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Platyrrhine color signals: New horizons to pursue
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Abstract

Like catarrhines, some platyrrhines show exposed and reddish skin, raising the possi-

bility that reddish signals have evolved convergently. This variation in skin exposure

and color combined with sex-linked polymorphic color vision in platyrrhines presents

a unique, and yet underexplored, opportunity to investigate the relative importance

of chromatic versus achromatic signals, the influence of color perception on signal

evolution, and to understand primate communication broadly. By coding the facial

skin exposure and color of 96 platyrrhines, 28 catarrhines, 7 strepsirrhines,

1 tarsiiform, and 13 nonprimates, and by simulating the ancestral character states for

these traits, we provide the first analysis of the distribution and evolution of facial

skin exposure and color in platyrrhini. We highlight ways in which studying the pres-

ence and use of color signals by platyrrhines and other primates will enhance our

understanding of the evolution of color signals, and the forces shaping color vision.
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1 | INTRODUCTION

Colorful visual signals, their evolution, and their role in communication

within and between species have captivated biologists for centu-

ries.1,2 While bold and high-contrasting colors and patterns are seen

throughout diverse animal taxa (e.g. velvet ants [Dasymutilla

occidentalis],3 strawberry poison-dart frog [Oophaga pumilio],4 and

glass eye squirrel fish [Heteropriacanthus cruentatus]5), these signals

are typically aposematic in function.6 Yet some taxa make extensive

use of color for intraspecific social and sexual signaling.7,8 Arguably

the most visually striking of all taxa, the birds are well known for using

complex color patterns in their plumage—or more rarely, skin—

combined with other signals in conspicuous multimodal displays that

often seem to be evaluated by conspecifics and used in female mate

choice.9–13 While most mammals are typically dull in coloration, non-

human primates (hereafter, primates) are one obvious exception.

Unlike other large mammals, primates often exhibit conspicuous color

patterns, most especially on their faces and rumps. A role of colorful

signals among primates is perhaps unsurprising, given that visual com-

munication is extensively used in this clade, which exhibit large eyes,

high visual acuity, and a heavy reliance on the visual sense for daily

activities.14,15 Primate skin coloration appears to be of exceptional

comparative interest. Unlike in birds, in which coloration is often a

product of female mate choice for male ornamentation, in primates,

colors seem more commonly linked to male–male competition, and

status signaling (e.g. vervet monkeys16; geladas17; drills18; mandrills19).

Nonetheless, a number of species appear to show traits that are pri-

marily under intrasexual selection and associated with male–male sig-

naling, but that might be secondarily under intersexual selection as

mate choice ornaments (e.g., mandrills19,20), or conversely, primarily

under intersexual selection as mate choice ornaments, but secondarily

under intrasexual selection and associated with male–male signaling

(e.g., male rhesus macaques21,22). Together, this provides a unique and

exciting opportunity to investigate total sexual selection—how
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multiple mechanisms of sexual selection are acting in concert or

antagonistically on the same trait.23 Additionally, unlike clades like

birds, in which all diurnal species are thought to be tetrachromatic,

primates exhibit great intraorder diversity in color perception.24 Pri-

mates also exhibit a stunning range of social organizations, and mating

systems, including monogamy, polygyny, polyandry, and polyg-

ynandry. The latter includes extreme interspecific variation in the dis-

tribution of matings and genetic reproduction.25

Understanding the evolutionary selective pressures acting on

color variation of the faces, genitals, hindquarters, and elsewhere,

within and between primate species has long been of interest to evo-

lutionary biologists and anthropologists, dating back to Darwin.1,26

However, with few recent exceptions,27–29 the vast majority of

research has focused on one particular taxonomic lineage, the African

and Asian monkeys (part of the Parvorder Catarrhini).30 A more com-

prehensive understanding of primate color variation—as well as a

broader intraorder comparative framework for interpreting the radia-

tion of catarrhine color patterns, is currently lacking. Our aim here is

to highlight the potential of the other major diurnal radiation of

haplorhine primates, the platyrrhines (monkeys inhabiting Mexico,

Central, and South America), for new studies of visual communication,

which are likely to offer new insights into our understanding of sexual

selection and communication in primates.

