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Type 2 diabetes is one of the major causes of mortality with rapidly increasing prevalence. Pharmacological treatment is the first
recommended approach after failure in lifestyle changes. However, a significant number of patients shows—or develops along
time and disease progression—drug resistance. In addition, not all type 2 diabetic patients have the same responsiveness to drug
treatment. Despite the presence of nongenetic factors (hepatic, renal, and intestinal), most of such variability is due to genetic
causes. Pharmacogenomics studies have described association between single nucleotide variations and drug resistance, even
though there are still conflicting results. To date, the most reliable approach to investigate allelic variants is Next-Generation
Sequencing that allows the simultaneous analysis, on a genome-wide scale, of nucleotide variants and gene expression. Here,
we review the relationship between drug responsiveness and polymorphisms in genes involved in drug metabolism (CYP2C9)
and insulin signaling (ABCC8, KCNJ11, and PPARG). We also highlight the advancements in sequencing technologies that to date
enable researchers to perform comprehensive pharmacogenomics studies.The identification of allelic variants associated with drug
resistance will constitute a solid basis to establish tailored therapeutic approaches in the treatment of type 2 diabetes.

1. Introduction

Diabetes is one of the leading causes of mortality in the
contemporary society [1]. The last report of the International
Diabetes Federation in 2013 indicates an onset rate of about
8.4% in adults and a total number of 382 million cases of
diabetes worldwide. This number is estimated to critically
rise up to 592 million cases by 2035 [1], so that the World
Health Organization (WHO) has defined this phenomenon
as a “global outbreak.” There are two more frequent forms of
diabetes, both due to defects of insulin action: type 1 diabetes
mellitus (T1D), also called “insulin-dependent diabetes” or
“juvenile diabetes” [2] and type 2 diabetes mellitus (T2D),
also known as “noninsulin-dependent diabetes.” This former
is characterized by early onset and occurs because of absolute
deficiency of insulin [3], whereas the latter (themost frequent
form), with onset in older age, occurs because of an insulin
defective function [4]. T2D affects more than 5% of the

population of developed countries and its predominance
increases worldwide.

Diabetes is a chronic disease, which over time leads
to cardiovascular and blood vessels damage and neuro-,
nephro-, and retinopathy, with a dramatic impact on health
and high costs for all National Health Systems [2].

Intensive programs that consider lifestyle changes to
reduce T2D risk have revealed a moderate efficacy in
reducing diabetes incidence in at-risk individuals [5]. When
lifestyle changes are not sufficient to ameliorate the clini-
cal features of T2D patients, it is necessary to design an
appropriate pharmacological approach. In this scenario, the
pharmacogenomics is a discipline that studies the impor-
tance of optimal treatment to patients, starting from the
knowledge about the genetic and molecular etiology of the
disease. Several studies have shown a widespread variability
in glycemic response tolerability, and a plethora of variable
effects in patients treated with similar antidiabetic drugs
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[6, 7]. These lines of evidence represent the starting point of
pharmacogenomics [4]. Generally, interindividual variability
is mainly determined by single nucleotide polymorphisms
(SNPs). Specifically, a relevant fraction of the genetic variabil-
ity observed in T2D patients has been found in genes directly
(or indirectly) related to the activity (or to the metabolism)
of oral antidiabetic drugs (OAD). The assumption of these
drugs is the first intervention step in T2D management, after
the failure of lifestyle changes. Therefore, the identification
of genetic variants associated to altered drug responsiveness
is a key point in diabetes research, since it is expected to
ameliorate the therapeutic approach in a tailored manner.
However, other biological nongenetic factors can influ-
ence pharmacodynamics of OADs, such as hepatic, renal,
and intestinal functions. These considerations highlight the
importance of considering both the phenotype (clinical and
patho/physiological parameters) and the genotype of T2D
patients, in order to choose the most appropriate therapeutic
approach [5].

