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Abstract

Sleep is generally categorized into discrete stages based on characteristic electroencephalogram (EEG) patterns. This
traditional approach represents sleep architecture in a static way, but it cannot reflect variations in sleep across time and
across the cortex. To investigate these dynamic aspects of sleep, we analyzed sleep recordings in 14 healthy volunteers with
a novel, frequency-based EEG analysis. This approach enabled comparison of sleep patterns with low inter-individual
variability. We then implemented a new probability dependent, automatic classification of sleep states that agreed closely
with conventional manual scoring during consolidated sleep. Furthermore, this analysis revealed a previously unrecognized,
interhemispheric oscillation during rapid eye movement (REM) sleep. This quantitative approach provides a new way of
examining the dynamic aspects of sleep, shedding new light on the physiology of human sleep.
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Introduction

Sleep is generally considered to be a global and highly

symmetrical brain state. Several studies, however, have shown

that sleep can exhibit local phenomena, such as electroencepha-

lography (EEG) spectral changes in parts of the cortex in relation

to learning [1,2,3]. Furthermore, functional MRI and EEG studies

have revealed widespread and presumably spontaneous fluctua-

tions in cortical activity during sleep and wakefulness

[4,5,6,7,8]_ENREF_6. These fluctuations show high temporal

correlations between distant brain regions and are therefore

interpreted as a spontaneously active neural network. During

sleep, these resting state networks [9] persist and exhibit slowly

(,0.1 Hz) fluctuating activity over time [10,11,12]. Considering

this local and temporal variability in human sleep, the question

arises whether these dynamical aspects may be observed in EEG

analysis of healthy consolidated sleep.

By means of behavioral, neurophysiologic and electroenceph-

alographic criteria, sleep may be roughly divided into rapid eye

movement (REM) sleep and non-REM (NREM) sleep. NREM

sleep may be further subdivided according to the amount of EEG

slow wave activity (SWA). Developed in 1969 and adapted in

2007, this classification relies on manual scoring of sleep based on

characteristic features of the EEG, electrooculogram, and electro-

myogram [13,14] of a human expert. Recently, numerous

methods for computer-based automatic sleep stage classification

have been proposed using different approaches (e.g. rule-based

automatic sleep staging [15], methods based on Bayesian

probability [16], or sleep scoring using artificial neural networks

[17]). Many classifiers provide an agreement with human scoring

that lies in a similar range as the agreement of visual scoring

obtained by different experts (approximately 80% agreement

[18,19,20]). These approaches allow for a standardized analysis of

behavioral states, but provide little information on the dynamic

spatial and temporal properties of sleep.

Regarding the spatial domain, however, it is well established that

during consolidated sleep, significant regional variability is

observed [21,22]. As an extreme example, slow wave sleep in

marine mammals such as dolphins and fur seals can occur

unilaterally, in a pattern that alternates slowly between the left and

the right cortical hemispheres [23,24,25]. Similarly, in sleep

deprived rodents and humans, EEG delta activity during NREM

sleep can predominate unilaterally [26,27]. Some of this regional

variation may be a consequence of prior waking activities. For

example, a motor learning task can increase SWA in a

circumscribed contralateral cortical region [1]. In addition, local

populations of cortical neurons of rats may exhibit a sleep-like

pattern of activity even while the EEG and behavior indicate

wakefulness [3]. Finally, high functional connectivity in different

EEG bands has been demonstrated during sleep by analysis of

spatial EEG patterns, suggesting an organized underlying neural

network with local and long distance connectivity [28,29]. These

studies suggest that during sleep, significant regional EEG

variability occurs that may be linked with behavioral changes.

Considering the temporal variability of sleep, conventional

scoring in 30 second epochs limits analysis of dynamic properties

of sleep such as the assessment of changes of sleep behavioral

states. For example, conventional scoring presents transitions

between behavioral states as if they were instantaneous, though the

visual appearance of the EEG suggests the transitions are more

gradual with intermediate patterns of activity that defy clear-cut

categorization. Similarly, scoring of EEG data in epochs makes it

very difficult to examine fluctuations in EEG power over time

within a given behavioral state. To overcome these difficulties,

various quantitative approaches of EEG analysis have been

proposed. Recently, through recurrence analysis of sleep EEG,
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dynamic markers over time scales of milliseconds have been used

as a small scale measure of dynamic brain state activity in different

sleep stages [30]. In addition, various model driven approaches

focus on the dynamics of the cortical EEG during sleep to describe

transitions between distinct sleep stages [31,32], or to measure and

quantify the depth of sleep by spectral analysis techniques [33].

Another promising and novel method of EEG analysis has been

introduced in rats [34,35] and further developed in a mouse model

for healthy and pathological sleep [36]. In this approach,

behavioral changes are described in a 2-dimensional state space

that is derived from spectral characteristics of the EEG.

Importantly, by automated spectral analysis of subsequent EEG-

epochs, this approach allows for a quantitative and un-biased

analysis of the temporal dynamics of sleep in detail.

To gain new perspectives on the physiology of human sleep, we

developed an adapted state space analysis technique to study the

dynamics of state transitions, regional changes in sleep, and the

velocity of transitions between states. We hypothesized that

dynamic analysis of healthy sleep, applied in combination with

simultaneous measurements in different brain regions, would

improve upon the current methods of scoring behavioral states

and provide new insights into sleep physiology.

