities (e.g., for prochiral isopropyl methyl groups of Leu or

Val for which stereospecific assignments are not available).

NOESY cross peaks represented in GANOE that are consistent

with the short interproton distances in the network derived from the

model, G, are defined as true positives (TPs), while NOESY peaks

expected from the model (edges in G) that are not observed in the

data, GANOE, are true negatives (TNs). As illustrated in Figure 1, partic-

ular proton pair interactions present in the atomic coordinates of a

model structure, represented by the network G, may either be repre-

sented in the graphical representation of the NOESY peak list data

GANOE (TP), or not (FP). Since GANOE is an ambiguous network, a FN

score is assigned to the peak only if none of the several possible short

proton–proton distance consistent with all possible NOESY peak

assignments are observed in G. In this context, recall measures the

fraction of NOE cross peaks that are consistent with the query model

structures, while precision measures the fraction of proton pair inter-

actions in the query structure that are observed in the NOESY peak

list (i.e., in GANOE), weighted by interproton distance. The F-measure

is the harmonic mean of the recall and precision. Equations used to

calculate recall (R), precision (P), and F-measure (F, also called the per-

formance) are shown in Figure 1.

The DP score is a normalized F-measure that accounts for lower-

bound and upper-bound values of the F-measure. The lower-bound of

F(G) is estimated by F(Gfree), where Gfree is a distance network graph

computed from interproton distances in a freely rotating polypeptide

chain model, as described by Flory and co-workers.27 The upper-

bound of F(G) is estimated by F(Gideal). Gideal is the graph of a hypo-

thetical ideal structure that is perfectly consistent with GANOE. It is

defined so that recall (Gideal) = 1 and precision(Gideal) = precision

(Glocal), where Glocal is the network of all two and three-bond con-

nected proton pairs; that is, the completeness of the network GANOE

is assumed to be approximately the same as the completeness of the

subnetwork of NOEs associated with these local 1H–1H distances,

Glocal. With these definitions, F(Gideal) represents the best possible

performance F considering the quality of the input NOESY peak lists

and resonance assignments. F(Gideal), and particularly the precision of

Gideal, thus provides a measure of the combined quality of the reso-

nance assignment and NOESY peak lists for one or more spectra.

F(Gideal) and F(Gfree) describe the two bounds of the performance

F(G); that is, F(Gideal) ≤ F(G) ≤ F(Gfree). With these definitions, the

fold Discriminating Power (DP) for G is then estimated by scaling the

F values so that F(Gideal) = DP(Gideal) = 1, and F(Gfree) = DP(Gfree) = 0.

This scaling is necessary to account for the fact that the NOESY data

may not be complete, and the observation that even a random coil

chain model can satisfy a large part of the NOESY peak list data.15

The default upper-bound observed distance, dNOE_max, used in

these metrics is 5 Å, but can also be calibrated from the NOESY data.

In this analysis, a distance (d�6) weighting of the precision metric,

precisionw(G), is used to reduce the otherwise dominant influence of

the many weak NOEs arising from interproton distances close to the

upper-bound detection limit, dNOE_max. This weighting also makes

these quality scores less sensitive to the value chosen for dNOE_max.
15

RPF-DP scores can be calculated for individual models, or using

average distances across an ensemble. The ensemble DP score is usu-

ally 10–15% higher than individual DP scores. In various

studies,14,15,28,29 structures within 2.0 Å RMSD of the corresponding

“correct” structure have been observed to have DP scores > 0.70 for

NMR ensembles, and DP scores > 0.60 for individual conformers. Per-

deuterated protein NMR data, like that obtained here for MipA,

require a larger dmax (7 Å), and generally provide somewhat lower

RPF-DP scores.

2.5 | ANSURR scores

The Accuracy of NMR Structures Using RCI and Rigidity (ANSURR)

method provides an independent assessment of model quality by

comparing protein flexibility computed from backbone chemical shifts

with protein flexibility predicted with a graph theory based measure

of structural rigidity.30 ANSURR provides two measures of similarity

between these measures, a correlation score (corr) which assesses the

correlation between peaks and troughs of observed and predicted

structural flexibility along the sequence, and root-mean-squared devi-

ation (RMSD) between the metrics. Both the corr and RMSD score

are reported as a percentile score (ranging from 0 to 100). These

scores were calculated using the ANSURR program version 1.0.2

(https://zenodo.org/badge/latestdoi/234519929).

2.6 | Experimental NOESY peak lists and model
preparation

For targets T1027, T1029, and T1055, NOESY peak lists were

obtained from the experimentalists who carried out the original NMR

structure analyses. For target T1088, experimental data was collected

and NOESY peak lists were generated as outlined in Supporting Infor-

mation Methods. For assessing experimental NMR structures, the

coordinates with hydrogen atoms for each conformer are used. For

assessing prediction models or X-ray crystal structures, which gener-

ally do not include hydrogen atoms, the program Reduce31 was used

to add protons with ideal covalent geometries. DP scores were
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calculated by comparing individual conformers against the NOESY

peak and chemical shift lists. We noticed that the program Reduce

failed to add all protons for some of the CASP14 prediction models,

due to their unrealistic heavy atom geometry. The DP scores for these

models with physically unreasonable geometry tend to have very

small or negative values.

2.7 | Global distance test scores

GDT_TS scores were computed by the CASP Prediction Center using

the method of Zemla.11 For brevity, GDT_TS scores are referred to

throughout this paper as GDT scores.

2.8 | Molecular modeling

Molecular modeling was done using PyMol.32

2.9 | NMR data for integral membrane protein
target MipA in detergent micelles

MipA is an antibiotic-resistance factor, which acts to transport some

drugs out of bacteria, while enhancing transport of other drugs into

bacteria.33 The expression, isotope-enrichment, and purification of

MipA is outlined in the Supporting Information Methods. Briefly, a

synthetic codon-optimized gene (Genscript, Inc) for Klebsiella

pneumoniae MipA was expressed using the pColdII single protein

expression system.34,35 The resulting protein construct includes a

short N-terminal 6xHis purification tag. MipA samples for NMR

studies were prepared with 2H, 13C, 15N, and 13CH3 methyl-enrich-

ment. MipA was expressed in Escherichia coli BL21(DE3)ΔhisB cells

harboring pACYCmazF(ΔH) and pCold2-mipA, solubilized with 8 M

urea, purified by Ni-NTA affinity chromatography, and then refolded

by slow removal of urea by dialysis. The purified protein was pre-

pared in 20 mM potassium phosphate buffer at pH 6.5, containing

0.2 M NaCl, 50 mM M Arg, and 0.1% d37-DPC. The resulting sample

was >95% homogenous on SDS-PAGE gels. The final protein con-

centration for NMR studies was �0.5 mM. 2H-decoupled NMR stud-

ies were carried out using Avance 600 and 800 NMR spectrometer

systems located at Rutgers University, Princeton University, and

Rensselaer Polytechnic Institute. Details of NMR data collection and

processing are provided in Supporting Information Methods. NMR

data for MipA were provided to CASP14 predictor groups in the

form of Ambiguous Contact Lists, prepared as described previ-

ously.13 Briefly, for each NOESY cross peak we provide a list of pos-

sible assignments by analyzing NOESY peak lists together with the

corresponding resonance assignment lists using the Cycle 0 module

of the program ASDP,36 providing a simple matching between reso-

nance frequencies of the NOESY peak and the resonance assign-

ment list. Details of this process are outlined in Supporting

Information Methods.

