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Abstract

Sub-epidermal moisture is an established biophysical marker of pressure

ulcer formation based on biocapacitance changes in affected soft tissues,

which has been shown to facilitate early detection of these injuries. Artifi-

cial intelligence shows great promise in wound prevention and care,

including in automated analyses of quantitative measures of tissue health

such as sub-epidermal moisture readings acquired over time for effective,

patient-specific, and anatomical-site-specific pressure ulcer prophylaxis.

Here, we developed a novel machine learning algorithm for early detection

of heel deep tissue injuries, which was trained using a database comprising

six consecutive daily sub-epidermal moisture measurements recorded from

173 patients in acute and post-acute care settings. This algorithm was able

to achieve strong predictive power in forecasting heel deep tissue injury

events the next day, with sensitivity and specificity of 77% and 80%, respec-

tively, revealing the clinical potential of artificial intelligence-powered tech-

nology for hospital-acquired pressure ulcer prevention. The current work

forms the scientific basis for clinical implementation of machine learning

algorithms that provide effective, early, and anatomy-specific preventive

interventions to minimise the occurrence of hospital-acquired pressure

ulcers based on routine tissue health status measurements.
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Key Messages
• sub-epidermal moisture is a biophysical marker of pressure ulcer formation
• we used sub-epidermal moisture in a predictive machine learning algorithm
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• the algorithm was trained using clinical data of heel deep tissue injury cases
• the algorithm sensitivity and specificity were 80% and 77%, respectively
• machine learning of sub-epidermal moisture can guide preventive

interventions

1 | INTRODUCTION

Pressure ulcers (PUs), also known as pressure injuries
(PIs), continue to cause death and compromise the qual-
ity of life of millions of patients and even more so during
the current COVID pandemic.1 The average cost of
treating a single hospital-acquired PU/PI in the
United States is as high as $21 767, but Category-4
wounds cost more than triple ($67 198), and Category-3
PU/PIs cost more than double that amount ($54 151).2 It
is not surprising, therefore, that these treatment costs add
up to a worrying annual expenditure of $26.8 billion in
the United States alone and only in direct costs, not
including, for example, litigation and insurance pre-
miums.3 Etiological research indicate that the more
severe, category-3/4 open-cavity wounds often develop
when the skin breaks down above a deep tissue injury
(DTI); a DTI is a mass of subdermal necrotic soft tissue
forming under intact skin, primarily due to cell and tis-
sue exposure to sustained deformations.4,5 Prevention of
DTIs or at least their early detection at a time point
where they are mild and reversible can therefore not only
prevent the mortality and suffering associated with seri-
ous, open-cavity wounds but also substantially reduce the
above financial burden on health care.4,6

In the early stages of development of DTIs, before the
injury presents itself on the skin, the fluid content within
the interstitial tissue spaces increases as blood vessels dilate
and become leaky, as part of the localised inflammatory
response to the onset of cell death.6,7 This change in sub-
epidermal moisture (SEM), which leads to a detectable ele-
vation of the biocapacitance property value of the affected
soft tissues, is the underlying biophysical phenomenon
monitored by the SEM Scanner technology (Bruin Biomet-
rics LLC, Los Angeles, CA, USA) to early-detect a forming
PU/PI.8-10 Many published clinical studies have confirmed
that consistently elevated or an increasing trend of SEM
readings may be linked to the risk of developing a PU/PI,
including DTIs, in the following days.11-20 The literature
overall indicates that the SEM Scanner technology is able
to indicate early development of PUs/PIs 5 days (median)
prior to the clinical presentation of a wound, which aids
health care practitioner's clinical judgement in traditional
clinical risk assessments, skin tissue assessments (STAs),
and routine PU/PI management protocols.20-25 The afore-
mentioned timeframe appears to be the predictive window

for the SEM Scanner technology, but if further powered by
artificial intelligence (AI), the performances of the SEM
Scanner technology may be maximised.