2 | SKIN COLOR AND EXPOSURE IN
PRIMATES: ROLES IN VISUAL
COMMUNICATION

Catarrhine primates are well known to possess large patches of

exposed skin on their faces and hindquarters, and to possess skin

color that varies in response to fertility, pregnancy, and other repro-

ductive phases, as well as social status.31 In addition to chroma (the

hue and saturation components of color), patterns of luminance varia-

tion is a frequent but often underemphasized component of color sig-

naling in catarrhines.32,33 Chromatic and achromatic components of

signals seem to have different mechanisms of inheritance34 but often

covary.35 For example, red male rhesus macaques (Macaca mulatta)

receive more sexual solicitations by more females than pale pink

males, suggesting the potential importance of both chroma and lumi-

nance.21,36 A now impressively large body of work has focused on the

reddish and other colorful signals of African and Asian primates, and

their roles in socio-sexual communication (Table 1).

Facial skin that is distinctly reddish and/or exhibits large lumi-

nance contrast relative to surrounding pelage is also present in the

other major radiation of haplorhine primates, the monkeys of Mexico,

Central and South America (Parvorder Platyrrhini) (Figure 1). Intrigu-

ingly, a wide diversity of social systems occurs in platyrrhines, includ-

ing polyandry and monogamy, begs investigating the impact of mating

systems on signal evolution. However, comparative studies of platyr-

rhine coloration are almost absent in the literature. The only study

investigating intraspecific skin color variation in platyrrhines demon-

strates that female genital skin color (luminance and hue) varies across

pregnancy and parturition in common marmosets (Callithrix jacchus).62

It is possible that this color variation is a nonadaptive by-product of

hormonal variation with no signaling purpose.63,64 Alternatively skin

color may be part of a suite of sensory cues associated with triggering

preparation for male care,65 or female reproductive suppression.66

Although speculative, this work calls attention to the potential for

intraspecific skin color signals in platyrrhine monkeys and highlights

the need and potential for color signal studies within this clade.

In addition to color variation, the extent of exposed skin among

the monkeys of the Americas ranges from the most extensive seen in

the order (bald uakaris [Cacajao calvus]) to a complete absence of

exposed skin (e.g. moustached tamarins [Saguinus mystax]). The

increased surface area of exposed skin in African and Asian monkeys

has been hypothesized to enhance communication based on skin

color signals.31,67 However, causal explanations are only supported if

they are both explicable and predictable—that is, they demonstrate

regularity and independence in their evolution in response to similar

selective conditions.68 The platyrrhines provide an independent test

of the hypothesis that the amount of exposed facial and genital skin is

evolutionarily plastic, and when present, used in socio-sexual commu-

nication. To be convergent with catarrhines, we would expect

increased facial skin exposure to have evolved independently in plat-

yrrhine species that use colorful skin signals.

3 | EVOLUTION OF SKIN COLOR AND
EXPOSURE IN PLATYRRHINE MONKEYS:
A CHARACTER MAPPING APPROACH

To motivate future studies of visual signals and their role in communi-

cation among platyrrhine primates, we here provide the first analysis of

exposed facial skin, variation, distribution, and evolution in Platyrrhini.

Concordantly, we aim to uncover patterns underlying red, conspicuous

skin. Because a dataset of color-calibrated images across the platyr-

rhines is not yet available, our analysis is color-subjective. We analyzed

two to five forward-facing images found in a current encyclopedia of

living primate species69 and from online image libraries (Table S1). We

quantified facial skin exposure and color for 96 platyrrhines, and for

comparative purposes, 28 catarrhines, 7 strepsirrhines, 1 tarsiiform, and

13 nonprimate outgroups. Coding of skin color and exposure was done

independently by L.A.A.M. and G.D. In case of any discrepancy, we

recoded the images together to reach consensus. We did not include

Homo sapiens in our analyses because of high intraspecific phenotypic

variation and numerous derived features.