In the last decade, the advent of genome-wide associ-
ation studies (GWAS) has gradually shifted the genetics of
T2D to a step forward, definitely turning pharmacogenetics
into pharmacogenomics. Indeed, whereas the former mainly
focuses on single drug-gene interaction, the latter faces the
relationship among inherited nucleotide variations and drug
response, also taking into account gene expression, other
genomics features, and epigenetics factors underlying inter-
and intraindividual variability [4, 5]. Despite many GWAS
have revealed the association among genetic variants and
complex traits/diseases, many factors are still underestimated
or unexplored, clearly deserving further investigation. For
instance, a renewed interest is emerging from the so-called
“junk” DNA [8]. Indeed, it is known that the vast majority
of nucleotide variants that are associated to complex traits,
included T2D, localizes into noncoding regions.Thus, a small
fraction of intragenic and intergenic noncoding RNAs (ncR-
NAs), with still undefined regulatory functions [9, 10], may
play a role in the onset and/or progression of multifactorial
diseases. Noncoding RNAs levels may also account for the
variable drug responsiveness observed in T2D patients.

In this review, we describe the relationship between drug
responsiveness in T2D patients and SNPs, also describing
the organs that have a major role in drug metabolism
or activity (Figure 1). We also discuss the recent advance-
ments in sequencing technologies, highlighting how they
can provide significant contributions to pharmacogenomics
studies. The new technological frontiers in the identification
of allelic variants associated with altered drug responsiveness
will surely constitute a solid basis to design personalized
therapeutic approaches in T2D treatment.

2. Pharmacogenomics of Antidiabetic Drugs

Currently, the more widely used drugs in T2D treatment
are the sulphonylureas, metformin, and thiazolidinediones
(troglitazone, pioglitazone, and rosiglitazone). Figure 2
schematizes the main proteins that are involved in the
uptake and metabolism of oral antidiabetic drugs or that are
activated upon their administration.

Generally, pharmacogenetics studies consider some clin-
ical endpoints to evaluate drug responsiveness. Among them,
the achievement ofHbA1c levels<7%, as defined in the guide-
lines, and an overall reduction in HbA1c represent the most
appropriate parameters to consider inT2Dpharmacogenetics
studies [11]. Another crucial consideration is whether the
drug of interest has been used at early or late stages of the
disease, where there is a very low probability to reach a
significant therapeutic effect.

In Table 1 we summarize a schematic catalogue of SNPs
that, according to GWASs, are commonly associated to
altered drug responsiveness in T2D. In many cases, these
studies have revealed the absence of a significant association
among SNPs and the expression levels of the closest gene,
showing a wide variability. Such association studies have
also underlined the ethnic-specific expression profile of
SNPs in tissues crucially involved in glucose homeostasis
[12].

3. Impact of Polymorphisms in ABCC8,
KCNJ11, TCF7L2, CYP2C9, IRS1, and
CAPN10 Genes on Sulphonylureas Effects

Sulphonylureas (SUs) are widely used drugs in the treatment
of T2D. Despite the wide use of these drugs in the clinical
practice, different side effects, such as weight gain and
increased risk of hypoglycemia, have been frequently [13, 14].
Glibenclamide, gliclazide, glipizide, and glimepiride are the
main SUs currently used for T2D treatment [15].

All SUs bind to sulphonylurea receptor 1 (SUR1) and
enhance glucose-stimulated insulin release from the pancre-
atic𝛽-cells.Therefore, SUs act by inducing the closure ofATP-
sensitive potassium (KATP) channel through the binding
with the proteins that form it. Four K+ ions are located in
the inner pore of KATP channel, whereas outside the channel
is formed by four SUR1 molecules [16]. The ATP produced
by glucose oxidation in mitochondria causes the closure of
KATP channel with the consequent depolarization of 𝛽-cells
membrane, the increased entry of Ca2+ ions, followed by
the release of presynthesized insulin from 𝛽-cells. Ultimately,
sulphonylureas induce the closure of these channels and the
release of insulin through the binding to the specific receptor
outside the KATP channel.