Over the past few years, AI-based methods have been
incorporated in a growing number of clinical studies and
research techniques designed for binary classification of
whether a patient is positive or negative to a specific dis-
ease condition or pathology. The main advantage of using
AI, particularly employing the branch of machine learning
(ML) to improve a classification algorithm automatically
(through experience and by the use of a growing set of
data), is that it may ultimately reduce human diagnostic
errors when sufficiently trained.26,27 Dermatology is a natu-
ral medical discipline for adopting AI-based methods given,
for example, the need to differentiate between benign vs
malignant skin lesions, but allergies and psoriasis were also
identified as candidate conditions for AI-supported diagno-
sis.28-37 More recently, applications of AI have expanded to
the classification of chronic wounds, including leg ulcers,
diabetic foot ulcers, and PUs/PIs.38-43

To date, no methods or studies have integrated
AI/ML with the diagnostic abilities of the SEM Scanner
technology, to detect the formation of DTIs before they
are diagnosed visually through STAs. In the present
study, we aim to retrospectively analyse an extensive clin-
ical database of SEM measurements acquired using the
SEM Scanner technology, to develop a novel AI-powered
decision-algorithm for effective differential diagnosis and
prediction of heel DTIs (before they appear visually),
based on the daily history of collected SEM assessments.

2 | METHODS

2.1 | The dataset of sub-epidermal
moisture measurements

We used an existing database of SEM measurements
from a published clinical study designed to evaluate the
contribution of SEM measurements relative to the cur-
rent standard of care, that is, STAs, in identifying patients
at increased risk of developing DTIs.18 This blinded clini-
cal study enrolled 189 patients at multiple acute and
post-acute sites in the United Kingdom and the
United States, all of whom consented to participate in
writing (further information on the ethical approval is

1340 LUSTIG ET AL.



detailed in the original study18). Using a commercial
SEM Scanner (Bruin Biometrics LLC, Los Angeles, CA,
USA), each participating subject was evaluated for their
heel SEM-Δ values, which compares spatial SEM mea-
surements acquired at and around the bony prominence
of the anatomy. The calculation of SEM-Δs from spatial
SEM measurements, as opposed to single point measure-
ments, eliminates potential effects of systemic changes in
tissue fluid contents and provides a consistent, robust
quantitative measure of the tissue health conditions at
the anatomy.7-10,23,44,45

Daily SEM-Δ measurements were collected from the
heels of the enrolled patients beginning at admission and
continuing until one of the following events: (a) a moni-
tored patient developed a DTI confirmed by STA; (b) a
patient was discharged from the hospital or had died;
(c) a total of 21 days of SEM-Δ measurements have
elapsed. Our aim in the present work was to develop a
novel ML algorithm to predict the formation of heel DTIs
based on the aforementioned dataset of SEM-Δ measure-
ments. Accordingly, as a first pre-processing step, the
SEM-Δ database was filtered to include only subjects
with valid SEM-Δ data defined as SEM-Δ ≥ 0.6 in two
out of three assessments). Furthermore, a complete
patient dataset eligible for further processing included at
least 6 consecutive days of numerical SEM-Δ readings for
the heels and in addition, that the outcome of the STA in
the last day was either ‘no-PI’ or ‘suspected DTI’. This
reduced the number of (eligible) patient entries in the
database to n = 173, of which 163 participants had no PIs
and were therefore considered control subjects, while
10 patients had a suspected heel DTI diagnosis.

2.2 | The acceleration effect

Visual examination of the database entries against time
to DTI diagnosis indicated a recurring trend (Figure 1).
In patients who eventually developed a heel DTI, SEM-Δ
values generally increased over time before a DTI was
confirmed through an STA, demonstrating a so-called
‘acceleration effect’ where the SEM-Δ value in the day
preceding the discovery of the DTI on the skin surface
was typically greater than the average of the SEM-Δ read-
ings in the prior measurement days. In the control group,
however, the SEM-Δ measurements typically fluctuated
over time in an apparently random pattern and therefore,
the average SEM-Δ values of these patients (who did not
develop a heel DTI during the study period) were similar
across all the study days. Following this observed behav-
iour, we designed our ML algorithm to first detect
(Figure 2A) and then predict (Figure 2B) the develop-
ment of heel DTIs, based on a daily history of SEM-Δ

readings, for the purpose of developing an AI-supported
early diagnosis aid, as described further below.