We created five categories to code patterns of increasing surface

area of exposed facial skin: (a) completely exposed skin (cheeks, nose,

eyes, forehead [Figure 2a,b]); (b) exposed skin around the eyes, nose

and mouth [Figure 2c,d]; (c) exposed skin around the nose and eyes, or

exposed skin around the nose and mouth [Figure 2e,f]; (d) exposed skin

around eyes [Figure 2g,h]; and (e) exposed skin around the nostrils

[Figure 2i,j]. We coded for skin color using established categories29:

(a) depigmented (white skin [Figure 3a]); (b) hypervascularized (red skin

[Figure 3b]); (c) mottled (depigmented skin with very small pigmented
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TABLE 1 Studies conducted on primate coloration in relation to social and sexual selection in Catarrhini (African and Asian) and Platyrrhini
(Mexican, Central, and South American) monkeys

World region Species studied Conclusions Study methods Reference

Africa and Asia Rhesus macaque

(Macaca mulatta)

Females show a peak in skin coloration

during the ovarian cycle

Free-ranging and captive; color charts;

color scores

37

Females exhibit preferences for the red

version of male faces

Free-ranging; behavior experiment with

color-manipulated digital images of

faces

38

Males display longer gaze durations in

response to reddened versions of females’
hindquarters, but not to reddened versions

of faces

Free-ranging; behavior experiment with

color-manipulated digital images of

faces

39

Females had longer gaze durations toward

red in comparison to nonred females

faces and hindquarters

Pregnancy coloration might be an attention-

grabbing stimulus to males

Free-ranging; behavior experiment with

color-manipulated digital images of

faces and hindquarters

Free-ranging; behavior experiment with

color-manipulated digital images of

faces

40

41

Facial skin color covaries with the timing of

the fertile phase of the menstrual cycle

Free-ranging; digital photography;

objective measure of color

42

Facial skin luminance covaries with the

timing of the fertile phase of the menstrual

cycle

Free-ranging; digital photography;

species-specific visual models

43

Males distinguish ovulatory from

preovulatory faces, but familiarity seems to

be important to perceive signals related to

reproductive status

Free-ranging; behavior experiment with

printed color-calibrated images of

faces

44

No evidence that skin coloration is related to

male dominance rank or used in female

mate choice

Free-ranging; digital photography;

species-specific visual models

35

Dark red males receive more sexual

solicitations, by more females, than pale

pink ones

Free-ranging; digital photography;

species-specific visual models and

behavior assessment

21

Adult females and males looked longer at

dark male faces compared with pale pink

ones

Free-ranging; behavior experiment with

printed color-calibrated images of

faces

36

Trichromacy confers a better ability to detect

meaningful variation in primate face

coloration than dichromacy does

Digital images of free-ranging rhesus

macaques; species-specific visual

models

45

Japanese macaque

(Macaca fuscata)

Degree of facial redness and occurrence of

copulation were closely synchronized

during the ovarian cycle and peaked

around ovulation

Female facial skin coloration triggers male's

selective behavior

Wild; subjective color scores

Free-ranging; behavior experimentwith

color-manipulated digital images of faces

46

47

Facial luminance decreases between the pre-

conceptive month to the pregnancy period

Free-ranging; digital photography;

species-specific visual models

48

No evidence that female facial color is an

indicator of age, dominance rank, parity or

health

Free-ranging; digital photography;

species-specific visual models

49

Mandrill (Mandrillus

sphinx)

The increase in redness of the sexual skin on

the face and genitalia of males is related to

social rank

Semi free-ranging; color charts; color

scores

50

Females show preference for brightly colored

males, independent of dominance rank

Semi free-ranging; color charts; color

scores

20

Males may use red coloration to facilitate the

assessment of dominance and

subordination

Semi free-ranging; color charts; color

scores

19

(Continues)
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TABLE 1 (Continued)

World region Species studied Conclusions Study methods Reference

Color is not related to female rank or quality

but may be a signal of reproductive quality

Semi free-ranging; digital photography;

objective measure of color

51

Male facial redness is likely to reflects an

honest signal of androgen status,

competitive ability and willingness to

engage in fights

Semi free-ranging; digital photography;

objective measure of color

52

Red coloration is unrelated to parasitism and

hematological parameters in male and

females

Semi free-ranging; digital photography;

objective measure of color

53

No relationship between red color and

glucocorticoid levels

Semi free-ranging; digital photography;

objective measure of color

54

Facial color increases with fecal androgen

concentrations across females

Semi free-ranging; digital photography;

objective measure of color

55

Drill (Mandrillus

leucophaeus)

Male coloration indicates rank status. Semi free-ranging; digital photography;

objective measure of color

18

Baboon (Papio sp.) Skin color is not related to menstrual cycle

but is influenced by parity

Captive; color charts; color scores 56

Skin color is not related to the timing of

ovulation but may contain information

about female parity

Wild; digital photography; objective

measure of color

32

Skin color is uninformative concerning the

intracycle probability of fertility

Semi free-ranging; digital photography;

objective measure of color

57

Gelada

(Theropithecus

gelada)

Red chest is a signal of one male unit holding

status

Wild; digital photography; objective

measure of color

17

Black-and-white

snub-nosed

monkey

(Rhinopithecus

bieti)

Lip redness increases with age and in the

mating season

Semi-provisioned; digital photography;

objective measure of color

33

Vervet monkey

(Cercopithecus

sp.)