Nucleotide variations in genes encoding KATP channel
proteins, such as potassium channel inwardly rectifying
subfamily J member 11 (KCNJ11) and ATP-binding cassette,
subfamily C, member 8 (ABCC8), are associated with the
onset of neonatal diabetes mellitus. Studies on SUs revealed
that these drugsmight effectively act in response to the defect
induced by KCNJ11 and ABCC8 mutations in T2D patients
[17, 18]. KCNJ11 gene encodes the potassium inward rectifier
6.2 subunit (Kir6.2) of KATP channel, which is implicated
in glucose-dependent insulin secretion in pancreatic 𝛽-
cells. GWAs have revealed a strong association between the
polymorphism rs5219 inKCNJ11 (C/T nucleotide substitution
that leads to K23E amino acid change) and T2D [19]. Indeed,
Javorsky et al. (2012) have demonstrated the impact of K23E
amino acid substitution on SUs therapeutic effects in a cohort
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Figure 1: Interactions between gene products and OADs on target organs. Genes and the related “at-risk” SNPs (in brackets) are shown in
the upper part. Arrows indicate if a SNP has a negative impact on the responsiveness to a given drug in a specific organ. Red arrows indicate
increased drug resistance (or altered drug metabolism), whereas green arrows indicate a beneficial effect of such a SNP. Dashed lines indicate
side effects of a given drug. TZD = thiazolidinedione; SU = sulphonylureas; MET = metformin.

Table 1: Schematic catalogue of SNPs commonly associated with T2D.
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Figure 2: Main proteins involved in uptake and metabolism of OADs. IR = insulin receptor; GLP-1 = glucagon-like peptide-1; SUR1 =
sulphonylureas receptor 1; Kir6.2 = potassium inward rectifier 6.2 subunit; PI3K = phosphoinositide 3-kinase; TCF4 = transcription factor 4;
RXR = retinoid X receptor; PI3K/AKT1/GSK3 = phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/glycogen synthase
kinase 3; MAPK = mitogen-activated protein kinases.

of 101 Caucasian patients. The study has revealed that “K-
allele” homozygous carriers had a higher reduction in HbA1c
levels after 6months of therapy than “EE” carriers (1.04±0.10
versus 0.79 ± 0.12%; 𝑝 = 0.036) [20]. A similar study has
been carried out also onChinese population. In this study, 100

patients were treated for 24 weeks with repaglinide [21]. The
authors have reported a significant decrease in HbA1c levels
in “EK” and “KK” patients compared to “EE” carries (“EE”:
1.52 ± 1.03%, “EK”: 2.33 ± 1.53%, and “KK”: 2.65 ± 1.73%,
𝑝 = 0.022).
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Several studies have reported that sulphonylureas (and
also glinides) are able to ameliorate, in T2D patients,
the defective insulin secretion. Nonetheless, it has been
frequently observed that long-term treatment leads to
a progressive decrease in SUs effectiveness. This phe-
nomenon might result from a progressive lack of the insulin-
producing capacity of pancreatic 𝛽-cells. In addition, SUs
have proven to be particularly beneficial if combined with
metformin, which decreases the extent of insulin resistance
[15].

Nucleotide variations in TCF7L2 gene have been widely
associated with T2D onset as well as the effectiveness in
SU treatments. Shu et al. (2008) reported that TCF7L2 is
necessary for maintaining the glucose-stimulated insulin
secretion (GSIS) and 𝛽-cell survival. Thus, variations in the
level of active TCF7L2 in 𝛽-cells may play a crucial role in
determining a progressive deficit in the insulin secretion as
well as in accelerating T2D progression [22].

T-cell transcription factor 4 (TCF4), the protein encoded
by TCF7L2 gene, is a high mobility group (HMG) box-
containing transcription factor, implicated in blood glucose
homeostasis. It acts through the binding with 𝛽-catenin
and it mediates Wnt signaling. It is also involved in pan-
creas development during embryogenesis, and it affects the
secretion of glucagon-like peptide 1 (GLP1) by L-cells in
the small intestine [23]. Two allelic variants in this gene
rs790314 and rs12255372 (C/T and G/T nucleotide variations,
resp.) have been associated with T2D. In particular, it has
been demonstrated that such variants are the most important
predictors of T2D, with a 40% increased risk per allele [24,
25]. Genetics of Diabetes Audit and Research Tayside Studies
(GoDARTS) has also revealed the relationship between these
two allelic variants and therapeutic outcomes in T2D patients
treated with sulphonylureas. The GoDARTS study enrolled
901 Scottish T2D patients carrying rs12255372, homozygotes
for TT genotype. Patients were treated with sulphonylureas
for 3–12 months and compared to individuals with the GG
genotype. The results revealed that the TT patients undergo-
ing early SUs treatment had approximately two-fold higher
probability to fail (57% versus 17% for TT versus GG resp.)
[26]. These results were confirmed by another independent
study on 101 Slovakian patients. In this study, T2D patients
were supplied six months with SUs. Patients with CT (𝑛 = 41,
HbA1c baseline 8.01 ± 0.13) and TT (𝑛 = 9, HbA1c baseline
8.06±0.27) genotypes showed a significantly lower reduction
of HbA1c levels than CC homozygous patients (𝑛 = 51,
HbA1c baseline 8.06 ± 0.14) [27].