Materials and Methods

Participants and EEG Analysis
We analyzed sleep recordings of 14 right-handed, healthy

volunteers (6 men, 8 women, 3068 years old, range: 20–46), who

had been screened as healthy controls for a clinical study. All

participants reported a regular sleep pattern and had no history of

sleep disturbances. Patients with regular alcohol consumption were

excluded. BMI .25 kg/m2 was accepted, if the polysomnographic

findings were normal (see Table S2 for details). The study was

approved by the local ethical board (Kantonale Ethikkommission

Zürich) and all subjects gave written informed consent prior to

enrolment. Each subject had overnight polysomnography from

23:00 to 07:00, without a prior adaptation night. Six EEG

channels were recorded (F3, F4, C3, C4, O1, O2) and referenced

to linked bilateral auricular electrodes (A1+A2). All recordings

were acquired using Embla N7000 Systems and Somnologica

Software (Embla Systems Inc., Broomfield, CO 80021, USA).

EEG signals were recorded at a sampling rate of 100 Hz. Manual

sleep scoring was performed in non-overlapping 30-s epochs by

two experienced sleep researchers (E.W. and U.K.) according to

standard criteria [13,14] for 30 s epochs. In a second step, each

epoch was sub-divided into epochs of 5 s length and sleep scoring

was adapted if necessary. The adaptation to 5 s epoch length was

performed in a systematic way as follows: After the conventional

30-s epoch scoring using the AASM rules to describe the clinical

and polysomnographical characteristics of our healthy subjects

(Table S2), sleep stages were re-scored in 5-s epochs, with each

epoch being assigned a sleep stage comprising the greatest

percentage of the epoch. Thus stage W (wake) was determined

by the presence of alpha activity and/or rapid eye movements,

NREM1 was determined by the presence of low-amplitude mixed-

frequency (4–7 Hz) waves and/or vertex sharp waves or slow eye

movements. The start of stage NREM2 was defined by the

presence of K complexes or sleep spindles. Stage NREM2

continued if low-amplitude, mixed-frequency EEG rhythm was

present in epochs that contained or were preceded by K

complexes or sleep spindles. Stage NREM2 ended with an arousal

or when sleep transitions to stage WAKE, NREM1, NREM3, or

REM followed. An epoch was scored as stage NREM3 if at least

50% of the epoch was occupied by slow wave EEG activity. An

epoch was considered stage REM if it contained low-amplitude,

mixed-frequency EEG activity and low chin EMG tone that was

the lowest level in the study and either had rapid eye movements

or was preceded by stage REM sleep. REM sleep ended by

transition to stage WAKE or any NREM sleep stage as described

above. Epochs between definite NREM2 and definite stage REM

epoch with a distinct drop in chin EMG, low-amplitude, mixed-

frequency EEG activity and absence of K complexes or spindles

were scored as stage REM.

This shorter epoch length of 5s (instead of the typically used 30 s

epoch length) was chosen for several reasons: First, the shorter

time interval enabled to detect rapid changes in the sleep EEG,

which allowed for the description of dynamic aspects of sleep.

Second, when scoring in 30 s intervals, we observe presumably

mixed sleep states, that show characteristics of different sleep

stages during short periods of time: These short lasting state

transitions could thus be assigned to the corresponding sleep stage

(e.g. a short arousal during NREM sleep was scored as a single

WAKE epoch of 5 s length). Regarding spectral analysis, this sub-

classification of 30 s EEG epochs in 5 s sub-epochs allowed

therefore for a higher intra-state consistency of the EEG raw data.

Finally, from a more methodological point of view, an interval of

5 s length provides an optimal compromise between a high

frequency resolution for spectral analysis (long epoch length) and

an adequate temporal resolution (short epoch length) for the

dynamic sleep analysis.

Signal processing of the raw data and statistical modelling as

described below was performed using MatLab (The MathWorks

Inc., Natick, MA, 2009).

Adaptation of State Space Analysis for Human Sleep
To produce a topographically well-defined state space for

analysis of sleep dynamics, we adapted a dimensionality reduction

approach. This method was recently introduced for analyzing

rodent sleep [34,36], but to our best knowledge, it has not been

used to analyze human sleep. In this approach, multidimensional

EEG spectral information in each epoch is reduced to a lower

dimensional space by determining ratios of different spectral

frequency bands. Each 5-s EEG epoch is thus represented as a

single point in a 2-dimensional state space. For appropriately

chosen frequency ratios sleep epochs form clusters representing

distinct behavioral states. To adapt this technique to human sleep,

we used a probability-based optimization of the relevant spectral

ratios to determine the most informative frequencies for distin-

guishing stages of human sleep: First, a Fast Fourier Transforma-

tion (FFT) was applied on each 5-s epoch after multiplication by a

Hann window to address the problem of edge discontinuities (zero

padding was used to expand the signal in each 5-epoch of 500 data

points to a window size of 512 points). Second, based on variable

frequency bands, the corresponding frequency ratios were

determined for each epoch. To filter for short-term fluctuations

in the resulting time series, the data was filtered with a running

window average (10-point Hann window). Assuming normally

distributed ratios within each sleep stage, a 2-dimensional Linear

Discriminant Analysis (LDA) was implemented as a discrete

classifier function for sleep stages. Finally, we calculated the

positive predictive value by comparing the predicted and the

manually derived sleep scoring (e.g. a predictive value of 80%

corresponds to an agreement with the manual scoring in 80% of

all cases). Importantly, the predictive value in this model is

dependent on the initially chosen frequency bands.