Genital coloration is associated with

intermale agonism; regulates the behavior

of male competitors and may facilitate the

evolution of multimale social system

Males with darker scrotal color dominate

males with pale scrota

Free-ranging and captive; subjective

color scores

Captive; color charts; color scores; color

manipulation and behavior

assessment

16

58

Females pay attention to male coloration, but

do not bias their interactions towards

males solely based on coloration

Scrotum color varies between species;

However, color variation may function as

an age-related signal to all species. Color is

also related to morphological features

(canine and body length)

Captive; color charts; color scores; color

manipulation and behavior

assessment

Free-ranging and captive; digital

photography; objective measure of

color

59

60

Sanje mangabey

(Cercocebus

sanjei)

Increase of skin luminance during ovulation

period but not during gestation

Wild; subjective color scores 61

Mexico,

Central and

South

America

Common marmoset

(Callithrix jacchus)

Skin chroma and luminance varies during the

weeks surrounding parturition

Captive; spectrometry; species-specific

visual models

62
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patches [Figure 3c]); and (d) hyperpigmented (dark skin [Figure 3d]). We

then performed an ancestral state reconstruction by mapping the facial

exposure (Figure 4) and color traces (Figure 5) on a current phylogenetic

tree (auto-correlated rates, soft-bounded constraints).70,71

The ancestral character states for skin exposure (continuous trait)

were simulated using the Maximum Likelihood method. We tested

three models of evolution: Brownian Motion (BM), Ornstein-

Uhlenbeck (OU), and Early Burst (EB), before selecting the best-fitting

model (OU). Skin exposure evolution was plotted using the phytools

contMap function in R.72 Because the evolutionary history of mon-

keys in the Americas is still debated, we repeated our analyses across

multiple potential phylogenies (Figures S1 and S2).73,74 We inferred

the evolutionary history of skin color (discrete trait) using a stochastic

mapping approach implemented in the R phytools package.72 The

ancestral states at each node were estimated under three basic

models: equal rates (ER), all rates different (ARD), and symmetrical

transition rate (SYM). The best model fitting (ER) was selected and

1,000 character histories were simulated across the phylogeny using

the phytools make.simmap function in R version 3.5.2.75

Our results indicate that exposure of facial skin is an evolutionarily

plastic trait, with shifts from relatively hairy to relatively exposed skin

and vice versa being relatively common among platyrrhines (Figure 4).

The last common ancestor (LCA) of catarrhines and platyrrhines is

reconstructed to have predominantly exposed skin, that is, exposed

skin around the eyes, mouth, and nose. Many species of platyrrhines

possess a lesser amount of exposed skin than catarrhines. Yet, there

are radiations of platyrrhines with facial skin that is largely to entirely

exposed (Figure 4). Increases in exposed facial skin appear to have

evolved independently in platyrrhines at least five times. We see this

trait in the genus Saguinus, and among the Atelidae family, with inter-

esting variation within the genus Cacajao. There is also considerable

exposed skin within the genera Cebus and Sapajus, and the cal-

litrichids, including some but not all species of Callithrix, some

Saguinus, and all examined members of the genus Leontopithecus

(Figure 4). Interestingly, some lineages including the genus Pithecia

and the white-nosed saki (Chiropotes albinasus) seem to have experi-

enced re-covering of the face in hair. Faces covered by hair are

reconstructed as ancestral for strepsirrhines, although at least one

genus (including nine species) Propithecus, has exposed facial skin.

Turning to chroma, we find a conspicuous reddish patch is present

on the nose of the (seemingly inappropriately named) white-nosed

saki (Chiropotes albinasus), and for at least four species (bald uakaris

[Cacajao calvus], red-faced spider monkeys [Ateles paniscus], black-

faced spider monkey [Ateles chamek], and white-cheeked spider mon-

key [Ateles marginatus]) the facial skin is predominantly red (Figure 5).