Sulphonylureas are metabolized in the liver by the
cytochrome P450 isoenzyme 2C9, encoded by CYP2C9 gene
[28, 29]. Therefore, it is clear that some allelic variants in
CYP2C9 are likely to be associated with T2D susceptibility
and/or altered drug responsiveness to SUs. The major risk
alleles so far described for this gene areCYP2C9*2 (rs1799853,
C/T, Arg144Cys) and CYP2C9*3 (rs1057910, C/T, Ile359Leu)
[28].

GoDARTS study has highlighted for the first time also
for CYP2C9 gene the relationship between its variants and
the therapeutic response to sulphonylureas. Indeed, treating
1073 T2D patients with SUs the authors observed that 6% of

them—carrying two variant alleles (*2/*2 or *2/*3 or *3/*3)—
had a 0.5% higher reduction in HBA1c levels than *1/*1
homozygous and had 3-4 fold higher probability to reach
HbA1c levels <7% [30].

Some studies have also investigated the effects of third
generation SUs treatment (combined with metformin) in
patients with polymorphisms in CYP2C9, KCNJ11, and
ABCC8 genes. Klen et al. in 2014 have reported a study on
a cohort of 156 Slovenian T2D patients (18–72 years old)
treated with SUs monotherapy (𝑛 = 21) or in combination
with metformin (𝑛 = 135). Glucose levels were monitored
(hematic HbA1c) and patients were genotyped for rs1799853
and rs1057910 (*2 and *3 allele, resp.) in CYP2C9, for rs5219
and rs5215 in KCNJ11 and for rs757110 in ABCC8. The
study revealed that none of these SNPs significantly affected
glucose levels. Nonetheless, CYP2C9*3 genotype induced
slight hypoglycemic episodes in elderly patients (>60 years
old) treated with second-generation SUs more frequently
than third generation drugs. Specifically, such difference has
been reported for glimepiride treatment used instead of gli-
clazide, indicating that CYP2C9 genotypes are relevant to the
pharmacokinetics of sulphonylureas [31, 32]. However, the
authors could not find any association between hypoglycemic
episodes and SNPs in ABCC8 and KCNJ11 genes [33].

Additionally, a nucleotide variant (G971A) in IRS1
(Insulin Receptor Substrate 1) gene has been extensively stud-
ied due to its relation with SUs responsiveness. In particular,
experimental evidences have shown its association with an
increased risk of secondary failure to SUs treatment. The
allele frequency of this variant is 2-fold higher in patients
with secondary failure to SUs compared to T2D patients
that normally respond—in terms of glycemic control—to
oral therapy with SUs. IRS1 gene product acts to stimulate
the PI3K/AKT1/GSK3 signaling pathway and in turn glucose
transport and glycogen synthesis. The Arg971 polymorphism
decreases the phosphorylation of the substrate and allows
IRS1 acting as an inhibitor of PI3K [19, 31, 34].

Finally, there are some SNPs in CAPN10 gene, such as
rs3842570 (intronic indel), rs3792267 (intronic nucleotide
change A/G), and rs5030952 (intronic nucleotide change
C/T) that are associated to SU responsiveness inT2Dpatients.
However, the exact mechanisms that underlie such phe-
nomenon are still unknown [19].