3 | RESULTS

3.1 | Target T1055: A20304-426

The A20 protein of vaccinia virus forms a heterodimer processivity

factor with the uracil-DNA glycolase, D4 protein, and binds the cata-

lytic subunit of the DNA polymerase, E9 protein, to form the essential

DNA polymerase holoenzyme E9-A20-D4 required for viral DNA syn-

thesis. CASP14 target T1055 is the C-terminal domain of A20,

corresponding to the last 123 residues. The construct used for struc-

tural studies included a C-terminal biotin acceptor protein (BPAP) tag,

connected by a 10-residue linker.37 The solution NMR structure of

A20304-426 was determined by Bersch et al.38 from triple-resonance

NMR and NOESY data (τm = 100 ms), which provided 2351 unambig-

uous and 566 ambiguous distance restraints, together with 218 back-

bone dihedral angle restraints based on analysis of chemical shift data

with Talos+. The UNIO10 program suite39 was used for initial NOE

assignment. The resulting NOESY peak lists generated with the

ATNOS peak picking algorithm were then used for structure calcula-

tion using ARIA 2.3,40 followed by refinement with CNS 1.21.41

Although potential NOEs were observed between the C-terminal

linker-BPAP purification tag and the core of the structure, these NOEs

were excluded from the analysis because of their ambiguity in assign-

ment.38 The resulting well-defined structure (PDB ID 6zyc), reported

as an ensemble of 20 conformers, includes 5 N-terminal α-helices, a

two-stranded antiparallel β-sheet, and a long C-terminal helix. 15N

relaxation data indicate that A20304-426-BAP has dynamic flexibility in

its N-terminal �10-residue polypeptide segment, and in the C-

terminal linker-BAP tag, but otherwise has a relatively static overall

backbone structure.

We assessed the similarities between NMR and CASP14 predic-

tion models, including AF2 models (Figure 2, left). In comparing the

predicted AF2 structure of T1055 with the experimental structure, we

excluded residue segments for which atomic positions are not well

defined in either the ensemble of 20 NMR-derived conformers or the

ensemble of 5 AF2 conformers. Well-defined regions of the NMR

ensemble, residues 305–426 (Figure 2A) and AF2 ensemble, residues

310–426 (Figure 2B), were identified using the program Cyrange. Resi-

dues 303–313 also have hetNOE values < 0.5. For the residues whose

backbone positions are well defined in both ensembles, that is, for res-

idues 310–426, the pairwise GDT scores between the NMR model

with best DP score and the 5 AF2 conformers ranged from 0.89 to

0.90, corresponding to backbone RMSD's of about 1.3 Å (Figure 2C).

Many buried sidechain conformations also have relatively good agree-

ment between the AF2 and NMR structures (Figure 2D). This is a

remarkable result considering that the AF2 prediction did not use any

NMR data.

Structure quality statistics for T1055 were also analyzed with the

PSVS software suite. The resulting PSVS structure quality statistics for

both the NMR and AF2 model ensembles are summarized in

Tables S1 and S2. Both the NMR and AF2 models generally exhibit

excellent structure quality scores and good energetics. However, the

AF2 models have significantly better ProCheck (backbone and
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sidechain) G-factor and Molprobity clash scores, attributable to more

energetically consistent core sidechain packing.

We next assessed how well the NMR and AF2 structures fit

to the experimental NMR chemical shift (bmrb_id 34 545) and

NOESY peak list data using the RPF-DP score.14,15 Plots of DP

score versus GDT for all CASP14 predictor groups have a strong

correlation, and DP scores ranged from �3.06 to 0.63

(Figures 2E,F). The prediction model with highest DP score, 0.63

for AF2 model 2 (model 427_2) is higher than the highest DP

score for any of the NMR conformers, 0.58 (Figure 2E); that is,

some AF2 models fit the NOESY data better than the NMR model

itself.

F IGURE 2 Structural analysis for CASP14 targets 1055 and 1027. (left) Superimposed ensembles for (A) NMR structure (PDB ID 6zyc)
(green) and (B) AF2 structures (blue) of T1055, illustrating the not-well-defined segments (brown) as defined by Cyrange.23 For the NMR
structure, residues 305–426 are well-defined, while for the AF2 structure residues 310–428 are well-defined (residues 427 and 428 being part of
the linker to the purification tag). (C,D) Comparison of AF2 conformer with highest GDT score (blue) with the representative conformer from the
NMR structure ensemble with best DP score, for residues 310–426 of T1055. The well-defined backbone (N, Cα, C0) atoms are superimposed and
both the backbone superimposition and associated core sidechains are illustrated. DP versus GDT scores (E) and DP scores versus predictor
group (F) for target T1055. (right) Superimposed ensembles for (G) NMR structure (PDB ID 7d2o) (green) and (H) AF2 structure (blue) of T1027,
illustrating the not-well-defined segments (brown). For the NMR structure, residues 10–18, 36–81, and 96–145 are well-defined,45 while for the
AF2 structure residues 36–75 and 96–164 are well-defined. (I,J) Comparison of AF2 conformer with highest GDT score (blue) with the conformer
from the NMR structure ensemble with highest DP score, for T1027. The well-defined backbone (N, Cα, C0) atoms are superimposed for residue
ranges 36–75 and 96–145. In the NMR structure, the N-terminal helix (α1) sits in a pocket in the core of the protein, while the C-terminal region
is disordered (and therefore not shown in panel I); while in the AF2 structure, the N-terminal region is disordered (and not shown in panel I), and
the C-terminal region forms a C-terminal helix that packs into the core of the protein structure. The five disulfide bonds of T1027 are illustrated
in panel J. DP versus GDT scores (K) and DP scores versus predictor group (L). The red horizontal lines in (E) and (K) are drawn at the DP scores of
the best scoring conformation from the ensemble of experimental structures. For both targets, only residues that are well-defined in both the
NMR or AF2 structures were included in superimposition and GDT score calculations. The nine helices of the NMR model, as well as the C-
terminal helix of the AF2 model, are labeled in panel I
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RPF DP analysis also provides information about which regions of

experimental and prediction models fit to, or violate, the NOESY data.