2.3 | The detection algorithm

In ML algorithmics, detection generally refers to mining
information from an existing database that is being investi-
gated. In contrast, prediction is the process of estimating
future events based on the detected trends (ie, the data pat-
terns) in the studied database. Supervised ML enables the
detection algorithm to learn from an existing dataset where
the labels are known, which in this study are the clinical

FIGURE 1 Sub-epidermal moisture delta (SEM-Δ) readings
from the heels of the participating subjects, acquired over

6 consecutive days: (A) The SEM-Δ measurements of the

10 patients who developed a heel deep tissue injury (DTI). These

SEM-Δ measurements typically increased prior to the clinical

presentation of the DTI in a visual skin assessment, demonstrating

an acceleration effect, that is, the SEM-Δ value in the day

preceding the DTI was typically greater than the average of the

SEM-Δ readings in the prior days. (B) The SEM-Δ measurements of

10 randomly selected control subjects, which typically fluctuated

over time and therefore, the average SEM-Δ values of those

patients who did not develop a heel DTI were similar across all the

study days. PI, pressure injury
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outcomes defined as ‘no-PI’ and ‘suspected DTI’. Once a
detection algorithm is established, it serves as the basis for
forecasting the outcomes of unlabeled cases using a predic-
tion algorithm. Accordingly, we first describe the detection
algorithm used to learn the present SEM-Δ database.

The goal of the detection algorithm in the present
work is to accurately classify patients into two buckets or
labels: (a) at-risk patients who developed a heel DTI,
(b) at-risk patients who did not present a clinical injury
on the sixth (and last) day of SEM-Δ measurements.
Therefore, the inputs of this algorithm are the SEM-Δ
readings of the six consecutive measurement days, where
the first measurement day is termed ‘day �5’ and the last
day is termed ‘day 0’. Based on the observed acceleration
effect described above (where the SEM-Δ value in the
day preceding the DTI was typically higher than the aver-
age of the SEM-Δ readings in the prior days), the follow-
ing inequation was formulated to classify the clinical
cases to ‘DTI’ vs ‘no-PI’ labels (or groups):

wday 0 �Δday 0�Average wday ið Þ �Δday ið Þ
� �

> threshold ð1Þ

where Δday(i) is the SEM-Δ reading at day i (i = �5 to 0)
and wday(i) is a set of dimensionless weight values, each of
which can range between 0 and 2 and is assigned to
amplify or de-amplify the contribution of the SEM-Δ
reading acquired at a specific measurement day i to the

result of the above calculation. The average on the left
side of the inequation is calculated over the multiplica-
tion of the SEM-Δ values acquired in each day Δday(i) by
the respective weights wday(i).

If, for a given set of consecutive Δday(i) measurements
that were acquired from a specific patient and for a pre-
set weight wday(i) and threshold values, Inequation (1)
holds true, then an acceleration effect is said to be pre-
sent, and that patient is highly likely to develop a heel
DTI. The specific pre-set of weight and threshold values
determines the classification accuracy and the true/false
positive rates (TPR/FPR) of the ML algorithm and should
therefore be optimised, based on the information in the
existing SEM-Δ database, as will be described next. More-
over, because the SEM-Δ measurements acquired in the
days nearer to the latest SEM-Δ reading are physiologi-
cally and clinically more significant than older SEM-Δ
data (ie, the newer SEM-Δ measurements are more rep-
resentative of the current health status of the monitored
tissues relatively to prior days), we constrained the wday(i)

values to be monotonically increasing with i (Figure 2C).