4. Impact of Polymorphisms in SLC22A1 Gene
on Metformin Effects

Metformin is a frequently used drug in the treatment of T2D,
as much as SU. It is positively charged at physiological pH, so
it turns in hydrophilic changing its pharmacokinetic prop-
erties [35]. Metformin is not metabolized in the liver such
as sulphonylureas, but it is excreted in the urine. Therefore,
the metformin glucose lowering effect is not influenced by
genetic variants in genes encoding metabolizing enzymes.
Even in this case, pharmacogenetics has taken advantage
from GWASs to understand the impact of SNPs in genes
encoding metformin transporters on its clinical effects.
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Zhou et al. performed a GWAS analyzing about 700K
polymorphisms in 1024 patients treatedwithmetformin, sub-
sequently to GoDARTS [36, 37]. Researchers usedGoDARTS
and United Kingdom Prospective Diabetes Study (UKPDS)
populations for genotyping purposes and obtained the same
results [5]. In particular, they demonstrated that nucleotide
variations in genes involved in DNA repair and cell cycle
control determine altered response to metformin, in terms
of glycemic response [37] and considering HbA1c < 7% as
treatment achievement. Among them, SLC22A1 is the most
studied gene, as it is involved in the response to metformin. It
encodes the organic cation transporter 1 (OCT1). Shu et al.
(2008) analyzed the effect of SLC22A1 gene allelic variants
on plasma glucose levels after metformin administration
in animal models and healthy volunteers. They identified
four polymorphisms in this gene that are associated to
T2D susceptibility, that is, R61C, G401S, 420del, and G465R
(details about these nucleotide variants are reported in
Table 1). Interestingly, they found that glucose lowering was
compromised in presence of these SNPs [38, 39].

Moreover, R61C and 420del have been extensively studied
since these are the most frequent allelic variants in the Cau-
casian population. The presence of R61C amino acid change
has been demonstrated to determine a reduced expression of
OCT1 protein [40].

Interestingly, Christensen et al. studied the effect of eleven
polymorphisms in genes encoding other membrane trans-
porters, in association with their effects on plasma glucose
levels in 151 T2D patients [41]. Metformin was provided
to these patients after insulin treatment. They found that
420del carriers had a more significant decrease in glucose
plasma level—after the assumption ofmetformin—compared
to noncarriers [41], indicating a beneficial effect of such SNP
on metformin activity.

The frequency occurrence of R61C and 420del in the
Asiatic population is lower than in Caucasians, and none
of the SLC22A1 polymorphisms has been associated with
a reduced transporter activity [42]. Interestingly, in this
population, the genetic variants in SLC22A2 gene (encoding
OCT2) seem to have a stronger association with metformin
responsiveness compared to SNPs in SLC22A1 [5].

5. Pro12Ala Polymorphism in PPARG and
Responsiveness to Thiazolidinediones

The nuclear receptor Peroxisome Proliferator-Activated
Receptor (PPARG) is a transcription factor that plays a
relevant role in glucose and lipid metabolism. It is able to
activate the transcription of several metabolic target genes,
such as lipoprotein lipase, fatty-acid transcript protein, and
aquaporin, which mediate triglyceride hydrolysis, fatty acid,
and glycerol uptake [43, 44]. PPARG is a master gene of
adipogenesis, and its functions are very complex due to
the huge number of target genes, ligands, and coregulators
(coactivators or corepressors) and to the presence of
several isoforms, even with opposite or dominant negative
activity [44, 45]. Indeed, different studies have revealed the
presence of a relevant number of PPARG transcripts, strongly

suggesting that alternative splicing has an important role in
the functioning of such a nuclear receptor [44, 45].

In the last decade, PPARG polymorphisms—both in
coding and regulatory regions—have been largely analyzed
for their possible association to pathologic phenotypes, such
as T2D [46–49].

One of the most studied polymorphisms is Pro12Ala
(rs1801282), frequently associated with clinical consequences
and alterations of the physiological metabolic status [44].
The amino acid modification has been predicted to be
responsible of a significant change in the secondary structure
of the protein. Thus, it might also affect its functionality
[50]. Phenotypically, Pro12Ala has been associated with a
decreased risk of T2D, even though conflicting results have
been reported in the literature [51, 52]. A study by Hara et al.
has shown the association between Pro12Ala and a reduced
risk of developing T2D.The authors performed a case-control
study on 415 diabetic subjects and 541 nondiabetic subjects in
the Japanese population (>60 years old). They revealed that
Pro12Ala frequency was significantly lower in the diabetic
(0.018, 𝑝 < 0.005) compared to the nondiabetic group (0.043,
𝑝 < 0.005). In detail, T2D individuals carrying Pro/Pro allele
were 400 (96.4%), whereas Pro/Ala-Ala/Ala were 15 (3.6%);
conversely, nondiabetic patients carrying Pro/Pro allele were
496 (91.7%); instead Pro/Ala-Ala/Ala were 45 (8.3%) [53].