This analysis for target 1055 is summarized on the left side of

Figure 3. The recall analysis (NOESY peaks that cannot be explained

by the model) indicates that most NOESY peaks are consistent with

both the NMR and AF2 models. Overall, the NMR models (R = 0.97)

have slightly fewer recall violations than the AF2 models (R = 0.95–

0.96). There are a small number of NOESY peak data that are consis-

tent with the AF2 models, but not the NMR model (Figure 3A,C), and

a small number of NOESY peaks that are consistent with the NMR

F IGURE 3 RPF and Talos_N analysis for CASP14 targets 1055 and 1027. (left) Ensemble Recall analysis for the NMR structure (A) and AF2
model (B) of T1055. Residues with a few NOEs that are assigned and satisfied in the NMR model, but with recall violations for the AF2 models,
are colored in light blue in the AF2 model. (C) Plot of number of NOEs that are satisfied in NMR structures but not in AF2 models (blue), or
satisfied in AF2 models but not in NMR structures (orange), are plot along the sequence; most NOEs can be explained by both structures. (D,E)
Precision analysis for the NMR structure ensemble and AF2 model ensemble of T1055. Residues with modest numbers of Precision violations are
colored light blue or green, and those with significant numbers of precision violations are colored yellow, orange and red. (F,G) Talos_N analysis
for the ensembles of NMR structures and AF2 models of T1055. No significant violations of dihedral angle restraints derived from backbone
chemical shift data are observed in any of the NMR structures or AF2 models. (right) Ensemble recall analysis for the NMR structure (H) and AF2
model (I) of T1027. Residues with a NOEs that are assigned and satisfied in the NMR model, but with recall violations for the AF2 models, are
colored as outlined in the text on the AF2 model, and vice versa. (J) Plot of number of NOEs that are satisfied in NMR structures but not in AF2

models (blue), or satisfied in AF2 models but not in NMR structures (orange), along the sequence; many NOEs can be explained only by the NMR
models. (K,L). Precision analysis for the NMR structure ensemble and AF2 model ensemble of T1027. Residues with modest numbers of Precision
violations are colored light blue or green, and those with significant numbers of precision violations are colored yellow, orange and red. (M,N)
Talos_N analysis for the ensembles of NMR structures and AF2 models of T1027. Residues colored yellow are indicated by chemical shift data to
be flexible; residues colored red have backbone conformations in well-defined regions of the models that are inconsistent with the chemical shift
data. In all images, the dark blue color indicates little or no metric violation. In mapping precision violations on the models (e.g., panels K and L)
the regions of the structure that are not converged are not shown because precision violations in these regions can arise simply from the
conformational variability
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models but not with the AF2 models (Figure 3B,C). The histogram plot

(Figure 3C) indicates only 7 NOESY peaks consistent with the AF2

structure, but not the NMR structure, while 54 NOESY peaks are con-

sistent with the NMR structure, but not the AF2 structure.

On the other hand, both the NMR (P = 0.74–0.76) and AF2

(P = 0.78–0.79) models have significant numbers of precision viola-

tions; that is, short distances that are not supported by NOESY peaks.

These are distributed throughout the structures (cf., Figure 3D,E).

These precision violations arise mostly from sidechain packing that is

not fully consistent with the NOESY peak list data. Overall, the AF2

models have much fewer precision violations, consistent with the bet-

ter ProCheck G-factor (all dihedrals) and Molprobity scores, cited

above, which indicate more energetically-consistent core sidechain

packing in the AF2 models. These differences may be related to the

quality of force fields and energy refinement protocols used in the

NMR and AF2 modeling processes.

Finally, we also assessed how well the NMR and AF2 models sat-

isfy backbone dihedral restraints derived from backbone chemical

shift data using Talos_N.16 As Talos restraints were used in the NMR

structure determination, the NMR-derived models were expected to

be consistent with this analysis. All of the NMR and AF2 models sat-

isfy these chemical shift data (Figure 3F,G). Overall, both the NMR

and AF2 models of T1055 fit well to the NOE and chemical shift data,

although the smaller number of precision violations (short distances

that are not supported by the NMR data) and better ProCheck (back-

bone and sidechain) and MolProbity clash scores for the AF2 models

indicates they have somewhat more accurate core sidechain packing.

3.2 | Target T1027: Gaussia luciferase (GLuc)

Luciferases are bioluminescent enzymes. CASP14 target T1027

(GLuc) is a 168-residue luciferase isolated from the marine organism

Gaussia princeps.42 GLuc catalyzes the oxidation of coelenterazine

generating a bright blue light, and is attracting interest as a

genetically-encodable reporter protein. Recombinant GLuc for NMR

structure determination was expressed in E. coli43 and despite its five

disulfide bonds, it was refolded into its active form in amounts suffi-

cient for structural analysis using a Solubility Enhancement Peptide

tag.44 The solution NMR structure of T1027 was determined by Wu

et al.45 using triple-resonance NMR and NOESY data (τm = 80 ms),

providing 2573 ± 42 NOESY-derived distance restraints, together

with 183 backbone dihedral angle restraints determined from Talos

+ analysis of chemical shift data, 25 hydrogen bond restraints indi-

cated by amide 1H/2H exchange data, and restraints for three disul-

fide bonds. CYANA 3.9846 was used for both automated NOESY peak

assignment and structure generation; no additional energy refinement

was done.

The resulting structure (PDB ID 7d2o), reported as an ensemble

of 19 conformers, includes 9 α-helices, and 5 disulfide bonds. The

pairing of three disulfide bonds (C59/C120, C65/C77, and C136/

C148) were determined unambiguously by the NMR structure. How-

ever due to the proximity of Cys residues along the sequence, pairing

of the remaining four cysteine (C52, C56, C123, and C127) disulfide

pairings could not be unambiguously distinguished from the NMR

structures. The C52/C127 pairing is, however, consistent with at least

one proteolytic fragment observed in mass spectroscopy, and statisti-

cal analysis of Sγ-Sγ distances across the ensemble of NMR structures

strongly suggested C52/C127 and C56/C123 as the most likely

pairings.

Structural convergence, proton linewidth, 15N relaxation disper-

sion, and 1H-15N heteronuclear NOE (HetNOE) data indicate that

GLuc has extensive internal conformational dynamics. Residues 1–9

(N-terminal segment), 19–35 (helix α2), 82–95 (loop between helices

α5 and α6), and 148–168 (C-terminal segment) exhibit HetNOE values

that indicate flexibility. However, some of these segments include

strongly conserved residues, and several lines of evidence suggest

that some of these regions, particularly the C-terminal segment, adopt

transient structures due to conformational exchange between folded

and unfolded states.45

We assessed the similarities between these NMR models and

CASP14 prediction models, including AF2 models (Figure 2, right).

Again, we excluded residue segments for which atomic positions are

not well defined in either the ensemble of 19 NMR-derived con-

formers or the ensemble of 5 AF2 conformers. Well-defined regions

of the NMR ensemble include residue ranges 10–18, 36–81, and 96–

145 (Figure 2G), while for the AF2 structure residues 36–75 and 96–

164 are well-defined (Figure 2H), as defined by Cyrange. The pairwise

GDT scores between the NMR model with best DP score and the

5 AF2 conformers for the residues whose backbone positions are well

defined in both ensembles, that is, for residues 36–75 and 96–145,

ranged from 0.66 to 0.67, corresponding to backbone RMSD's of

about 4 Å (Figure 2I). The primary differences between the NMR and

AF2 structures involve the packing of helices into the core of the pro-

tein structure that is formed by the two antiparallel helical bundles

(α3, α4, α7, and α8). In the NMR structure, N-terminal helix α1 is

“grabbed” by this bundle, while in the AF2 model helix α1 is replaced

in this core by a new helix formed by the C-terminal segment (which

is at least partially disordered in the experimental NMR structure). cf.,

Figures 2I and 3K,L. This “switch” also reorients helix α2. These helix-

core packing interactions are mutually exclusive. However it is possi-

ble that the two forms (i.e., the NMR structure with helix α1 in the

core, and the AF2 structure with the C-terminal region forming a helix

and replacing helix α1 in the core) could exist in dynamic equilibrium,

consistent with the observed conformational dynamics in both helices

α1 and α2 and in the C-terminal region, described above.

