
RESEARCH ARTICLE Open Access

Reverse engineering a gene network using an
asynchronous parallel evolution strategy
Luke Jostins1,2, Johannes Jaeger1,3*

Abstract

Background: The use of reverse engineering methods to infer gene regulatory networks by fitting mathematical
models to gene expression data is becoming increasingly popular and successful. However, increasing model
complexity means that more powerful global optimisation techniques are required for model fitting. The parallel
Lam Simulated Annealing (pLSA) algorithm has been used in such approaches, but recent research has shown that
island Evolutionary Strategies can produce faster, more reliable results. However, no parallel island Evolutionary
Strategy (piES) has yet been demonstrated to be effective for this task.

Results: Here, we present synchronous and asynchronous versions of the piES algorithm, and apply them to a real
reverse engineering problem: inferring parameters in the gap gene network. We find that the asynchronous piES
exhibits very little communication overhead, and shows significant speed-up for up to 50 nodes: the piES running
on 50 nodes is nearly 10 times faster than the best serial algorithm. We compare the asynchronous piES to pLSA
on the same test problem, measuring the time required to reach particular levels of residual error, and show that it
shows much faster convergence than pLSA across all optimisation conditions tested.

Conclusions: Our results demonstrate that the piES is consistently faster and more reliable than the pLSA
algorithm on this problem, and scales better with increasing numbers of nodes. In addition, the piES is especially
well suited to further improvements and adaptations: Firstly, the algorithm’s fast initial descent speed and high
reliability make it a good candidate for being used as part of a global/local search hybrid algorithm. Secondly, it
has the potential to be used as part of a hierarchical evolutionary algorithm, which takes advantage of modern
multi-core computing architectures.

Background
The driving aim of systems biology is to understand
complex regulatory systems. A powerful tool for this is
reverse engineering, a top-down approach in which we
use data to infer parameter values for a model of an
entire system. This differs from the traditional bottom-
up approach of building up the larger picture through
individually measured simple interactions. Many meth-
ods have been developed for reverse engineering of gene
regulatory networks, most of which are based on expres-
sion data from gene expression microarrays. However,
most of these approaches do not consider temporal or
spatial aspects of gene expression. Examples of this are
methods that infer regulatory modules from expression
data across different experimental conditions [1,2], or

methods based on (static) Bayesian network models
[3,4]. Network models with a temporal component can
be used to analyse time-series of expression data [5,6].
In contrast, microarray-based approaches are impractical
for investigating spatial gene expression patterns at cel-
lular resolution, since they are usually performed on
homogenised tissue. Single-cell microarray analysis is
possible, but technically difficult and highly time-con-
suming [7].
There are many systems for which the spatial aspects

of gene expression are essential. Even in single-celled
organisms, spatial localisation of regulatory factors is
important [8]. Spatial aspects become absolutely central
for one of the most promising applications of reverse
engineering: the in silico reconstitution of developmental
gene regulatory networks. In this context, reverse engi-
neering is used to infer the gene networks underlying
pattern formation, i.e. to determine which genes activate

* Correspondence: yogi.jaeger@crg.es
1Laboratory for Development & Evolution, University Museum of Zoology,
Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK

Jostins and Jaeger BMC Systems Biology 2010, 4:17
http://www.biomedcentral.com/1752-0509/4/17

© 2010 Jostins and Jaeger; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:yogi.jaeger@crg.es
http://creativecommons.org/licenses/by/2.0

or repress which other genes at which point in time and
space to yield the observed dynamics of gene expression.
To achieve this, a spatio-temporal approach is absolutely
required.
Here, we are going to consider a computational tech-

nique which allows the inference of explicitly spatio-
temporal developmental gene networks. The approach–
called the gene circuit method [9,10]–involves collecting
spatial gene expression data at nuclear resolution for
various stages of development. This is achieved by con-
focal laser scanning microscopy of embryos immuno-
fluorescently stained against particular gene products,
combined with subsequent quantification of the expres-
sion data [11]. A gene network model–consisting of a
set of deterministic non-linear differential equations–is
then used as a computational tool to extract regulatory
information from the spatial time-series data: it is for-
mulated such that its regulatory parameters determine
whether each individual regulatory interaction is activat-
ing, repressing or absent altogether. These parameters
are phenomenological in the sense that they summarise
the regulatory effect of each transcription factor as a
single numerical value; as such, it is not possible to
measure them experimentally. Instead, they must be
inferred by fitting the model to the data. We employ a
global optimisation procedure to reduce the least-
squares difference between the two. This technique has
been successfully used to gain insights into the gene
regulatory networks involved in pattern formation in the
early embryo of the fruit fly Drosophila melanogaster.
The resulting models were used to unambiguously
assign specific regulatory interactions to the control of
specific expression features, and enabled the quantitative
analysis of expression dynamics, as well as error reduc-
tion capabilities of the system [10,12-24].
One of the main problems with this approach is that