These results are not in agreement with the Finnish
Diabetes Prevention Study (FDPS) [54]. Indeed, in this study,
522 individuals with impaired glucose tolerance (IGT) were
analyzed after placebo assumption and lifestyle intervention.
At the same time, some clinical parameters (weight gain,
waist, and hip circumferences, etc.) have been measured in
these patients enrolled for the study. A two-fold increase in
the risk of developing T2D was reported for Ala carriers in
the placebo arm when compared to Pro/Pro homozygous.
Moreover, weight gain has been identified as predictor for
T2D development, and it has been associated with Pro12Ala
SNP Indeed, Ala/Ala homozygous patients were more obese
than Pro/Pro homozygous ones. The therapeutic response in
presence of Pro12Ala variant has been also evaluated. Such
evaluation is crucial to design optimal therapeutic strategies
for T2D treatment [55].

A study by Hsieh et al. on 250 diabetic patients (120 men
and 130 women) has recently demonstrated the association
between Ala allele and a stronger reduction of HbA1c and
fasting glucose plasma levels after treatment with thiazo-
lidinediones (TZD; such as pioglitazone, troglitazone, and
rosiglitazone). These patients assumed 30mg/day of piogli-
tazone for 6 months. One hundred fifty-four patients out
of 250 (61.6%) positively responded to the treatment. Levels
of HbA1c were 8.56÷1.79 for responders and 8.24÷1.88 for
nonresponders (𝑝 = 0.179) [56]. These findings were further
confirmed by a study of Kang et al. (198 diabetic patients) in
which 183 T2D patients carried Pro/Pro, 15 carried Pro/Ala,
and none of themwas Ala/Ala.The diabetic patients carrying
Ala12 allele had a higher decrease in fasting glucose plasma
levels than Pro/Pro individuals (50.6 ± 27.8mg/dL versus
24.3 ± 41.9mg/dL, 𝑝 = 0.026) [57].

Moreover, a study by Blüher and colleagues [58] that
enrolled 131 T2D patients revealed no significant differences
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between Pro/Pro homozygous and Ala carriers in terms of
TZD response (defined as HbA1C levels >15% and/or fasting
blood glucose decrease>20%after 12 or 26weeks of treatment
with pioglitazone). Furthermore, a larger study, performed
on 340 T2D patients, revealed that Pro12Ala is not correlated
with any significant difference in troglitazone response [55].

Despite these conflicting results, the association between
Pro12Ala polymorphism and TZD responsiveness has to be
still investigated at the molecular level. Indeed, the causal
relation between this SNP and the altered TZD response
has to be functionally proven yet. Notably, TZD have been
frequently described to cause significant side effects. Indeed,
troglitazone has been recently withdrawn from sale world-
wide due to clinical cases of liver damage. Rosiglitazone
has been withdrawn from sale in Europe and put under
restriction in USA, due to its increased cardiovascular risk
associated with its administration [5]. In August 2008, the
American Food and Drug Administration recommended
monitoring patients under TZDs treatment for increased
risk of myocardial ischemia, whose association has been
found in several studies [59]. Thus, in light of these con-
siderations, it is particularly relevant to assess, by targeted
pharmacogenomics studies, whether TZD side effects may
derive from genotype-based differential drug responsiveness.
Such consideration holds true also for previously described
drugs, commonly used to treat T2D and its complications.

6. Next-Generation Sequencing and Diabetes

In the last few years, genotyping and transcriptomics-based
studies have gradually shifted from hybridization-based to
sequencing-based approaches. Indeed, thanks to the intro-
duction of Next-Generation Sequencing (NGS) technique
and of new advanced sequencing platforms, a growing
number of studies have shown how polymorphisms can
affect gene expression variation among populations [38, 60].
These findings have confirmed that GWAS alone cannot
completely capture the complexity of T2D and other multi-
factorial diseases. Indeed, in the absence of functional studies
the potential causative role of SNPs in complex diseases
susceptibility is only predictable. Clearly, the combination of
different NGS applications (such as RNA-, ChIP-, and DNA-
Seq) may help clinicians to dissect the genetic and epigenetic
complexity that underlies complex traits/diseases, as well as
cancer [61].