The AF2 model also includes core sidechain conformations that

are very similar to those in the solution NMR structure. Particularly

notable are the positions and pairing of the five disulfides bonds,

which are in good agreement with the experimental structure

(Figure 2J), particularly for the four disulfide paired cysteines located

in the well-defined regions of the NMR structure, including the ambig-

uous C52/C127 and C56/C123 disulfide pairs. There is somewhat

less agreement in superimposition for the C136/C148 disulfide pair,

that includes residue Cys148 located in a not-well-defined (possibly

flexible) region of the NMR model. This prediction of correct disulfide
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pairing and sidechain conformation is quite remarkable considering

that no experimental disulfide pairing information was used in the

AF2 modeling.

Structure quality statistics for T1027 were analyzed with the

PSVS software suite.22 The resulting structure quality statistics for

both the NMR and AF2 model ensembles are summarized in

Tables S3 and S4. Both the NMR and AF2 models generally exhibit

excellent structure quality scores. The T1027 NMR structure provides

a marginally acceptable wwPDB structure validation report

(Figure S1); the ProCheck (backbone and sidechain) and MolProbity Z

scores are at the lower end of the normally acceptable range, which

probably simply reflects the fact that no specific energy minimization

was used in the structure refinement. As was observed for T1055, the

AF2 models of T1027 have better ProCheck G-factor (backbone and

sidechain) and Molprobity clash scores, attributable to more energeti-

cally consistent core sidechain packing.

We next assessed how well the NMR and AF2 structures fit to

the experimental NMR chemical shift data (bmrb_id 36 288) and

NOESY peak list data using the RPF-DP score. Plots of DP score ver-

sus GDT for all CASP14 predictor groups have a strong correlation,

with DP scores ranging from �2.02 to 0.58 (Figures 2K,L). The predic-

tion model with highest DP score, 0.58 for AF2 model 4 (model

1027_427_4) is not as high as the DP scores of any of the NMR con-

formers, 0.64–0.68 (Figure 2K). In this case, the NMR models fit the

NOESY data significantly better than any CASP14 model, including

the AF2 models. Although the GDT score between the AF2 models

and this NMR structure is lower than for most AF2 predictions, the

NMR model is clearly a better fit to the unassigned NOESY data, as

the short 1H–1H distances in the NMR models are more consistent

with the NOESY data than those of the AF2 models.

A more detailed RPF DP analysis for T1027 is summarized on the

right side of Figure 3. Overall, the NMR models (R = 0.89) have less

recall violations than the AF2 models (R = 0.85–0.86). The recall anal-

ysis also documents that there are many NOESY peaks that are con-

sistent with the NMR models but not consistent with the AF2 models

(color coded in Figure 3I). Residues with NOESY peaks that are

assigned to consistent interactions in the NMR model but not consis-

tent with the AF2 models are color coded on the AF2 model in

Figure 3I according to their residue assignment in the NMR model;

that is, residues colored light blue (1–3 recall violations), green (4–5

recall violations), orange (6–10 recall violations), or red (> 13 recall

violations) indicate NOESY peaks that are not consistent with the AF2

model but have structurally consistent assignments in the NMR

model. NOESY peaks that are not consistent with the AF2 model, but

assigned in the NMR model, are also indicated with their residue

assignments in the NMR model as blue bars in the histogram plot

Figure 3J. Hence, the NMR models explain many more NOESY peaks

than the AF2 model.

However, there are also some NOESY peaks that are consistent

with the AF2 models but not with the NMR models. These residues

are colored light blue or green in Figure 3H, and as orange histogram

bars in Figure 3J, and include residues 80, 82, and 144–149 in the C-

terminal segment. These NOESY peaks, though inconsistent with the

NMR model, could be explained by a low population of conformers

similar to the AF2 structure, with a C-terminal helix interacting with

the core in place of the N-terminal helix.

Both the NMR (P = 0.78–0.80) and AF2 (P = 0.76–0.78) models

of T1027 have a significant number of precision violations. Precision

violations are short distances in the model that cannot be explained

by any NOESY cross peak. Figure 3K highlights precision violations of

the NMR model, located primarily in helices α5 and α6 (Figure 3K).

These precision violations may result in part from exchange broaden-

ing of resonances in or near these residues, due to conformational

dynamics, making the corresponding NOESY cross peaks too weak to

observe. In the AF2 models, the precision violations occur mostly

where the C-terminal segment forms a helix that interacts with the

core (Figure 3L); that is, this packing interaction is not fully supported

by the NOESY data. These missing NOE data expected for a popula-

tion AF2 conformers in dynamic equilibrium may also be present but

attenuated by exchange broadening. Interestingly, however, as some

of the short distances resulting from packing the C-terminal region as

a helix into the core, and displacing helix α1, are consistent with some

of the NOESY data (Figure 3J, orange bars), this analysis still supports

the potential for a small population of conformers in solution with the

helical packing predicted by AF2.

Finally, we assessed how well the NMR and AF2 models of

T1027 satisfy backbone dihedral restraints derived from backbone

chemical shift data using Talos_N.16 For conformations in fast (or fast-

intermediate) dynamic exchange, the chemical shifts will be

population-weighted averaged (i.e. generally consistent with the dom-

inant conformation), while NOEs may be present for each of the con-

formations in dynamic equilibrium, with intensities modulated by the

corresponding populations. As expected, the NMR models satisfy

most of these chemical shift data (Figure 3M). Residues identified by

Talos_N as “dynamically disordered” (colored in yellow color in Fig-

ures 3 M and N) are located mostly in the N- and C-terminal segments

or loop regions. Residues whose dihedral angles in the model are

inconsistent with backbone chemical shift data are colored red in

Figure 3M,N. These are mostly located in the loop regions, and may

reflect conformational dynamics in these loops. However, both the

conformations of N-terminal segment and the C-terminal helical seg-

ment of the AF2 models are not supported by these chemical shift

data (Figure 3N); if present in solution the predicted C-terminal helix

is populated only to a low level, and is not reflected in the (popula-

tion-weight-averaged) chemical shift data.

3.3 | Target T1029: Se0862

Biofilms are communities of microorganisms that are enclosed in

extracellular polymeric matrices. They provide protection from envi-

ronmental stresses, and can confer antibiotic resistance. The cyano-

bacterium Synechococcus elongatus encodes a conserved protein

Se0862, CASP14 target T1029, that is required for biofilm regula-

tion.47 Isotope-enriched samples of Se0862 were produced by

N.Z. and A.L. as a SUMO fusion, which was processed by Ulp1 SUMO
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protease cleavage to provide the native 125-residue protein with no

non-native residues. In this work, a chemical-shift based CS-Rosetta

model was used to guide the NOESY peak assignments, and NOESY

peak assignments were restricted to only cross peaks with low assign-

ment ambiguity. The solution structure was determined from 2045

distance restraints, 192 dihedral angle restraints derived from

backbone chemical shift data using Talos-N, and 175 RDCs for HN–N,

Hα–Cα, and Cα–C0 bond vectors47 using Xplor-NIH.48 The resulting

structure is a well-converged α + β structure with ααββββαα topology.