both the number of equations and the number of para-
meters of the model–and thus the time required to run
the optimisation for fitting the model to the data–
increase rapidly as more genes are considered. It is thus
extremely important to design effficient global optimisa-
tion algorithms to keep up with the ever-increasing
scope of systems biology; efficiency in this case means
both directly increasing the speed of the algorithms, as
well as allowing the algorithms to run efficiently in par-
allel. The most commonly used algorithm for fitting
gene circuit models has been parallel Lam Simulated
Annealing (pLSA) [25-27]. However, pLSA has a very
high computational cost, which makes it difficult to
scale to more complex problems. An alternative
approach dramatically increases computational efficiency
by dividing the optimisation procedure into several dis-
tinct steps, some of which can easily and efficiently be
run in parallel [16]. The drawback of this approach is

that it depends on problem-specific assumptions about
gap gene expression, and is not easily adapted to other
inference problems. An extensive review of global opti-
misation methods for reverse engineering regulatory
networks indicated that evolutionary algorithms–and in
particular Evolution Strategies (ESs)–often outperform
other methods at optimisation of biological network
models [28]. Such Evolutionary Strategies have been
implemented in systems biology parameter estimation
tools [29], and in particular an adapted ES (the island-
ES) has been shown to fit a gene network model more
efficiently than Simulated Annealing [19]. Up to this
point, the main practical advantage of the Simulated
Annealing approach for the gene network optimisation
problem was that it had a proven efficient parallel algo-
rithm, whereas no parallel version of the island-ES has
been applied to this problem before. In the hope of har-
nessing the same parallel utility that has been successful
for Simulated Annealing, we developed a parallel version
of the island-ES algorithm. In addition to the previously
reported advantages of evolutionary algorithms [19,28],
the parallel ES algorithm is also an asynchronous algo-
rithm, in the sense that processors send and receive
communications independent of the activity of others.
This eliminates waiting times, and leads to additional
speed-up. In this paper we describe our synchronous
and asynchronous parallelisations of the island-ES, and
compare their efficiencies against pLSA on a real gene
network problem.

Methods
The Problem: Drosophila Gap Gene Circuits
One of the few developmental systems that the reverse
engineering approach has been applied to so far is seg-
ment determination in the early Drosophila embryo.
During the first three hours of development, regulatory
interactions among approximately 30 segmentation
genes establish a segmental pre-pattern of gene expres-
sion that determines the positions at which morphologi-
cal body segments will form. The general principles by
which this occurs are well understood [30]: A number
of maternal mRNAs become localised at the anterior
and posterior pole of the embryo during egg develop-
ment. After fertilisation, long-range spatial gradients are
established by diffusion of translated proteins from their
localised source. These maternal gradients then regulate
expression of the zygotic gap genes in broad, overlap-
ping domains. Maternal factors and gap genes together
regulate pair-rule genes (expressed in 7 stripes), which
in turn regulate segment-polarity genes, whose periodic
expression in 14 stripes constitutes the segmental pre-
pattern. The overall structure of this regulatory network
is hierarchical: Maternal genes regulate gap genes, gap
genes regulate pair-rule genes, pair-rule genes regulate

Jostins and Jaeger BMC Systems Biology 2010, 4:17
http://www.biomedcentral.com/1752-0509/4/17