2.3.1 | Extracting the optimal weight and
threshold values

We applied an optimization process programmed in
Python (the Python Software Foundation, Fredericksburg

FIGURE 2 Schematic

representation of the (A) machine

learning (ML) detector, based on

readings from all the 6 consecutive

days, (B) ML predictor, for

forecasting whether a heel deep

tissue injury (DTI) will appear in

the next day based on the previous

sub-epidermal moisture delta

(SEM-Δ) readings from the last

5 days; and (C) the concept of

incorporation of weights (wday(i))

to predict the development of a

heel DTI based on a daily history

of SEM-Δ readings. PI, pressure

injury
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VA, USA; python.org) to determine the optimal weight
wday(i) and threshold values that result in the best classifi-
cation performances of the detection algorithm
(Figure 3). This code first reads the SEM-Δ values of the
six consecutive measurement days from the registries of
all the study participants, with the known label (clinical
outcome) for each participant (ie, if a heel DTI appeared
on day 0, or not). In addition, a threshold in the range of
0 to 1 is inserted as input datum [Inequation (1)]. Starting
with a threshold value of zero, a ‘For’ loop is initiated
and set to run for 2000 iterations. The specific loop steps
are as follows: (a) random values are chosen for each
weight wday(i) (in the range of 0 to 2) so that the wday(i)

are assigned ascending values (to fulfil the aforemen-
tioned constraint that the more recent SEM-Δ readings
are physiologically and clinically more important). (b) A
true or false result of Inequation (1) is calculated for each
patient, using their specific Δday(i) set. If the result of this
calculation is ‘true’ then the relevant patient is classified
into the ‘DTI’ group; otherwise, the patient is classified
into the ‘no-PI’ group. (c) The aforementioned classifica-
tion result is then evaluated based on the STA of the
respective patient (that serves as the ground truth), which
facilitates determination of the ‘true positive’ and ‘false
positive’ occurrences and, ultimately, calculations of the
respective TPR and FPR. For adequate performances of
the above ML algorithm, we require the minimization of

1�TPRþFPRð Þ and in addition, that TPR> >FPR: After
completion of the 2000 iterations of the above ‘For’ loop,
the threshold value is progressed by a 0.1 interval, and
the calculation process described here repeats until the
threshold equals unity [Inequation (1)]. The specific
weight and threshold values that performed best, that is,
had the highest TPR and lowest FPR, were extracted as
the outputs of the detection algorithm. We further calcu-
lated the sensitivity and specificity for these best outcome
measures, as per their definitions by the US Food and
Drug Administration (FDA)46:

Sensitivity¼TPR= TPRþFNRð Þ ð2Þ

Specificity¼TNR= FPRþTNRð Þ ð3Þ

where FNR = 1�TPR is the false negative rate and
TNR = 1�FPR is the true negative rate. The calculated
TPR and TNR reflect the conditional probabilities
P(Diagnosis = PI | DTI = false) and P(Diagnosis = no
PI | DTI = true), respectively.47

2.4 | The prediction algorithm

Unlike the detection algorithm, the prediction algorithm
is designed to forecast whether a heel DTI will occur at

FIGURE 3 The flow chart of

the machine learning

(ML) optimization algorithm

(programmed in Python), applied

to determine the optimal set of

weights (wday(i), Figure 2C) that

provided the best classification

performance of the ML detector

(Figure 2B). Based on the input

data, which were the sub-

epidermal moisture delta (SEM-Δ)
values for each patient with a

known clinical outcome at the end

of the 6-day study period, that is, of

either a heel deep tissue injury

(DTI) diagnosed through skin

tissue assessment (STA) vs a no-

pressure injury result, the ML

algorithm is trained to extract the

optimal set of weights (wday(i)) as

an output. PI, pressure injury

LUSTIG ET AL. 1343

https://www.python.org/


‘day 0’ based on the SEM-Δ readings of a scanned patient
from days �5 to �1 only. That is, for ML-based predic-
tions, there are no available ‘day 0’ data, and the forecast
must be made for the next day, that is, into the future
(Figure 2). Accordingly, the first step in the prediction
algorithm is to artificially extend and complete the set of
SEM-Δ readings for each patient by adding a theoretical
value for the sixth (ie, ‘the next’) day, through linear
extrapolation of the SEM-Δ readings from the three pre-
vious days (Figure 4). We used the numpy.polyfit function
in the Python programming language, which returns the
first-degree polynomial (ie, a linear function) based on a
least-squares fit to the SEM-Δ values of three previous
days (ie, days: �3, �2, and �1). We then employed this
linear function to extrapolate the SEM-Δ of day 0. This
complete set of SEM-Δ values (five empirical plus one
theoretical) for each patient is then fed as input to the
detection algorithm, together with the optimal set of
weights and thresholds that were calculated beforehand
(as detailed in the previous section). The detection algo-
rithm is then able to ultimately classify each monitored
patient into the ‘DTI’ or the ‘no-PI’ groups, thereby iden-
tifying those patients who are at an immediate risk for a
heel DTI, earlier, before the injury manifests on the skin
surface, while the extent of tissue damage is likely revers-
ible.45 This classification and detection is much earlier