Both bald uakaris and red-faced spider monkeys are also among those

with the most exposed facial skin, consistent with the hypothesis that

the evolution of exposed faces and red signals are correlated.31 How-

ever, it is important to note that while this relationship occurs, many

species with completely or predominantly exposed skin do not have

red pigmentation, highlighting the presence of considerable variation

(e.g., Saguinus bicolor; Figures 4 and 5).

Our results are robust to phylogenetic uncertainty, that is, we

come to similar conclusions when the models are run with different

phylogenies (Figures S3 and S4). Overall, we demonstrate that there is

extensive variation among platyrrhines in the presence of exposed

facial skin, and high potential for reddish color signals. We suggest this

group offers great promise for studies that mirror the research pro-

grams that have been undertaken to examine skin signal evolution in

other taxa.

The analyses we present here consider only facial skin, as the

diagnostic images of faces are more readily available for many spe-

cies. However, like many African and Asian primates, the genital

skin of at least some Central and South American monkeys is

exposed, visible, and of high visual (luminance) contrast to body pel-

age (Figure 6). In some species of catarrhines, color is expressed on

both the face and genitals, and this color variation is often corre-

lated (e.g., rhesus macaques35; drills18). However, other species only

exhibit conspicuous color on the genitals (e.g. vervet monkeys16).

Variation in the conspicuity of genital skin among platyrrhines sug-

gests that there may be convergent evolution on such traits, and

that studies of inter- and intra-specific variation in genital color

alongside studies of face color are likely to be fruitful.

F IGURE 1 Examples of exposed
facial skin in platyrrhine monkeys.
Golden lion tamarins (Leontopithecus
rosalia, a); red-faced spider monkey
(Ateles paniscus, b); and bald-headed
uakari (Cacajao calvus, c). Photo
credits: Jeroen Kransen (a), Dan Sloan
(b), and Marc Wisniak (c)
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4 | COLOR VISION AND OPSIN GENE
DIVERSITY

Characteristics of the color vision system are of critical importance to per-

ception and interpretation of visual signals.76 Intriguingly, while catarrhine

and platyrrhine primates share many aspects of their visual systems, there

are important differences in their abilities to perceive color. Catarrhine pri-

mates have a uniform ability to discriminate among long-wavelength hues

(shades of red, orange, yellow, green) due to the duplication and diver-

gence of an ancestral OPN1LW opsin gene.45,77–79 Among platyrrhines,

color vision is considerably more variable. Due to a uni-locus OPN1LW

polymorphism, all males and homozygous females have dichromatic (red-

green colorblind) vision, while a subset of females are heterozygous and

have trichromatic color vision. This variation has important consequences

for the perception of natural stimuli, including socially relevant scenes.45

To illustrate this impact of color vision type, we present an image of a

female macaque with reddish facial skin as simulated for a trichromatic

conspecific, and a hypothetical dichromatic observer (Figure 7). Accord-

ingly, concomitant with studies of skin color variation in platyrrhines

should be an assessment of species-specific color vision, and development

of species-specific and individual-specific models of skin conspicu-

ity.21,35,43,48,49 Given the wide range of mating systems seen in platyr-

rhines, this group provides an unprecedented opportunity to ask

questions about the role of skin chroma and luminance in attracting mates

and competing with same-sex conspecifics when communication may be

occurring between individuals with different color perception systems.

With few exceptions81,82 the entire body of work on platyrrhine

color vision has assessed color vision variation through the lens of

potential foraging adaptations. Although color vision has been linked

to food detection and feeding efficiencies,83–86 without an assess-

ment of possible roles of color in socio-sexual signaling, it is challeng-

ing to thoroughly assess the relative importance of diet in influencing

color vision evolution. The sole study along this vein reveals excep-

tionally high frequencies of opsin polymorphism in uakari monkeys,

thus presumably increasing the number of trichromatic females in the

population; the high opsin diversity of this species might be linked to

sexual selection and mate choice.81 Evaluating the diversity of opsin

genes in other species with potential reddish signals, such as the red-

faced spider monkeys and the white-nosed saki, would provide an

independent test of this hypothesis.