Page 2 of 16

segment-polarity genes but not vice versa. However,
while it was once believed that each layer of the hierar-
chy was fully determined by the layer above it, it is now
known that such vertical interactions are insufficient to
account for the expression patterns of their targets [13].
To fully explain the observed patterns, we need to con-
sider the (largely repressive) horizontal interactions
between genes in the same layer as well. Here, we will
focus on reverse engineering of the regulation of gap
genes by maternal factors and gap-gap cross-repression
(using the gene circuit method) as a test problem for
our optimisation algorithm.
Mathematical Model
We model the gap gene network using the connectionist
gene circuit formalism developed by Mjolsness et al. [9].
Our model corresponds precisely to gene circuit models
used in earlier studies of the gap gene system
[13,14,16,19-21]. The state variables of the system are
protein concentrations in embryonic nuclei. Our model
includes Ng = 6 maternal and gap genes (caudal (cad),
hunchback (hb), Krüppel (Kr), knirps (kni), giant (gt) and
tailless (tll)), plus the maternal factor Bicoid (Bcd) as an
external regulatory input. Segment determination occurs
along the major, or antero-posterior (A-P), axis of the
embryo, and is independent of pattern formation along
other axes. Therefore, we consider Nnuc nuclei laid out
in a row, located between 35 and 92% along the A-P
axis. Each nucleus has an index i Î {1, ..., Nnuc}. There
are Nnuc × Ng concentration values { gi

a }, each governed
by an ordinary differential equation (ODE), given by

dgi
a

dt
R W g m g h g D n g ga

a
b

i
b a

i
a

b

N

a
i
a a

i
a

i
a

g

() ()[(Bcd

1

1)) ()]. g gi
a

i
a

1 (1)

The three main terms of the equation correspond to
protein production, decay and diffusion. We will discuss
each of these terms separately.
The production term is equal to some fraction of the

maximum production rate Ra. This fraction is given by
the sigmoid regulation-expression function

() / () ,u u ua a a

1
2

1 12 (2)

which takes on values between zero and one.

u W g m g ha
a
b

i
b

b

N a
i

ag 1
Bcd , which contains three

terms: W ga
b

i
b

b

N g

 1
is the sum of activation or repres-

sion by regulators b, where the contribution of each b
on gene a is given by its concentration multiplied by the

weight of the connection between them (Wa
b); the

weight (or interconnectivity) matrix W defines the net-
work of gene regulatory interactions: a positive value of

Wa
b represents activation of gene a by regulator b, a

negative value represents repression, and a value equal
or close to zero represents no interaction. The second

term ma gi
Bcd represents the effect of the maternal fac-

tor Bcd (itself not regulated by gap genes) on gene a,
where ma is the regulatory weight (analogous to W

above) and gi
Bcd is the concentration of Bcd in nucleus

i. The final term ha is a threshold parameter for the sig-
moid F(ua), which represents the regulatory influence
of ubiquitous maternal factors.
The diffusion term D n g g g ga

i
a

i
a

i
a

i
a()[() ()] 1 1 is

a standard implementation of Fickian diffusion, in which
proteins diffuse between neighbouring nuclei at a rate
proportional to the difference between their concentra-
tions. Diffusion depends on the distance between nuclei
which halves upon every division. Da(n) is the diffusion
rate of each protein; as diffusion is proportional to the
square of the distance between nuclei, Da(n) is a func-
tion of the number of cell divisions that have occurred
prior to time t (see below). Every time the nuclei divide
the distance between them halves, and the rate of diffu-
sion changes according to Da(n) = 4Da(n-1).
The decay term la gi

a assumes that gene products
decay exponentially, with a decay rate la for gene a.
The half life of each protein is given by ln 2/la.
The model takes account of cell division. The lengths

of interphase and mitosis occur according to a well
determined schedule [31], and are modelled using three
rules: During interphase, a continuous rule is applied, in
which equation 1 holds. During mitosis, a second con-
tinuous rule is applied, in which the production term of
equation 1 is set to zero. Finally, a discrete division rule
is applied, in which n is incremented, and each nucleus
(and hence ODE) splits into two, with the concentra-
tions of all gene products copied from the mother
nucleus to the daughter nuclei. The precise timing of
the mitotic schedule is given in [14].
Quantitative Spatial Gene Expression Data
Quantitative expression data for segmentation genes in
the early Drosophila embryo are from the FlyEx data-
base, available online at: http://urchin.spbcas.ru/
FlyEx [32,33]. The data set used here is identical to that
used in earlier studies [19,20]. Data acquisition and
quantification methods are reviewed in [11]. Here, we
only provide a brief summary: Expression data are
acquired using laser scanning confocal microscopy of
immunofluorescently stained embryos. Each embryo is
stained with antibodies against three distinct transcrip-
tion factors (one of which is always the pair-rule protein
Even-skipped (Eve), which is used as a standard for time
classification and data registration; the other two consist
of various combinations of gap proteins and other