In a second optimization step, we systematically varied the

defining frequency parameters to maximize the predictive value of

the derived classification (i.e. to optimize the agreement with

Inter-Hemispheric Oscillations in Human Sleep
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manual scoring). To address this high dimensional optimization

problem, we first implemented a genetic algorithm [37] (fitness

function: LDA classifier; paired regrouping of frequency bands as

genetic operator; mutation rate: 10%) to globally search for

optimal frequency bands. For this optimization step, the whole

data set was used (n = 14). Finally, we used an unconstrained,

nonlinear minimization function (Nelder-Mead algorithm; Ma-

tLab) for local optimization. Importantly, for any further

calculations, these frequency ratios were held fixed and the same

ratios were used in the analyses of all individuals and all EEG-

data. A detailed mathematical description of this approach is

delivered as Supporting information.

Velocity-dependent Sleep Modelling
Velocity in the state space is defined as the Euclidean distance

between two subsequent states divided by the time interval

between these states. Rodent studies revealed that high velocities

in the state space are an important measure of behavioral state

instability [36]. On the other hand, we hypothesized that periods

with low velocities represent consolidated, stable sleep. Therefore,

we heuristically defined a velocity cut-off to distinguish stable sleep

periods (‘slow’) from transitions and fluctuations (‘fast’). To

optimize the detection of stable clusters with low intra-state

variability, we smoothed the original sleep trajectories with a

running window average (50-point wide Hann window). Here, a

longer window was chosen, to emphasize state-to-state trajectories

with higher velocity, as compared to stable sleep phases. We then

used a LDA function to automatically classify the resulting clusters

corresponding to WAKE, NREM1, NREM2, NREM3, and REM

sleep.

Autocorrelation of Time-dependent Laterality
To measure differences in state space velocities between the left

and right hemispheres (vleft and vright), we defined the relative

laterality score as L ~
vright { vleft

vright z vleft
for each 5-s epoch in frontal,

central and occipital electrodes. This score potentially fluctuates

between -1 and 1 (positive values indicate faster velocity in the

right hemisphere; negative values represent faster velocities on the

left; and 0 indicates identical velocities in both hemispheres). Here,

velocities of the unsmoothed sleep trajectories were used to ensure

accurate time resolution. The resulting time series was further

subdivided into segments of 100 epochs (500 seconds). To detect

potential periodic patterns in left/right inter-hemispheric differ-

ences, we determined the autocorrelation function (length 100

epochs, lag = 90) and checked for periodicity for each segment.

Autocorrelation can be interpreted as the similarity of a signal with

itself across time. High autocorrelation values indicate a repeating

pattern in the original time series with the same time period.

Frequency analysis of the autocorrelation function was done using

FFT.

Taken together, we propose a frequency-based sleep model that

was optimized for agreement with manual sleep scoring and can

therefore be used as an automatic classifier function for sleep

stages. Furthermore, as the frequency ratios are uninfluenced by

prior knowledge of sleep-related frequency bands this approach

allows for an un-biased and quantitative sleep analysis indepen-

dent of prior human sleep scoring.

Results

Behavioral States form Consolidated State Space Clusters
Calculation of 2 independent frequency ratios in a single EEG

electrode (central derivation) allowed for a consistent, probability-

dependent automatic classification of behavioral states in all 14

subjects, as illustrated by the projected 1-dimensional probability

density estimations in Figure 1a. The topographic arrangement of

clusters was conserved across subjects and was independent of age

or gender (Figure 1b). Classification of behavioral states based on

linear discriminant analysis for trended sleep trajectories resulted

in an overall positive predictive value for matching manual scoring

of 74%. Analysis of predictive scores according to sleep state

showed poor agreement with manual scoring only in transitional

sleep states (NREM1), whereas for NREM2 and NREM3 the

positive predictive value was $80% (Table S1). Importantly, for

the automatic classification of behavioural states, the same

optimized frequency ratios [Ratio1 = (8.6 to 19.3 Hz)/(1.0 to

10.9 Hz), Ratio2 = (11.5 to 20.3 Hz)/(17.9 to 31.5 Hz)] were used

for all individuals without further adaptation.

Velocity in State Space is a Measure of Behavioral State
Instability

High velocity states corresponded either to rapid transitions

between states or fluctuations within a state, whereas low velocity

states formed consolidated clusters. Analyzing sleep trajectories,

we found that velocities in state space in 5-s intervals increased

abruptly during transitions between behavioral states (Figure 2a).