F IGURE 2 Examples of categories of exposed skin in primates.
Completely exposed face (cheeks, nose, eyes, forehead), a, b);
exposed skin around the eyes, nose, and mouth, c, d); exposed skin
around the nose and eyes; or exposed skin around the nose and
mouth, e, f); exposed skin around eyes, g, h); exposed skin around the
nostrils, i, j). Photo credits: Marc Wisniak (a), Zyance (b), David
M. Jensen (c), David V. Raju (d), Frank Wouters (e), Fabio Manfredini
(f), Leszek Leszczynski (g), Halley Pacheco de Oliveira (h), Brocken
Inaglory (i), and Jik jik (j)
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5 | NEW HORIZONS TO PURSUE AND
CHALLENGES TO OVERCOME

Studying skin chroma and luminance variation in platyrrhines, alongside

other understudied taxa (strepsirrhines, hylobatids), will add to the wealth

of information now available for catarrhines and enable us to answer new

questions about the variation and evolution of primate color signals. For

example, this framework will promote tests of potential convergence in

the evolution of color signals among distantly related species, and improve

our ability to assess the socio-sexual, ecological, and perceptual variables

that shape the emergence, persistence, and form of different traits.

Research questions could include the role of skin signals in male–male

competition, mate choice, color signals as potential condition indicators,

and the heritability of color traits, and their relationship to fitness. We

suggest that studies in these areas should aim to: (a) document skin signal

variation, (b) understand the genetic and physiological mechanisms

involved in the production of skin color, (c) understand the relationship to

behavior and/or biologically important traits such as ovulation, and (d) test

these signals experimentally back to live animal receivers. The impressive

array of work done on catarrhine primates, for which numerous viable

methods have been developed (Table 1), provides excellent templates for

such studies.

We hypothesize that luminance and/or chromatic variation is involved

in socio-sexual communication for at least some species of platyrrhine pri-

mates. Specifically, we predict that color variation of facial or genital skin

plays a role in communication for species with exposed faces and genitals.

If socio-sexual communication among females along the red-green chan-

nel is important, then those taxa are predicted to have greater numbers of

opsin alleles and higher instances of trichromacy. By genotyping the

OPN1LW opsins of platyrrhine primates with reddish, exposed faces,

along with closely related species without red faces or patches, the

hypothesis that red and visible facial skin is associated with increased

diversity of opsin alleles in platyrrhines can be tested. It is of particular

interest to note that among monkeys in the Americas, females may have

a private color channel due to the sex-linked nature of color vision varia-

tion in platyrrhines. A private channel is a signaling channel that only a

subset of potential receivers can see. This has been suggested, for exam-

ple, for bird UV signaling, which is visible to other birds, but not visible to

mammalian predators.87 This terminology is also used commonly in the

multimodal signaling literature, where signals expressed in different sen-

sory channels are potentially available to different types of receivers.88

Redness may plausibly be a female–female specific signal of competitive

ability, fertility and/or dominance, although some female observers may

be excluded. If platyrrhine species are found to have reddish skin signals,

and if there is evidence of trichromatic advantage in fitness, this may point

to a role of heterozygote advantage in the socio-sexual domain as a

mechanism of balancing selection acting in these species. Such studies are

therefore poised to make important contribution to our understanding of

the diversity of evolutionary processes maintaining genetic variation.

In studies of the evolution of platyrrhine color vision, we urge a

more holistic approach that integrates the role of natural selection in

foraging and predator detection strategies with pressures linked to sex-

ual selection and socio-sexual communication. For example, species that

are less reliant on cryptically colored foods, for which dichromacy is

advantageous,83,89 may have higher rates of opsin polymorphism, and

greater opportunity for the evolution of reddish signals in social and sex-

ual contexts. This scenario has been hypothesized to be a possible

explanation for the highly polymorphic opsins of uakaris,81 but has not

been systematically examined in any species. Similarly, if luminance is a

salient and important channel for visual signals, selective pressure to

communicate may impact balancing selection acting on opsin genes by

favoring dichromatic phenotypes, as trichromatic color vision may

corrupt perception of the luminance channel, which may in turn impact

foraging ecology.76 Howler monkeys (Alouatta sp.), whose routine

trichromacy has evolved independently from that of catarrhines, and

monochromatic owl monkeys (Aotus sp.) may provide unique test cases

that generate new insight into primates color vision evolution.86,90

Finally, we note that it is important to explicitly evaluate female–female

signaling, male–male signaling, female-to-male signaling, and male-to-

female signaling separately in platyrrhines, given the sex-linked nature

of color vision variation.