than diagnosis via STAs and clinical judgement in the
current PU/PU prevention pathway.

3 | RESULTS

The specific weight and threshold values that performed
best as calculated by the detection algorithm, that is,
provided the highest TPR (90%) and lowest FPR (21%),
were extracted as outputs of the detection algorithm
and are listed in Table 1. The general classification
accuracy (ie, the rate of correct classifications to both
the ‘DTI’ and ‘no-PI’ groups) associated with the afore-
mentioned weight and threshold values was 79% (sensi-
tivity = 90%, specificity = 79%). Next, for realising the
prediction algorithm, theoretical SEM-Δ values were
calculated for the (supposedly unknown) sixth day per
each patient registry (through linear extrapolation of
the SEM-Δ readings from the 3 previous days), to result
in a complete set of SEM-Δ values for each patient that
could be fed back to the prediction algorithm. For the
optimal set of weights and threshold (Table 1), the ulti-
mate classification performance metrics achieved by the
prediction algorithm were TPR = 80%, FPR = 23%, and
general classification accuracy of 77% (sensitivity = 80%,
specificity = 77%).

FIGURE 4 The input data for the machine learning (ML) predictor are the sub-epidermal moisture delta (SEM-Δ) values for each
participating subject, for days �5 to �1 (ie, unlike the function of the ML detector, there are no ‘day zero’ data in the case of the ML

predictor). The value representing ‘day zero’ is predicted by the ML predictor through linear extrapolation, based on the SEM-Δ values from

the three previous days, to have a complete SEM-Δ set of six consecutive days. The ML detector algorithm is then applied using the

optimised set of weights (wday(i), Figure 2C) and threshold value of 0.7, to predict whether a heel deep tissue injury will appear on the next

day. PI, pressure injury

TABLE 1 The specific weight and

threshold values of Inequation (1) that

were associated with the highest true

positive and lowest false positive rates

Days �5 to �1 Day 0

wday�5 wday�4 wday�3 wday�2 wday�1 wday 0 Threshold

0.945 1.050 1.167 1.297 1.441 1.601 0.7
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4 | DISCUSSION

In this work, we developed a novel ML-based algorithm
for early detection of heel DTIs. The algorithm was
trained using a database comprising six consecutive daily
SEM-Δ measurements acquired from 173 patients in a
previous, multi-centre (acute and post-acute) clinical
study.18 A relatively strong predictive power of this new
algorithm that demonstrated, already at this stage, sensi-
tivity of 80% and specificity of 77% in forecasting heel
DTI events the next day, points to the potential clinical
utility of our present approach. In a broader scope, these
performance metrics show the promise, effectiveness,
and expected impact of ML in supporting clinical
decision-making in wound care in the near future.

In the past few years, AI has gained popularity in der-
matological research, with a relatively large number of
publications addressing the problem of automated identi-
fication of skin malignancies.28-30 Other dermatological
work involving AI pertains to inflammatory skin
diseases,31-33 response to exposure to allergens,34

dermatopathology,35 and gene expression profiling for
atopic dermatitis.36 Some AI work also considered
chronic wounds including leg ulcers, diabetic foot ulcers,
and PUs/PIs.38-43 The above wound-related AI studies
typically employed image recognition, segmentation, and
classification of skin and wound tissues,37 but this is just
a small fraction of the wide spectrum of potential applica-
tions of AI in skin and wound care.