This can be explained partly by a ‘geometrical’ effect, as during

state transitions a longer distance in state space (between 2 clusters)

has to be covered. However, we also observed high velocity

trajectories within clusters (Figure 3 a/b). To test whether state

space velocity indeed reflects spectral variability, we analyzed the

corresponding spectral information at different time points for a

given transition: We found typical spectral sleep patterns only in

stable (slow) states, whereas during rapid transitions the spectral

information is less preserved (Figure 2b). Accordingly, in a sub-

analysis of state space velocity with respect to different sleep stages,

we found the highest mean velocities in (transitional) sleep stage

NREM1, whereas in REM and deep NREM sleep, the mean

velocity were significantly lower (Figure S1a). Similarly, comparing

transitions between and within clusters (i.e. short trajectories that

start and end in the same sleep cluster), the highest velocities

occurred with state-to-state transitions (Figure 2). Finally, in

agreement with the anterior predominance of sleep EEG, we

found a fronto-occipital gradient of velocity in state space for

NREM and REM sleep (Figure S1b), indicating more spectral

variability in frontal as compared to occipital derivations.

Considered together and in agreement with rodent studies

[34,36], these results indicate that low velocities in the state space

correspond to consolidated sleep phases with stable EEG spectra

over time, and velocity can therefore be interpreted as a

quantitative measure of behavioral state instability.

Consideration of Velocity Improves the Classification of
Behavioral States

This approach allowed us furthermore to differentiate between

stable and transitional sleep states: To distinguish consolidated,

stable periods of sleep from rapid state transitions and fluctuations,

we separated epochs into those with low or high velocities. We

found well-defined clusters in the low velocity domain (i.e. for

stable periods of sleep) for all individuals (Figure 3), whereas fast

periods had trajectories arcing between clusters (Figure 1b and

Figure 3a). Because the clusters for slow states were better

separated, the automatic classifier function based on 2D-proba-

bility density was more reliable for slow sleep states as compared to

faster transitional states (Table S1). Automatic categorization in the

low velocity domain had a mean positive predictive value of 80%

(all subjects) to match manual scoring which is similar to inter-

Inter-Hemispheric Oscillations in Human Sleep
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expert variability [18,19,20]. By comparison of the automatic

scoring performance for slow and fast states separately, we found

that – particularly for NREM3 and REM sleep - scoring of slow

states resulted in a better agreement with manual scoring, whereas

for light sleep states (NREM1, NREM2) we observed a similar

agreement in both groups (Table S1).

Post-hoc Test/train Approach
Because the frequency ratios were determined using the whole

data set, there is a possible risk of over-fitting in the proposed

model. To test for this possibility, we have confirmed the

classification procedure by a post-hoc test/train approach for 2

randomly chosen groups (n = 7 each). The previously determined

ratios were left unchanged, but the Linear Discriminant Analysis

(LDA) classifier was fitted only on the training group (n = 7) and in

a second step the derived discrete classifier function was tested on

the ‘naive’ data set (testing group, n = 7) without any information

about human scoring. The positive predictive value was then

evaluated by comparing the predicted and the manually derived

sleep scoring as described above for the testing group only. As

compared to the results for all subjects we have found similar

values for the testing group (positive predictive value of 70% for all

states and 80% for slow sleep states, respectively), indicating that

the proposed algorithm operates effectively also on a previously

unknown data set (Figure S4).

State Space Velocity Oscillates Rhythmically between Left
and Right Hemisphere

Next, we examined whether there are regional differences in the

stability of sleep across the hemispheres. To measure inter-

hemispheric variability, we compared velocities in the left and

right hemispheres using corresponding electrodes (e.g. C3 vs. C4).

Left/right asymmetry was determined by calculating a relative

laterality score for each 5 s epoch. This resulted in a rapidly

fluctuating time series representing a constantly changing hemi-

spheric predominance of velocity in state space (Figure S2). During

periods of consolidated sleep, state space velocity oscillated

rhythmically between the left and right hemispheres (Figure 4).

This oscillating pattern was predominantly seen in REM sleep. To

examine this oscillation further, we calculated the autocorrelation

function for fixed sleep bouts of 500 s length. This approach

confirmed the finding of a recurrent pattern of inter-hemispheric

oscillations during consolidated sleep phases (Figure 4b).

All 14 subjects had stereotypic oscillating patterns in REM sleep

with a mean period of 48 seconds (range: 32–80). This

interhemispheric oscillation occurred predominantly in central

cortical regions but less in frontal and occipital regions (Figure S3).

During NREM sleep and also in WAKE periods, velocities were

mostly symmetrical in both hemispheres though shorter inter-

hemispheric oscillations with similar periods occurred in all stages

(including WAKE).

Finally, to determine whether this interhemispheric oscillation is

an artefact of our method, we tested our data against uncorrelated

random velocities and a modelled sinusoid-alternating pattern. As

expected, for simulated random velocities with the same distribu-

tion as the original data, we found no significant autocorrelations.

The modelled sinusoid function, however, showed an alternating

pattern very similar to the one observed for the left-right

hemispheric oscillations (Figure S2). Furthermore, the oscillating

pattern occurred predominantly in central and parietal regions, as

shown in the simultaneous analysis of sleep bouts in different

electrodes (Figure S3), indicating that an artificial effect in our

method seems unlikely, as it would affect all derivations in the

same way. These comparative analyses indicate that we observed a

genuine, periodically oscillating pattern between both hemi-

spheres.