This NMR structure satisfies the NOE-based distance restraints, and

has an acceptable RDC Q-score of 0.173. TALOS chemical-shift-based

dynamic order parameters S2 indicate a generally rigid structure with

localized conformational dynamics in surface loops between helices

α1 and α2, strands β1 and β2, and strands β3 and β4.47

Structure quality statistics for T1029 (PDB ID 6uf2) were ana-

lyzed with the PSVS software suite,22 and the resulting structure

quality statistics for both the NMR and AF2 model ensembles are

summarized in Tables S5 and S6. The NMR structure exhibits

acceptable knowledge-based structure quality scores. Notably,

the ProCheck (backbone), ProCheck all dihedral (backbone and

sidechain), and MolProbity Z scores are all > �1.0, typical of good

structures.22 The wwPDB Structure Validation Report (Figure S1)

also does not flag any serious problems with the T1029 NMR

structure. Consistent with the observations for the other NMR tar-

gets, the AF2 models have even better ProCheck (backbone),

ProCheck (backbone and sidechain) and MolProbity Z scores. It

should be noted, however, that acceptable values for these metrics

are necessary, but not sufficient, for validating the accuracy of a

structure, and even models with poor accuracy may have good

knowledge-based structure quality scores.28

We assessed the similarities between NMR and all CASP14 pre-

diction models of T1029 (Figure 4). Well-defined regions of the NMR

ensemble, residue ranges 3–19, and 29–122 (Figure 4A) were identi-

fied using Cyrange. For the AF2 models, residue ranges 2–46, and 53–

123 are well-defined based on Cyrange (Figure 4B), and the pairwise

GDT scores between the NMR model with the best DP score and

5 AF2 conformers for residues 3–19, 29–46, 53–122 (i.e., well-

defined in the NMR and AF2 ensemble, and revised NMR ensemble

described below), range from 0.46 to 0.47 (Figure 4C), corresponding

to a backbone RMSD of �7 Å. Considering only the common second-

ary structure elements, the GDT is 0.54–0.55 and backbone RMSD is

�5 Å. The best GDT score for all prediction models is also quite low,

GDT = 0.50 for model 1 of prediction group 071 (model 071_1, for

residues 3–19, 29–46, 53–122). T1029 is a significant outlier for AF2

and other CASP14 predictions.

We next assessed how well the NMR and CASP14 structures fit

to the experimental NOESY peak list data, using the RPF-DP

score.14,15 For T1029, the plot of DP score versus GDT for all CASP14

predictor groups has a poor correlation (Figure 4D), and DP scores

range from – 1.62 to 0.57 (Figures 2K,L). The highest DP score for all

prediction models, 0.57 for model 4 of predictor group 323 (model

323_4), is significantly higher than the range of DP scores obtained

for the NMR conformers, 0.19–0.27 (Figure 4D). Indeed, more than

50% of the CASP14 prediction models have DP scores > 0.27, and are

a better fit to these NMR data than the NMR structure itself.

3.4 | Inverse structure determination of T1029

The low DP score for the T1029 NMR model (DP_best = 0.27) is

attributable primarily to poor precision scores (P_best = 0.57); that is,

there are many short distances in the model that are not explained by

the NOESY data. Although a low precision score can result from con-

formational exchange broadening,14,15 T1029 does not exhibit exten-

sive internal dynamics that cause exchange broadening.47 This led us to

assess the quality of the 13C- and 15N-edited 3D NOESY peak lists.

Because of the strategy of focusing on unambiguously-assigned

NOESY peaks used in the original structure determination process,

many peaks present in the NOESY spectra were not included in the

original NOESY peak lists nor used in the structure calculations, particu-

larly for the 3D 13C-edited NOESY spectrum. Accordingly, we (N. Z.,

A. L., Y. J. H., and G. T. M.) carried out a careful repicking of the 3D 15

N- and 13C-edited NOESY data. Due to the relatively low quality of the

processed NOESY spectra, automatic peak picking was challenging and

resulted in far too many peaks, particularly for the 13C-edited NOESY.

In order to guide this peak picking, we then used the recall violations

provided by the RPF webserver14 to further edit these NOESY peak

lists by removing peaks with unusual line shapes that are not explained

by either the original NMR structure PDB ID 6uf2 nor the AF2 model.

The resulting improved NOESY peak lists provided better DP scores for

the original NMR structure, of 0.49–0.51, and also higher DP scores for

many of the CASP prediction models.

Considering these observations, we (N. Z., A. L., Y. J. H., and G. T.

M.) next undertook a refinement of the solution NMR structure of

T1029, guided by the AF2 prediction model. This process is outlined

on the left side of Figure 5. The resonance assignments, dihedral

restraints from TALOS_N, and RDC restraints, together with the

manually-refined NOESY peak lists, were used as input for NOESY

peak assignment with the program ASDP. However, rather than ini-

tializing the ASDP NOESY peak assignment process with an extended

or random conformation, the program was initiated with the coordi-

nates of the five AF2 prediction models. Backbone dihedral angle

restraints for residues 40, 41, 61, 63, and 123, located in surface

loops, that were strongly violated by the AF2 models were also

removed from the dihedral restraint list. In this way, the NOESY peak

assignment process was intentionally guided by the AF2 prediction

models.

In the course of analyzing NOESY peak assignments, ASDP uses a

structure generation program to produce structural models; in this

case, the Cyana program was used with the NOESY peak assignments

and restraints provided as input to Cyana by ASDP. The output of

ASDP also includes assigned NOESY peak lists, distance restraints, and

a RFP recall / precision analysis. The recall violation list (NOESY peaks

not consistent with resulting models) was then used to further guide

manual refinement of the NOESY peak list, and the process was reit-

erated. The resulting restraints (distance, dihedral, and RDC) were
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then used as input to Xplor-NIH, using the same protocols used to

generate the original NMR structure PDB ID 6uf2. Two structure

determination protocols were used with Xplor-NIH: (i) refinement of

the ASDP - Cyana models and (ii) generation of revised NMR models

starting from extended conformations. Although both protocols pro-

vided acceptable structures, only the results of the second protocol

(starting from extended conformations) was selected for deposition

and release in the PDB (PDB ID 7n82).