Focusing the discussion on employing AI-based
methods for risk assessment and predictive modelling of
the occurrence of PUs/PIs, the work of Kaewprag et al42

is noteworthy for their use of a Bayesian network to pre-
dict the formation of PUs/PIs in intensive care patients
through analysis of electronic health records (EHRs).
However, their analyses were severely limited by the
processing of Braden Scale scores completed by the care
teams; that is, while they have used an advanced AI algo-
rithm, they fed it with risk assessment scores that were
still acquired through subjective clinical judgement and
were not anatomy specific. Later on, Alderden et al43

developed an AI algorithm that is less impacted by such
subjective clinical assessments, by extracting traditional,
yet numerical clinical data from EHRs such as the age
and body mass index, the haemoglobin and creatinine
levels, and the operative time. Alderden et al43 reported
TPR of 65% and FPR of 22%, that is, sensitivity of 65%
and specificity of 78% [Equations (2) and (3)] for
predicting category-1 PUs/PIs and a substantially lower,
clinically unacceptable TPR of 54% and FPR of 13% (sen-
sitivity of 54%, specificity of 87%) for predicting
category-2 PUs/PIs. Of note, a random classifier could
have achieved similar performances to their algorithm in

terms of sensitivity. One can argue that while they had
used quantitative values as inputs to their AI algorithm,
they did not select the relevant physiological parameters
that predict the development of PUs/PIs at a clinically
acceptable accuracy. For a predictive AI tool to be able to
exhibit adequate clinical precision, the measured physio-
logical parameters must be (a) objective, (b) standardised,
(c) clinically relevant, and (d) anatomically specific to the
pathophysiology of PUs/PIs. It is essential that both of
these conditions are met. This has not been achieved so
far in the literature. Our present work is the first to
accomplish both of the aforementioned aims, as
manifested in the superior performance metrics of our AI
algorithm that is reported here.

Specifically, the present AI algorithm builds upon the
inherent advantage of the SEM Scanner technology over
STAs and clinical judgement as a technological aid in the
detection of PUs/PIs, as reported by Okonkwo et al.18

Without using AI/ML, Okonkwo's group demonstrated
sensitivity of 87.5% and specificity of 37.8% for the SEM
Scanner in PU/PI detection, approximately 5 days
(median) prior to the presentation of a PU/PI as diag-
nosed via STAs and expert health care practitioners' clini-
cal judgement. Most recently, Gershon and Okonkwo20

evaluated SEM-Δ thresholds and reported a range of sen-
sitivities (82%-87%) and specificities (51%-88%) for a
SEM-Δ threshold equal to or greater than 0.6, exceeding
the clinical utility of clinical judgement alone, which is
the current gold standard.48 Based on the present find-
ings, it appears that the use of AI/ML algorithms pro-
vides an excellent balance of both high sensitivity and
high specificity (80% and 77%, respectively). Importantly,
even with a limited data set of true positives (ie, the
n = 10 patients diagnosed with heel DTIs), the AI/ML
algorithm shows promise in early detection of DTIs and
increasing the clinical utility of the SEM Scanner technol-
ogy in the early detection of deep and early PUs/PIs.

Moreover, our present approach is unique to the
pathophysiology of DTIs, which are hidden from the
unaided eye and are impossible to discover timely
through STAs alone.23 An exemplary form of implemen-
tation of the present ML algorithm in a clinical setting is
depicted in Figure 5. First, a SEM-Δ measurement is
taken by a health care professional as part of the clinical
daily routine. Based on this reading and the readings col-
lected (and automatically stored) in the previous days, a
prediction of the theoretical SEM-Δ value for the next
day is calculated by the ML predictor. Next, the SEM-Δ
value of each day is multiplied by its corresponding
weight, and the result of Inequation (1) is calculated, fol-
lowing which the patient is classified into either the
‘DTI’ or ‘no-PI’ groups. If the classification is to the
‘DTI’ group, there is a high likelihood that a DTI will
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appear the next day and the health care professional is
alerted accordingly. Of note, our AI/ML classification
algorithm, which considers SEM-Δ data from six consec-
utive days, reduces the potential influence of localised
alterations in tissue fluid contents that do not relate to a
forming PU/PI.6-10,23,44,45 In addition, a 6-day SEM-Δ
dataset is consistent with the timeframe of 5 days
(median) that has been reported in previous research as
the predictive window for the SEM Scanner
technology.21-24