Figure 1. Conserved topography of the sleep state space. (a) Summary scatter plot of all sleep states for 14 subjects mapped in a 2-
dimensional state space. Each 5 s EEG epoch (raw data) is represented by 2 different frequency ratios plotted on log/log axes. Ratio1 = (8.6 to
19.3 Hz)/(1.0 to 10.9 Hz), Ratio2 = (11.5 to 20.3 Hz)/(17.9 to 31.5 Hz). Colour coding of the clusters is based on expert scoring for WAKE (red), NREM
stage 1 (yellow), stage 2 (green), stage 3 (blue), and REM sleep (magenta). Projections of the 2d-probability density distributions are plotted for NREM
stage 2 and stage 3 (top edge, ratio1) and WAKE and REM sleep (right edge, ratio2). For better visibility, the figure shows 10% of all data after
applying a running window average (6 point-Hann Window) on the raw data to filter for short-term fluctuations. (b) Individual sleep trajectories are
shown for each subject separately (panel 1–14) and cumulated for all individuals (panel 15, bottom right). Sleep trajectories are smoothed (50 point-
Hann Window) for better differentiation of stable (clusters) and transitional sleep states (trajectories). Colour coding is as described in (a).
doi:10.1371/journal.pone.0048660.g001
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Discussion

State space EEG analysis of human sleep generated well-defined

patterns of sleep behavioral states with low inter-individual

variability. Compared to manually scored sleep stages, the overall

positive predictive value for correct automated identification of

traditional behavioral states was 74% for all states and 80% for

consolidated sleep states, i.e. clusters with low velocities (n = 14

subjects). Contrariwise, we propose that high velocities in state

space reflect transitions and represent less stable behavioral states.

In addition, this technique revealed an interhemispheric oscillation

of behavioral state stability during consolidated REM sleep in

humans that to the best of our knowledge has not been described

previously.

Sleep Stage Prediction by State Space Analysis
The presented probability-based sleep analysis revealed a well-

defined and relatively uniform topography of the constructed state

space for all individuals. This enabled an automatic accurate

prediction of sleep states based on frequency ratios of a single EEG

channel alone with positive predictive values similar to the

variability between examiners using manual scoring based on

EEG, electromyography and electrooculography [18,19,20]. In

contrast to manual scoring however, this approach represents an

unbiased algorithm that scores sleep in a reproducible scorer-

independent way and allows for a comparable and quantitative

sleep EEG analysis. Furthermore, this algorithm can be performed

on a single EEG-channel and therefore allows for comparison of

quantitative sleep measures between different EEG derivations on

a 5 s time scale. Although our approach is fully dependent on the

underlying spectral information, our classification algorithm works

particularly well for REM sleep (Table S1). This is a rather

surprising finding, considering that based on spectral information

alone differentiation of REM sleep is generally less reliable,

whereas e.g. deep sleep (NREM3) can be separated from other

sleep stages by calculation of delta spectral power (0–4 Hz). This

advantage of our approach might be explained by an intrinsic

reduction of spectral variability in the algorithm by calculating

frequency ratios of normalized EEG-spectra.

Transitional states, however, are a challenge with manual and

automated scoring because their EEG spectral characteristics are

ill-defined and change rapidly. Description of a state to state

transition by conventional scoring rules can result in significant

ambiguity. For some clinical and research applications, it may be

better to divide sleep into consolidated, stable states and

transitional fluctuating states on the other hand. With stable states

that vary little over time, a clear-cut classification into different

behavioral states is feasible and the underlying spectral similarity is

well conserved. This fits our observation that automated scoring

using state space clusters works best for the sub-population of slow

sleep states. On the other hand, transitional states might be better

represented by dynamic quantitative sleep parameters such as

state-to-state trajectories or velocities in state space rather than

conventional sleep scoring. Future projects could apply these

Figure 2. Trajectory for a single WAKE to NREM stage 2 transition. (a) Consecutive points in the state space (each representing a 5 s EEG-
epoch) during a fast state transition (relevant trajectory (red) as shown in embedded figure) Points are colour coded according to velocity (bottom:
colour bar legend: arbitrary velocity units). (b) EEG spectral power at different time points during this transition (as indicated by points 1–5 in
Figure 2a). Note the uniform and distinctive spectral distribution in slow velocity states. Typical spectral peaks are indicated for point 1 (alpha activity
in WAKE: 10.7 Hz) and point 5 (beta activity in NREM2: 13.1 Hz) by a thin red line. During the transitional epochs (points 2–4), the spectra are
intermediate.
doi:10.1371/journal.pone.0048660.g002
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concepts to obtain quantitative and comparable data on healthy

and pathological sleep, fully independent from manual sleep

scoring.

Inter-hemispheric Oscillation
Based on this finding, we examined whether instability is a local

or a global phenomenon. In other words: can humans produce

consolidated, stable sleep in one hemisphere while simultaneously

producing a less stable state in the other hemisphere?

In some species (e.g. marine mammals [23,24], birds [38] and

possibly certain reptiles [39]), alternating unilateral slow-wave

sleep is the most frequently encountered sleep pattern [40].

Unihemispheric sleep offers an elegant solution for the conflicting

needs for sleep and vigilance and has been linked with possible

functional aspects of sleep in these animals such as predator

detection by enhanced unihemispheric arousability [41] or

uninterrupted breathing during sleep in marine mammals [25].