F IGURE 4 Structural analysis for CASP14 target 1029. Superimposed ensembles for (A) NMR structure (PDB ID 6uf2) (green) and (B) AF2
structure (blue) of T1029. For the NMR structure, residues 3–19 and 29–122 are well-defined, while for the AF2 structure residues 2-46 and 53–
123 are well-defined. (C) Comparison of AF2 conformer with highest GDT score (blue) with the representative conformer from the original NMR
structure ensembles with best DP score, for residues 3–19, 29–46, and 53–122. (D,E) DP versus GDT scores and DP scores versus predictor
group for original NMR structure (D) and revised NMR structure (E). The red horizontal lines in (D) and (E) are drawn at the DP scores of the best
scoring conformation from the ensemble of experimental structures. (F) Revised NMR structure (PDB ID 7n82) (green), illustrating the not-well-
defined segments (brown). Residues 3–20 and 26–123 are well-defined. (G) Comparison of AF2 conformer with highest GDT score (blue) with
the representative conformer from the original NMR structure ensembles with best DP score, for residues 3–19, 29–46 and 53–122. The well-
defined backbone (N, Cα, C0) atoms are superimposed and both the backbone superimposition and associated core sidechains are illustrated (H).
Only residues that are well-defined in both the original NMR, revised NMR and AF2 structures were included in superimposition and GDT score
calculations
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The revised NMR models were analyzed for restraint satisfaction

and knowledge-based structure quality statistics using the PSVS pro-

gram. The knowledge-based Z scores of ProCheck (backbone),

ProCheck (backbone and sidechain), ProsaII, and MolProbity for the

revised T1029 structure (Table S7) are all significantly better than for

the original NMR structure (Table S5), though still a bit lower than

those for the AF2 structure (Table S6). The revised NMR models are

also a better fit to the RDC data (right side of Figure 5 and Table 1);

the Q-scores for N–HN, Cα–C0 , and Cα–Hαare all significantly lower

(better). In this analysis, we also assessed ANSURR scores.30 These

are significantly higher (better) for both the ASDP-Cyana NMR models

and for the revised NMR structure of T1029 (PDB ID 7n82) than for

the original NMR structure (PDB ID 6uf2) (Table 1). The revised NMR

structures also have DP scores that are much higher (better) than the

original NMR structure, ranging from 0.66 to 0.69, with improved

recall and precision statistics (R = 0.86–0.87, P = 0.75–0.77).

Accordingly, the AF2 model was successfully used to guide the analy-

sis of NMR data to produce a revised NMR model with excellent ener-

getics, restraint satisfaction, and a better fit to the NOESY and RDC

data than the original NMR structure. Even though the re-analysis of

the T1029 NMR data was guided by the AF2 models, the resulting

structures are not identical to the AF2 models, and in fact the DP

scores of the revised NMR models are a bit higher than the AF2

models; that is, the revised NMR models are a better fit to the NOESY

data than the AF2 models.

The revised NMR models (Figure 4F) were then used to reanalyze

the DP versus GDT score plot for all CASP14 predictions (Figure 4E).

Using the revised NMR model with highest DP score as a reference,

the DP versus GDT plot is much more monotonic and linear, as

expected for a good quality NOESY peak list and reference model.

The prediction models with highest GDT and DP scores were all AF2

models (GDT = 0.89–0.90, DP = 0.66–0.67). These AF2 models also

F IGURE 5 Inverse structure determination. (left) Flow chart of inverse structure determination of T1029 using AF2 model as input. The AF2
models, resonance assignments, Talos-N dihedral restraints, and RDC restraints were combined with the manually-refined NOESY peak lists and

used as input for NOESY peak assignment with the program ASDP. The Recall violation list (NOESY peaks not consistent with resulting models)
was then used to further guide manual refinement of the NOESY peak list, and the process was reiterated. Blue and red arrows indicate program
input and output, respectively. (right) Plots of calculated versus observed RDCs for HN–N, Hα–Cα, and Cα–C0 bond vectors for original and revised
NMR structures, and RDCs for Cα–C0 bond vectors for AF2 models
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have very good Cα–C0 RDC scores (Table 1). (N-HN and Cα-Hα RDC

scores depend on the details of H atom placement, which are not pro-

vided in the AF2 model coordinates). The core sidechains in AF2

models also superimpose remarkably well with sidechain conforma-

tions in the revised NMR models (Figure 4H).

In order to determine if AF2 had found a lower Xplor energy solu-

tion not sampled by the NMR analysis, we also assessed the confor-

mational energies of the revised NMR models and AF2 models, for

T1027, T1029, and T1055, in the Xplor v3.3 force field (without a con-

tribution to the composite energy term from the restraints). This test

is complicated by the fact that hydrogen atoms needed to be added

to the AF2 models (with Reduce). In this analysis, the AF2 models are

not as energetically-favorable as the revised NMR models in the Xplor

force field. However, these calculations do not properly account for

water structure, solvation, dynamics, and other contributions to the

free energy, and many of the established knowledge-based structure

quality metrics, such as Ramachandran distributions, Procheck back-

bone and sidechain dihedral angle distributions, and Molprobity core

sidechain packing scores (with H atoms added), are consistently better

for the AF2 structures than for the NMR structures.

3.5 | NMR guided prediction of an integral
membrane protein structure in CASP14

A preliminary solution NMR structure of 238-residue [2H,13C, 15N-

enriched, 13CH3 labeled]-MipA in detergent micelles has been deter-

mined using ASDP with Cyana, followed by refinement with Rosetta.

The structure is a 10–12 stranded beta-barrel. The solution NMR

structure analysis of MipA is challenging due to extensive exchange

broadening in polypeptide segment 43–67, which appears to involve

multiple conformations for two strands of the beta-barrel. The current

“best” experimental NMR model has a DP score of 0.54; it is not con-

sidered a final structure. Ongoing studies are aimed at properly char-

acterizing these multiple conformational states of MipA, and their

relationship to MipA's function.

Since the experimental dynamic solution NMR structure analysis

of MipA is still in progress, CASP14 prediction models were assessed

only against the NMR NOESY and chemical shift data, using the DP

score and TALOS_N, rather than against atomic coordinates. In

CASP14, eight prediction methods submitted results for “NMR-

assisted prediction” of MipA, in which prediction was assisted by the

NOESY-based ambiguous contact list. A ninth predictor group depos-

ited results in this category, but later informed us that their result did

not actually use the Ambiguous Contact Lists derived from NMR data.

The relative performance of these eight groups was assessed by DP

score for both the top model selected by the submitting group

(DP_first) and the best scoring model (DP_best) (Figure 6A). CASP14

prediction groups 018 (UNRES_template), 360 (UNRES), 71 (Kihara

Lab) and 96 (UNRES-contact) all submitted similar beta—barrel struc-

tures with DP scores >0.50; the best-scoring model (N1088TS018_2)

has a DP score of 0.55. Analysis of this top-scoring model against

chemical shift data using TALOS_N (Figure 6B) showed generally good

agreement over most of the structure, except in the polypeptide seg-

ment 43–67 for which chemical shift and other NMR data indicate

multiple conformations of the local structure. Some residues in the

two short α-helices predicted to form in segment 162–169 also vio-

late the chemical shift data (Figure 6B, residues colored red and yel-

low). Overall, the top scoring NMR-assisted prediction models are

consistent with one another and in good agreement with the NMR

data, except for regions 43–67 (predicted to form two strands of the

β-barrel) and 162–169 (predicted to form two small helices) for which

experimental data indicate conformational dynamics.