Challenges to studying skin color signals in platyrrhines include:

(a) difficulties in measuring coloration of small, highly arboreal pri-

mates; (b) finding appropriate populations for testing attention to

F IGURE 3 Examples of categories of skin color in primates.
Depigmented (Cebus capucinus), a); hypervasculated (Cacajao calvus),
b); mottled (Brachyteles hypoxanthus), c); hyperpigmented (Alouatta
pigra), d). Photo credits: Steven G. Johnson (a), Kevin O'Connel (b),
Peter Schoen (c), and Dave Johnson (d)
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F IGURE 4 Ancestral state reconstruction of skin exposure visualized on a phylogeny of primates using Maximum Likelihood under the
Ornstein-Uhlenbeck (OU) model. The phylogenetic tree was redrawn from70 and adapted to include 96 platyrrhines, along with 28 catarrhines,
7 strepsirrhines, 1 tarsiiform, and 13 nonprimate groups to reconstruct ancestral types. The color map represents observed and reconstructed
ancestral states for skin exposure ranging from a completely exposed face (brown) to only exposed skin on the nose (green)
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F IGURE 5 Ancestral state reconstruction of skin color visualized on a phylogeny of primates using 1,000 stochastic character maps under the
Equal Rates (ER) model. The phylogenetic tree was redrawn from70 and adapted to include 96 platyrrhines, along with 28 catarrhines, 7 strepsirrhines,
1 tarsiiform, and 13 nonprimate groups to reconstruct ancestral types. Branch colors represent posterior probability densities of the skin color states
along the edges and pie charts show the relative probabilities of each state at the internal nodes. Pink indicates depigmented skin, red indicates
hypervasculated skin, light blue indicates mottled skin, and dark blue indicates hyperpigmented skin. Images of hypervasculated skin are shown on the
right of the species names. Photo credits: Marc Wisniak (Cacajao calvus), Valdir Hobus (Chiropotes albinasus), Kitty Terwolbeck (Ateles paniscus) and
David Raju (Macaca mulatta)
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signals through experimental image and/or model presentation; and

(c) collecting biological samples with appropriate sampling of wild

populations to assess opsin gene diversity within and between spe-

cies. Sampling wild populations is crucial, as captive populations can

have low sample sizes and decreased genetic heterozygosity, yet

this is increasingly difficult given shrinking primate populations

across Central and South America and Mexico. Possible solutions

for each of these issues include: (a) innovating methods in color-

calibrated digital photography91 for low-light conditions, or

research designs that capitalize on opportunities to capture images

of primates when they are relatively still and well lit, perhaps near

canopy gaps; (b) integrating field experiments on platforms92 or

study of captive or semi-captive populations holds considerable

promise93; (c) relying on DNA from noninvasively collected fecal

samples, rather than blood, hair, or tissue, to increase the feasibility

of population-level sampling. Fortunately, study of opsin genes

from fecal DNA is well established, alleviating need to capture and

release wild monkeys.94–96 Careful and comprehensive sampling of

wild populations is possible, if time consuming.97,98

Finally, although we have focused on skin color and intraspecific

communication, we would be remiss if we failed to highlight the

potential of interspecific pelage and skin color variation to contribute

to key evolutionary processes. For example, species boundaries may

be enhanced via conspicuous character displacement among cal-

litrichid and titi monkey lineages that have radiated widely in short

time periods.99–101 Sensory ecology is at the heart of evolutionary

anthropology—the major differences between the haplorhines and

the strepsirrhines, and similarly between catarrhines and platyrrhines,

are in the ways in which they receive and process information from

their environment. A more comprehensive study of primate visual

communication, to include understudied major radiations, will

enhance our understanding of the evolution of our improved color

vision and of social communication, key elements of what it means to

be a primate.

F IGURE 6 Conspicuous scrotum
relative to body pelage in mantled
howler monkey (Alouatta palliata, a)
and bearded saki (Chiropotes satanas,
b). Photo credits: Scott Robinson (a)
and Allan Hopkins (b)

F IGURE 7 Simulated appearance
of a female rhesus macaque (Macaca
mulatta; Cayo Santiago) for:
a trichromatic observer (a);
a dichromatic observer (b).80 Peak
cone sensitivity values on simulations
of trichromatic Rhesus macaque

vision (S cone = 420 nm; M
cone = 530 nm; L cone = 560 nm) and
a protanomalous dichromatic type
(S cone = 420 nm; M
cone = 530 nm).45 Photo by ADM
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