Although long-term local changes of slow wave sleep occur in rats

and humans [1,42,43], land mammals apparently are not able to

produce a similar alternating sleep pattern [40]. Considering both

the distinct lateralization of the human brain and the suggested

complex functional aspects of sleep (e.g. memory consolidation), it

would be rather surprising for sleep in humans to consist of fully

homogeneous and symmetrical brain states. Our finding of an

oscillation of sleep EEG dynamics between the left and right

hemisphere during consolidated REM sleep reveals that healthy

humans are in fact able to produce an intermittent rhythm of

alternating hemispheric predominance. Simply put, during con-

solidated REM sleep, one hemisphere may be in a slow velocity,

stable state, whereas the other hemisphere is in a faster, less stable

state. This rhythmic pattern fluctuates between the hemispheres

approximately every minute. This alternation is suggestive of the

left-right alternating sleep pattern in slow wave sleep of dolphins

and other sea mammals, but in humans, this interhemispheric

oscillation has a much shorter period and is less obvious when

using standard EEG analyses. Furthermore, the alternating

pattern emerges mainly during stable periods of REM sleep

lasting for about 10 minutes.

A well known intermittent EEG marker of unstable sleep is the

cyclic alternating pattern (CAP), which consists of long-lasting

periodic activity of two alternating electroencephalogram patters

Figure 3. Subdivision of sleep states by velocity. States of sleep were subdivided into high velocity states (i.e. transitions and fluctuations) (a),
and slow states (i.e. stable clusters) (b), by a heuristic velocity limit. Points are colour coded according to velocity (right side: colour bar legend:
arbitrary velocity units). Comparison of the manual classification (c) with automatic probability based classification (d) for a whole night data set for
one representative subject is shown. Colour coding: WAKE (red), NREM stage 1 (yellow), stage 2 (green), stage 3 (blue), and REM sleep (magenta).
doi:10.1371/journal.pone.0048660.g003
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[44,45]. Although we claim that velocity in state space is an

indirect measure for sleep instability, we believe that our finding of

interhemispheric oscillations in state space is not directly related to

CAP for several reasons: CAPs occur primarily in NREM sleep,

whereas the observed interhemispheric sleep oscillation is

predominant in REM sleep. Furthermore, the time period of

EEG changes in CAP is typically shorter as in our case. In

addition, the EEG changes in CAP have a symmetrical

distribution among both hemispheres. Finally and most impor-

tantly, by visual inspection of our EEG raw data we do not observe

any alternating stereotyped EEG patterns or any correlation with

periodic movements, respiratory fluctuations or tonic/phasic

REM sleep periods during sleep phases in which the inter-

hemispheric oscillation occurred. Furthermore, saw-tooth waves

or other sleep EEG patterns are generally symmetrically over both

hemispheres and do generally not show an intermittent inter-

hemispheric pattern and are therefore unlikely to be linked with

this oscillation.

Methodological Aspects and Possible Limitations
Many important aspects of sleep can be studied using

conventional EEG analysis techniques, but novel approaches are

needed to examine intermediate states and changes in sleep across

time in a quantitative way. Here, we propose velocity in state space

as a novel measure of sleep instability. This interpretation is based

on the finding that during transitional states and fluctuations state

space velocity rises significantly, because the underlying spectral

information varies rapidly. Here, the question arises, whether this

variability might simply reflect spectral noise or intermittent EEG

artefacts. We believe this is rather unlikely for several reasons. By

taking the ratio of different spectral power bands for each sleep

epoch, the noise level of the EEG spectra is actually diminished for

all epochs equally. Furthermore, noise levels could not explain the

exclusively higher velocities for state transitions (as seen in Figure 3

a/b), as noise would be expected to occur randomly during all

states in a similar amount. Finally, velocity differed according to

sleep stage and according to EEG derivation in all individuals in

the same way (Figure S1). By the same argument as above, this is

very unlikely to be related to the noise or artefact level in the EEG.

We therefore conclude that high velocities in state space indeed

correlate with less stable sleep.

In a similar way, we have to consider that frequency ratios are

used in this model: When using ratios of parameters that change

rapidly over time, one has to consider the risk of over-emphasizing

or concealing temporal variability when analyzing a time series

(e.g. small changes of the denominator may lead to enormous

changes in the corresponding ratio). For this reason, we have

worked with a logged ratio approach: Taking the log of a ratio

converts the division into a subtraction (because mathematically

log(a/b) = log(a)-log(b)). Small changes of either the denominator

or the numerator are therefore represented indeed by small

changes in the state space (on a logarithmical scale).

Figure 4. Laterality Analysis of REM sleep. (a) Time series data of relative laterality of velocity in corresponding central electrodes (C3 vs C4) for
100 successive REM sleep epochs for one individual. (b) Sample autocorrelation of the same period as shown in (a) demonstrating a stable oscillation
with a period of about 40 s. Approximate 95% confidence measures for the hypothesis of uncorrelated white noise are indicated by a dotted thin
blue horizontal line (p = 0.05, N = 100). (c) Fourier analysis (FFT) of REM sleep autocorrelations as in Figure 4b during one selected REM sleep bout for
each subject. (d) Mean spectral analysis of REM sleep autocorrelation of all 14 subjects.
doi:10.1371/journal.pone.0048660.g004
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Furthermore, we have to consider the possibility that the slow

oscillating pattern of velocity that we have observed might be an

artefact of the rather complex analysis method. This seems rather

unlikely for several reasons. Regarding the predominant occur-

rence in REM sleep and the strictly rhythmic inter-hemispheric

alteration, muscle artefacts or signals generated by the electrodes

are unlikely to cause a rhythmically recurring oscillating pattern

with a constant frequency. Furthermore, as seen in Figure S3, we

have observed this pattern predominantly in central derivations,

whereas an artificially generated pattern would have been

expected to occur in all derivations equally.