Currently, NGS is the most common and powerful
approach for genome sequencing, for gene expression studies
and to study epigenetic marks. In the last years, this sequenc-
ing technology has dramatically reduced the experimental
costs, significantly increasing the amount of data output.
Among its applications, RNA-Seq has provided a significant
improvement in transcriptome analysis, thanks to its ability
to detect and quantify low expressed genes, alternative
splicing events, posttranscriptional RNA editing, and SNPs
expression [60, 62] thanks to the type of sequence (read
length), the sequence quality, the high throughput, and its low
cost [63].

Notably, as widely discussed in this review, SNPs have
been associated with individual pharmacotherapy response.

In this light, NGS technology is an optimal candidate to
simultaneously explore SNPs and gene expression on a
widespread scale. NGS-based studies have been recently
performed in animal models to explore the alteration of
immunologic and metabolic functions in diabetes. Using
RNA-Seq, Kandpal and colleagues investigated the retinal
transcriptome of streptozotocin-induced diabetic mice to
assess the efficacy of two candidate drugs. Through this
approach they found differentially expressed transcripts and
quantified the relative abundance of “drug-induced” isoforms
after treatment with inhibitors of the advanced glycation end-
product receptors and p38 MAP kinase [64]. Similarly, using
RNA-Seq to profile human pancreatic islets transcriptome,
Eizirik and colleagues revealed that most of candidate gene—
identified by GWASs as associated with T1D susceptibility—
are expressed in human pancreatic islets and are significantly
altered after inflammatory stimuli [65]. Due to the higher sen-
sitivity compared to hybridization-based approaches, RNA-
Seq has been also used to identify new transcripts potentially
implicated in diabetic nephropathy [66].

However, despite the fact that these pioneer studies have
started to highlight the potential of NGS for this kind of
analyses, to date none of these has still faced the relationship
between SNPs and drug responsiveness in T2D patients.

7. Conclusions

Since a growing number of studies are pointing out the role
of ncRNAs into human diseases, NGS could significantly
help researchers to improve the knowledge about SNPs, drug
response and the noncoding fraction of the human genome
[67, 68].

To the best of our knowledge, any systematic analysis
of SNPs in regulatory regions that may affect (abrogate or
create) new binding sites for microRNAs (miRNAs) and
transcription factors and/or affect nucleotide methylation or
chromatin remodeling has not yet been described. In light
of this consideration, the usage of NGS to explore this new
potential avenue appears crucial (Figure 3).

Overall, we predict that NGS will significantly improve
the identification of genetic variants associated with altered
drug responsiveness in T2D and that a systematic investi-
gation of how these variations affect gene expression and
epigenetic mechanisms is expected to guide better drug use
in clinic [62].
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[28] J. Kirchheiner, J. Brockmöller, I. Meineke et al., “Impact of
CYP2C9 amino acid polymorphisms on glyburide kinetics and
on the insulin and glucose response in healthy volunteers,”
Clinical Pharmacology andTherapeutics, vol. 71, no. 4, pp. 286–
296, 2002.

[29] J. Kirchheiner, S. Bauer, I. Meineke et al., “Impact of CYP2C9
and CYP2C19 polymorphisms on tolbutamide kinetics and the
insulin and glucose response in healthy volunteers,” Pharmaco-
genetics, vol. 12, no. 2, pp. 101–109, 2002.

[30] K. Zhou, L.Donnelly, L. Burch et al., “Loss-of-functionCYP2C9
variants improve therapeutic response to sulfonylureas in type
2 diabetes: a go-DARTS study,” Clinical Pharmacology and
Therapeutics, vol. 87, no. 1, pp. 52–56, 2010.

[31] C. L. Aquilante, “Sulfonylurea pharmacogenomics in Type
2 diabetes: the influence of drug target and diabetes risk
polymorphisms,” Expert Review of Cardiovascular Therapy, vol.
8, no. 3, pp. 359–372, 2010.

[32] H.-D. Yoo, M.-S. Kim, H.-Y. Cho, and Y.-B. Lee, “Population
pharmacokinetic analysis of glimepiride with CYP2C9 genetic
polymorphism in healthy Korean subjects,” European Journal of
Clinical Pharmacology, vol. 67, no. 9, pp. 889–898, 2011.
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