Next we also assessed all “pure” predictions (i.e., predictions that
did not use the NMR—derived ambiguous contact list data) of MipA,

using the DP score. Thirty eight top-scoring prediction groups submit-

ted models with DP_first ≥ 0.54 (Figure 6C) that fit these NMR data

better than or equal to the best NMR-assisted models, and 64 groups

with DP_best ≥ 0.54. The best-scoring models include

T1088TS226_5 with DP = 0.62 (Zhang-TBM), T1088TS024_5 with

DP = 0.61 (DeepPotential), T1088TS031_5 with DP = 0.61 (Zhang-

CEthreader), T1088TS328_2 with DP = 0.60 (FoldXpro),

T1088TS013_2 with DP = 0.60 (FEIG-S), T1088TS067_3 with

DP = 0.60 (ProQ2), and T1088TS498_3 with DP = 0.60 (VoroMQA-

select). Interestingly, these best-performing pure prediction groups

include (but is not lead by) the DeepMind AF2 group (DP_first = 0.54,

and DP_best = 0.55, highlighted by the red histogram bars in

Figures 6C). Hence, as was observed in the NMR-data-assisted

TABLE 1 RDC data fits and ANSURR scores for target T1029

<Q scores> <ANSUUR scores>

Model ensemble N–HN Cα–C0 Cα–Hα RMSD Corr.

Original NMR (6uf2)

(10 conformers)

0.154 ± 0.0084 0.021 ± 0.00047 0.159 ± 0.018 48.2 ± 7.7 30.43 ± 5.7

AF2

(5 conformers)

n.d. 0.013 ± 0.00055 n.d. 87.6 ± 2.0 55.2 ± 7.5

ASDP-Cyana NMR

(18 conformers)

0.115 ± 0.0078 0.016 ± 0.00059 0.135 ± 0.013 75.5 ± 7.17 52.9 ± 12.0

Xplor Revised NMR (7n82)

(20 conformers)

0.106 ± 0.0028 0.014 ± 0.00057 0.128 ± 0.015 67.9 ± 6.05 53.8 ± 9.2
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component of CASP13, some advanced pure prediction methods used

in CASP14 provided models that fit the NMR data better than tradi-

tional or data-assisted prediction methods that utilize the NMR data

itself.

We also tried the inverse structure determination method with

MipA, using AF2 models to guide the NOESY assignment process.

However, unlike what was observed for target T1029, we did not

obtain a complete 12-stranded β-barrel structure with this protocol,

as the proton resonances that form the key inter strand NOEs needed

to form the two missing β-strands are exchange-broadened and these

NOESY peaks are not present in peak list. The success of the inverse

structure determination method is mainly driven by assignment of

experimental NOESY cross peaks, rather than being defined directly

by the input prediction models.

4 | DISCUSSION

In CASP14, the AF2 prediction approach performed remarkably well

in predicting 3D structures relative to reference experimental

structures determined by X-ray crystallography and cryoEM, generally

providing GDT scores > 0.85.1,10 For two of the three targets for

which the reference structures were determined by NMR, these

scores were generally lower. We initially asked the question whether

these lower GDT scores for T1027 and T1029 are due to inaccuracies

in the NMR models. For the three NMR structures, we plotted the DP

score of best scoring model in the NMR ensemble, a measure of the

quality of the NMR structure, against the GDT score for the best-

scoring AF2 model (Figure 7). This analysis suggested that the

observed GDT scores for AF2 models of targets T1055 (� 0.90) and

T1027 (� 0.67) are not attributable to serious problems in the accu-

racy of these NMR structures. However, the low DP_best score for

target T1029 suggested possible inaccuracies in the NMR structure.

We investigated this carefully, and refined the NOESY peak list data.

Using the improved NOESY peak list, the DP score for the original

T1029 structure PDB ID 6uf2 increased significantly, from a range of

0.19 – 0.27 to 0.49 – 0.51. Using the inverse structure determination

protocols, the individual conformers of the T1029_revised NMR

structure have much higher DP scores (0.66 – 0.69), indicating they

are more accurate, than those of the original model. The AF2 models

F IGURE 6 NMR-assisted prediction of an integral membrane protein. Ranking of (A) NMR assisted and (B) unassisted (pure prediction) CASP
models based on the DP score of the predictor-defined first model (DP_first) or the best scoring model submitted (DP_best). Scores for the AF2
predictor group are highlighted in red among the unassisted prediction groups. (C) NMR-assisted model and (D) regular prediction (unassisted)
model with the best DP scores. The models are colored with information from TALOS_N: blue, residues for which backbone conformation is
consistent with chemical shift data; red, residues for which backbone conformation is not consistent with chemical shift data; orange, residues
with no consensus dihedral angles predicted by Talos_N; yellow, residues that chemical shift data indicate to be dynamic. Residues 59, 66,
164, and 169 (red) are labeled as reference points. Residues in segments 52–67 and 162–169, which have backbone conformations that are
identified by Talos_N as dynamic (yellow), inconsistent (red), or no consensus (orange), but also located in predicted regular secondary structures
are considered to be inconsistent with the backbone chemical shift data, and may involve multiple conformations
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also have much higher GDT scores, 0.89 – 0.90, relative to the revised

experimental models T1029_revised (Figure 7).

Our analysis revealed alternate bases for the differences between

experimental and prediction models for each CASP14 target. T1055 is

a well-defined, relatively static structure, for which the NOESY and

chemical shift data are fit well by either the NMR models deposited in

the PDB, or the AF2 models. Interestingly, the AF2 models fit the

NMR data a bit better than the experimental structure. These differ-

ences are attributable to differences in structure refinement proto-

cols; overall the AF2 and NMR models are nearly identical, with

backbone GDT score of 0.90 (corresponding to a backbone RMSD of

about 1.3 Å). T1027, on the other hand, is a dynamic structure, for

which the experimental data, particularly 15N relaxation dispersion

data, indicate interconversion between multiple conformational

states.45 The experimental NMR models are a much better fit to the

NOESY and chemical shift data than the AF2 structures; however,

some NOEs are not explained by the experimental structure. Features

of the distribution of recall and precision violations, and the dynamic

NMR data, suggest the potential for a small dynamic population of the

AF2-predicted structure in solution. This interesting hypothesis could

be pursued with further data collection and analysis.

For T1029, our analysis revealed that the AF2 model, and other

CASP14 prediction models, are a significantly better fit to the NOESY

data than the reported NMR structure itself. This observation moti-

vated exploration of a novel method of “inverse structure

determination,” in which the predicted AF2 model was used to guide

a more complete and accurate analysis of the NMR data. The resulting

experimental restraints were then used to generate a revised NMR

model ensemble which better fits the NOE, chemical shift, and RDC

data. This NMR structure, PDB ID 7n82, has excellent structure vali-

dation scores, including RPF-DP and ANSURR scores that are signifi-

cantly better than the original NMR structure.