As an additional limitation, all volunteers were recorded during

their first night in the sleep lab without any prior adaptation.

Although the first night effect is known to influence the occurrence

of different sleep stages, it seems rather unlikely to affect the

findings of the inter-hemispheric oscillation that occurred during

consolidated REM sleep. However, an influence of the first night

effect on our findings cannot be ruled out.

Regarding the shortened epoch length, one might argue that

changing the interval length from 5 s would also change the

observed oscillations. At this point, it cannot be ruled out

completely, that changing the underlying analysis method would

also result in a different inter-hemispheric pattern (possibly in

other sleep stages). However, we are confident that our method

provides a sufficient resolution for detecting the presented slow

oscillation: Analyzing the data in 5 s intervals corresponds to a

sampling rate of 0.2 Hz, which allows for detecting oscillations

with frequencies up to ,0.1 Hz. The observed oscillations are at

approximately 0.02 Hz (50 s Time-period) and lie therefore well

within the spectral range of this technique. However, the

occurrence of faster inter-hemispheric oscillations or more local

EEG variations cannot be ruled out because of limited temporal

(5 s interval) and spatial (8 electrode montage) resolution in the

current setting. Finally, we have to address the question of

consistency between the scoring with shortened epoch length as

compared to the traditional 30s-scoring. To validate the described

adapted scoring rules (see Material/Methods), the independently

derived sleep scores (5 s vs. 30 s) have been compared for all

volunteers and showed a high level of overall agreement (85%, see

Figure S5a/b/d). Importantly, for the remaining 15% of epochs

that showed no agreement with the traditional 30 s, we suggest

that because of the higher temporal resolution of the 5 s scoring

these states might be more accurately described by the 5 s epoch

length. Put differently, we argue that in fact the 30 s scoring fails to

capture short fluctuations in the sleep EEG in up to 15% of all

epochs. This argument is supported by the fact, that for a similar

percentage of all scored 30 s epoch, we have scored 2, 3 or even 4

different behavioral states in the 5 s scoring (Figure S5c).

Possible Relevance of the Inter-hemispheric Oscillation
For now, the function of this oscillation remains unknown, but

its predominant occurrence during REM sleep suggests a relation

to REM sleep function. Much evidence has shown that REM sleep

is critical for the development of the brain and for procedural

learning [46,47] by induction of hippocampal long-term potenti-

ation [48], and NREM sleep is possibly linked to neuronal

recuperation and the enhancement of declarative memories [49].

Accordingly, in recent theoretical and experimental approaches it

has been suggested that during sleep neural networks exhibit a

high amount of local connectivity, which might be optimal for

information processing in complex systems [29,50]. In this context,

the observed oscillating rhythm may hypothetically be explained

by an inter-hemispheric neural crosstalk during a memory

consolidation process in REM sleep. Alternatively, the oscillating

REM sleep rhythm might be related to an alternating pattern of

enhanced arousability as in birds or sea mammals. This could be

linked to the observation that in humans auditory evoked

potentials during sleep show a variable left/right asymmetry [51]

suggesting a greater receptiveness for auditory input in the

corresponding hemisphere [40].

Though the function of this interhemispheric rhythm remains

uncertain, the fact that all subjects had REM sleep oscillations with

similar time periods suggests that this finding represents a genuine

aspect of human sleep physiology that may reflect dynamic

interactions between the hemispheres during REM sleep.

Supporting Information

Figure S1 Distribution of state space velocity with
respect to sleep behavioral state and brain region. (a)
Mean velocities showed a characteristic distribution with highest

velocities in NREM1 for all 14 subjects. Average over all

individuals demonstrated significantly higher velocities in NREM1

as compared to NREM2, NREM3 and REM sleep (* = p,0.01,

paired t-test, n = 14). Error bars indicate SEM (n = 14). (b)
Velocity in state space showed a fronto-occipital gradient for all

subjects with highest velocities in frontal and central electrodes

and lower velocities in occipital derivations for NREM (filled blue)

and REM sleep (white). Average over all individuals are shown

(Error bars indicate SEM, n = 14).

(TIF)

Figure S2 Comparison of laterality time series with
random models. (a) Time series raw data: Histogram plot

of relative laterality showed a symmetrical distribution over time

(left panel), while time series raw data fluctuated rapidly between

left and right hemispheres (middle panel, 200 REM sleep epochs,

one subject). Sample autocorrelation of the same period with

respect to autocorrelation time lag showed an oscillating pattern

(right panel). (b) Random model: For comparison, the same

analysis was performed on Rayleigh-distributed random numbers

with a distribution of laterality (left panel) and a corresponding

rapidly fluctuating time series (middle panel) similar to real data

(a). However, autocorrelation of the random data shows no

oscillating pattern (right panel) (c) Sinusoid model: Histogram

(left panel), time series (middle panel) and autocorrelation (right

panel) for a sinus function underlying uniformly distributed

random noise simulated the rhythmically oscillating pattern as

observed in REM sleep (compare to right panel in (a)). Dotted blue

lines represent approximate 95% confidence measures, as

described in Figure 4.