As with any clinical research, this work has limita-
tions that should be discussed. While our study popula-
tion of eligible patients was relatively large for a wound
care trial (n = 182 intention to treat population), the
standard of care and subsequent intervention protocols
were rigorous in all the participating medical centres. As
a result, only 10 patients (~6%) developed a suspected
heel DTI during the study period. We expect that the
diagnostic accuracy of this ML algorithm can be
improved even further with training using larger data-
bases. Another limitation of the current study is that the
training dataset used to develop the algorithm was from
adult at-risk patients who developed a heel DTI in acute
and post-acute care settings. The performance metrics
reported in this work cannot be generalised to other ana-
tomical locations or patient populations. For example,
the physiology and pathophysiology of the skin are differ-
ent in neonates and paediatric patients.49,50 To be able to
translate the present ML algorithm into care settings for
other at-risk anatomical locations or sub-populations, the
algorithm needs to train on corresponding SEM-Δ data-
bases to obtain optimal weights and thresholds for the
anatomical region and/or setting of interest
[Inequation (1)]. The 6-day follow-up parameter may
need an adjustment as well. As this is the first attempt to
marry ML with SEM measurements, we decided to use
the simplest, linear prediction method for the current
research work (based on three previous days). Future
investigations, potentially analysing larger datasets, may
include a quadratic interpolation or a spline function to
extrapolate the SEM-Δ of day 0.

Similarly to all predictive models, extrapolation of the
current ML algorithm beyond the dataset, which was
used to train it, such as for additional future days (beyond
day zero), may be prone to errors (this may also apply to
larger data cohorts). With that said, using greater
datasets, it may be possible to improve the current ML
algorithm so that it will be able to predict the SEM-Δ
development over a time course beyond the ‘next day’,
and, therefore, facilitate an even earlier detection of a
potential DTI.

Until ML is integrated in the software of devices for
automated early-detection analyses, bedside carers
should be aware of the need to manually monitor trends
observed in the daily history of the SEM-Δ data acquired
from individual patients and use their clinical judgement
to evaluate whether there is suspected worsening or esca-
lation of the risk of a particular patient as manifested by
their daily SEM-Δ measurements combined with the
holistic clinical assessment.

In conclusion, we developed a first-of-its-kind
ML-powered, automated clinical decision-support algo-
rithm for predicting heel DTIs based on a daily history of

FIGURE 5 An example of practical use of the present machine

learning (ML) algorithm in a clinical setting. First, a sub-epidermal

moisture delta (SEM-Δ) measurement is taken by a health care

professional. Based on this reading and the SEM-Δ readings that

were similarly acquired in the previous days, the SEM-Δ value of

the next day is being calculated by the ML predictor. Next, all the

daily SEM-Δ values are multiplied by their corresponding weights

(wday(i)) and the relevant inequation result is calculated. In this

specific example (for which real subject data were taken from the

present study database), the result of the inequation calculation is

‘True’ and therefore, the ML algorithm has determined that there

is a high likelihood that a heel deep tissue injury will appear on the

next day
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SEM-Δ measurements. The current standard of PU/PI
prevention and care still relies on subjective risk assess-
ment scores and is sensitive to nurse practitioner experi-
ence and clinical judgement. We envision that such AI
algorithmics, processing sensitive physiological markers
of PUs/PIs that flag the specific risk of PUs/PIs, at a stage
where the cell and tissue damage is reversible, will pro-
vide health care practitioners with objective data, enable
early interventions and transform the clinical practice of
PU/PI prevention. With the increase in database sizes
and the development of big data of SEM-Δ measure-
ments for different medical settings, the clinicians of the
near future will no longer remain blind to the early sub-
clinical changes under the skin and will be able to lever-
age the predictive capabilities of ML-based algorithms to
provide effective, early, and anatomy-specific preventive
PU/PI interventions.
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