In computing GDT scores or other superimposition-based metrics,

it is critical to properly exclude those regions of the structure models

that are not consistently determined/predicted. In this study, we used

the software Cyrange23 to distinguish well-defined from not-well-

defined regions of the structure, as recommended by the wwPDB

Task Force on Protein Structure Validation. Other methods for defin-

ing this convention are also useful for this purpose.49

The uncertainty in the AF2 models was assessed by the superim-

positions shown in Figures 2B,H and Figure 4B. In well-defined

regions the backbone RMSD's across the five models is < 0.5 Å. As

discussed in the recent AF2 paper, multiple sequence alignment

(MSA) data and co-variance analysis is part of the input to AF2 predic-

tions, and was used for the four targets shown here. The sensitivity of

AF2 structure prediction accuracy to these MSA-based evolutionary

co-variance information is discussed by Jumper et al.10

The available machine learning methods, including AlphaFold210

and RosTTAFold,50 are trained on the extensive Protein Data Base

(PDB) of protein structures with the assumption that the true struc-

ture is a single conformation. Since most of the data in the PDB, and

in fact most experimental protein structures, have been provided by

X-ray crystallography, this assumption is relevant. However, in their

biological contexts proteins are dynamic and adopt multiple confor-

mational states as required for their thermodynamic stability and

functions. While X-ray crystallography can be used to study protein

dynamics, and the various dynamic states of proteins may crystallize

separately providing atomic resolution structures for alternative

states, other experimental techniques have unique capabilities for

characterizing the multiple conformational states of proteins. In par-

ticular, both solution NMR and cryo electron microscopy (cryoEM) are

especially powerful in identifying and characterizing multiple confor-

mational states of proteins. To date, multiple conformational and

dynamic structure prediction has not been a focus in CASP, and is not

generally considered in training of machine learning and other protein

structure prediction methods. The inaccuracies of AF2 structure pre-

dictions for targets T1027 and T1088 may reflect its training to pre-

dict a single best structure for the target, rather than a distribution of

conformations in dynamic equilibrium.

Another novel result of this work is the sensitivity of the DP ver-

sus GDT plots to the correct choice of reference structure for the

GDT score calculation. By improving the accuracy of atomic coordi-

nates for target T1029, and using this revised structure as a reference

for the GDT calculation (along with improved NOESY peak lists), the

correlation between DP and GDT across CASP14 prediction models

become much more monotonic and linear. This correlation coefficient

is an interesting metric for assessing the correctness of a NMR struc-

tural model, a concept which merits further investigation.

In this study, we focus structure validation on RPF-DP

scores,14,15 which compare models against unassigned NOESY peak

lists, as well as knowledge-based Z scores,22 RDC Q scores,26 and

dihedral angle ranges indicated by chemical shift data.16 Generally

speaking, distance restraint validation is also an essential metric for

NMR structure assessment. The NMR structures deposited in the

PDB for the three original targets, T1027, T1029, and T1055, have no

significant (> 0.5 Å) restraint violations relative to the deposited

restraint lists. The T1029_revised structure also satisfies the restraints

used to generate the structure (Table S7). However, distance

F IGURE 7 DP and GDT scores for NMR structures in CASP14.
Plot of DP score for best-scoring experimental model versus GDT of
best scoring CASP model relative to coordinates of PDB IDs 7d20,
6uf2, 7n82, and 6zyc, for targets T1027, T1029, T1029_revised, and
T1055, respectively. The horizontal dashed line is an empirical cutoff
for an accurate NMR structure model14
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restraints used in NMR structure determination are derived during an

iterative process of NOESY peak assignment, structure generation,

and restraint assessment; in some cases NOESY cross peaks may be

misassigned, resulting in incorrect restraints, and some restraints may

be modified or culled in the process of structure analysis by auto-

mated NOESY peak assignment programs. For this reason, our assess-

ment of CASP14 prediction models did not include an extensive

analysis of restraint violations relative to the corresponding deposited

distance restraint lists; rather we validate models against the NOESY

peak lists considering all possible assignments consistent with the

chemical shift assignment list.15

Another important observation involves the sensitivity of existing

structure validation metrics to model inaccuracies. The original T1029

NMR structure has very good structure quality scores, which by stan-

dard criteria are acceptable. However, the DP and ANSURR scores

suggest some inaccuracies in this ensemble of structures. These prob-

lems were not detected by the PSVS structure quality score analysis,

the wwPDB NMR Structure Validation Report, the RDC Q score anal-

ysis, the TALOS_N analysis, or even by the NOE-derived restraint vio-

lation analysis. These results highlight the weaknesses of these

standard NMR structure validation scores for assessing NMR-derived

model accuracy, and the need for using structure versus data scores,

like the DP and ANSURR scores, for assessing NMR structure quality.

In CASP14, NMR data were also provided for target T1088, a

beta-type integral membrane porin protein, used by several CASP14

predictor groups to generate NMR-guided prediction models. Most

groups involved in this exercise generated similar beta-barrel models,

with good agreement with the experimental data. However, as was

also observed in CASP13,13 some regular prediction groups, which did

not use the NMR data, generated models for T1088 which better fit

the NMR data than the NMR-guided methods. In all cases, the most

severe discrepancies between the predicted models and NMR data

are in the segment 43–67 for which NMR data indicate intermediate-

exchange conformational dynamics. These results demonstrate the

power of the most advanced current modeling methods to predict

structures of small proteins with accuracies rivaling solution NMR

structures. However, they also illustrate, again, the shortcomings of

prediction methods to identify regions of conformational dynamics

and to reliably model alternative conformational states, and suggests

the need to validate prediction models against experimental data

characterizing conformational dynamics.

The CASP14 blind protein structure prediction results have pro-

vided the opportunity to assess the potential for using predicted pro-

tein structures to guide experimental NMR data analysis. This goal

appears to have been successfully achieved using current best

methods of protein structure prediction, for proteins of up to about

200 residues. The best prediction results (e.g., AF2 models) generally

fit to the experimental NMR data as well (or better) than experimental

structures generated from these same data using conventional

approaches. Specifically, in two of the three cases studied here

(T1055 and T1029), the AF2 models match the experimental data as

well or better than structures generated by conventional NMR struc-

ture determination methods.

Considering the results with more than 90 protein targets,1 the

accuracy of structures predicted by AlphaFold2 appear to be generally

sufficient to provide reliable guidance to NMR data analysis. Several

other structure prediction methods applied in CASP14 also achieved

nearly this level of model accuracy for relatively static structures. The

availability of source code for AlphaFold2,10 RosTTAFold,50 and other

successful co-variance and machine learning methods strongly moti-

vates future efforts to explore using these methods to guide NMR

data analysis. There is potential to use predicted models not only to

guide structure analysis, as was done here, but to provide a complete

analysis of both resonance assignments and 3D structures. Accurate

models provided by methods like AlphaFold210 and RosTTAFold50

open the potential of complete structure determination of small, rela-

tively rigid protein structures from a single NOESY spectrum; for

example, from a single simultaneous 13C,15N-resolved NOESY spec-

trum. However, care must be exercised in using prediction models to

interpret such experimental data, as was observed for T1029 using a

CS-Rosetta structure to guide the analysis of the original T1029 struc-

ture.47 For example, when there are significant conformational

dynamics of the target protein structure, like targets T1027 and

T1088, the prediction methods used in CASP14 cannot yet accurately

describe these conformational distributions. For such dynamic struc-

tures, current prediction methods have limited value in guiding the

data analysis, and might in fact misguide the structure analysis pro-

cess. Methods for predicting chemical shift assignments from models

are also not yet sufficiently accurate. Moreover, while structure pre-

diction for less dynamic structures is more reliable, efforts in “inverse
structure determination” are susceptible to any errors in the predicted

structure that are not contraindicated by the data, and must be care-

fully cross validated by multiple model versus data structure quality

assessment scores including the RPF-DP score, RDC Q score, and

ANSURR score.
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