(TIF)

Figure S3 Simultaneous measurements of interhemi-
spheric oscillation in different brain regions. The

laterality score of velocity was calculated in corresponding

electrodes for frontal (F3 vs F4), central (C3 vs C4), parietal (P3 vs

P4) and occipital (O1 vs O2) derivations. The analysis was

performed for the same 100 successive REM sleep epochs

simultaneously in each electrode pair. The typical oscillating

pattern was only seen in central and parietal brain regions,

whereas in frontal and occipital derivation no oscillating pattern

could be observed (upper panels). Frequency analysis for the

oscillating pattern (FFT of REM sleep autocorrelations) confirmed

the predominant slow oscillation in central and parietal electrodes,

but no definable frequency peak in frontal and occipital regions

was observed (lower panels).

(TIF)
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Figure S4 Test/Train Approach for 2 randomly selected
subgroups (2x n = 7). Left panel: Summary scatter plot of all

sleep states for 7 subjects that were used for training the LDA

algorithm. Colors represent manual scoring. Right panel: State

space scatter plot of all sleep states for the other 7 subjects that

were used for testing of the classifier. Epochs were scored by the

automatic classifier without prior knowledge of the manual

scoring. Colors represent automatic scoring. Agreement with

manual scoring was 70% for all states and 80% for slow sleep

states. Color-coding is the same as in Figure 1.

(TIF)

Figure S5 Comparison of 30 s- and 5 s-scoring. (a/b)
Sleep hypnograms 5 s/30 s for 1 representative volun-
teer. Scoring of behavioural states was performed for 30 s epochs

(a) and 5 s epochs (b) showing a similar sleep structure with a

higher variability in the 5 s scoring. (c) Number of different
5 s behavioural states per 30 s epoch for all n = 14
subjects. For each 30 s epoch the number of different

behavioural states (1–4 bs) in the 6 corresponding 5 s epochs

was determined and shown for each traditional behavioral state

separately. (d) Validation of 5 s scoring as compared to the
30 s scoring epoch for all n = 14 subjects. Comparison of

the 5s-scoring with the traditional 30s-scoring showed a high level

of agreement in all behavioural states (WAKE, NREM1, NREM2,

NREM3, REM) and overall agreement of 85% (OVERALL).

(TIF)

Table S1 Relative abundance of sleep stage and positive
predictive values for slow and fast states in all
individuals (n = 14). (a) Considering all epochs, we find an

overall agreement with manual scoring in 74% (ALL). Differen-

tiation of high velocity and low velocity states resulted in an

increased positive predictive value for automatic classification of

slow sleep stages (SLOW), whereas fast states are less reliably

predicted (FAST). This effect was predominantly observed in

consolidated deep sleep (NREM3, REM), whereas for the

transitional sleep stage NREM1 a poor performance of the

automatic classification was observed. (b) Comparison of manual

and automated classification of behavioral states by a confusion

matrix. Numbers indicate fractions of correctly assigned sleep

stages, when comparing manual (y-axis) with automated scoring

(x-axis) for both fast (left panel) and slow (right panel) sleep states

for all volunteers (n = 14). Color-coding refers to the fractions as

shown on the matrix (percentage values).

(TIF)

Table S2 Clinical characteristics and polysomnogra-
phical findings of all included volunteers (n = 14).
Abbreviations: gender (g), Epworth Sleepiness Scale (ESS), Body

Mass Index (BMI), Sleep Efficiency (Seff), Sleep Latency to S2

(SL[S2]), Rem Sleep Latency (RL), Periodic Limb Movements

(PLM), Apnea-Hypopnea-Index (AHI), Total Time in Bed (TIB),

Total Sleep Time (TST), Total sleep Time from sleep onset (SPT),

Relative occurrence of stage NREM1 (S1), NREM2 (S2), Deep

Sleep (S3+S4), REM Sleep (REM) and Wake (Wake).

(TIF)

MatLab m-file S1 (score_p10): MatLab function for auto-
matic scoring of sleep EEG-spectra by linear discrimi-
nant analysis. Requires MatLab mat-files 1–3: mu_sigma.mat,

P_si.mat, xmat.mat (See file header for instructions).

(M)

MatLab m-file S2 (oplot2d_50): MatLab function for
plotting the sleep spectrum spec on a 2d state space
(See file header for instructions). MatLab mat-files containing all

parameters for automatic sleep scoring.

(M)

MatLab mat-file S1 MatLab mat-file containing parameters for

automatic sleep scoring.

(MAT)

MatLab mat-file S2 MatLab mat-file containing parameters for

automatic sleep scoring.

(MAT)

MatLab mat-file S3 MatLab mat-file containing parameters for

automatic sleep scoring.

(MAT)

Mathematical description S1 Provides a detailed mathemat-

ical description of the optimization algorithm for the derived state

space model.

(DOCX)
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