Jostins and Jaeger BMC Systems Biology 2010, 4:17
http://www.biomedcentral.com/1752-0509/4/17

Page 3 of 16

http://urchin.spbcas.ru/FlyEx
http://urchin.spbcas.ru/FlyEx

components of the segmentation gene network), and a
nuclear counterstain to identify the positions of the
nuclei. An automated image processing pipeline is used
to extract per-nucleus concentrations and combine
them into high-resolution time-series of integrated
data. First, each embryo image is segmented; the posi-
tion and extent of each nucleus are determined using
a combination of watershed and either edge detection
or thresholding algorithms, and protein concentrations
are averaged for each data channel in each nucleus;
this converts embryo images into tables with nuclear
centroid positions and average protein concentrations
per nucleus. The developmental age of each embryo is
determined by visual inspection (by at least two inde-
pendent researchers) based on Eve expression and
embryo morphology (nuclear number and morphol-
ogy, membrane progression during cellularisation).
Non-specific background staining is removed; this is
performed based on the observation that non-specific
binding of antibodies follows a two-dimensional para-
boloid distribution; such a paraboloid is fitted to non-
expressing regions of an expression pattern and then
subtracted by an affine transformation. The expression
data are registered using an affine co-ordinate trans-
form with the position of the Eve stripes (determined
by spline- or wavelet-based methods) as reference
points; this minimises embryo-to-embryo variability,
reducing positional errors introduced during data inte-
gration. Finally, the images are averaged for each time-
class and gene, in order to create an integrated data-
set.
Model Fitting by Optimisation
In our reverse-engineering approach (the gene circuit
method) we wish to find estimates for parameter values,
which are best able to explain the data. We can frame
this as an optimisation problem in which we attempt to
find the set of parameter values

xopt opt that gives the

minimum value of an objective function E(

x). We

define the objective function for a particular set of para-
meter values

x as the sum of squared differences
between the model output and the experimental data:

E x g t x g ti
a

model i
a

data

t a i

() [(,) ()] ,
(, ,)

 2

(3)

where the sum is over all time classes t, genes a, and
nuclei i for which we have data, and where

 x W W m m h h D D R RN
N N N N N

g

g g g g g (, , , , , , , , , , , , , , , , ,1
1 1 1 1 1 1 NN g) (4)

is the vector of parameters to be estimated, with a
length of n = Ng(Ng + 5) = 66.
As mentioned above, optimisation for complex pro-

blems such as these is non-trivial. The system of

equations is non-linear with a large number of para-
meters to be estimated, and the fitness landscape is mul-
timodal. A full search is impossible, and a local search
(moving downhill until it finds the lowest value of the
objective function) is likely to get stuck in a local mini-
mum. Thus, we must use a global optimisation algo-
rithm; we shall compare the parallel Lam Simulated
Annealing (pLSA) algorithm with our newly developed
parallel Evolution Strategy (both synchronous and asyn-
chronous versions).
To get a value for E, we need to numerically solve the

ordinary differential equations in Equation 1 for a parti-
cular set of parameters and initial conditions. For all
algorithms given below, we numerically solved the equa-
tions using a Bulirsch-Stoer adaptive-step-size solver
scheme adapted from [34].

Optimisation Algorithms
Search Space Constraints
We do not need or want to search the entire,
unbounded parameter space; there are certain values
that we know a priori that parameters should not take
(negative production, diffusion or decay rates, for
instance), and we do not want regulatory parameters to
grow without bound along the saturated arms of the sig-
moid expression-regulation function. To represent this,
we may either introduce absolute criteria that prevent
the optimisation algorithm from assigning out-of-
bounds values, or we can produce a penalty function,
which increases as the parameters move further into
areas of unacceptable solutions. The penalty function
may be added to the objective function (as occurs in
Simulated Annealing), or it may be kept separate and
handled in an algorithm-specific way (as occurs in the
Evolution Strategy).
For the gene network problem, we use a penalty func-

tion for the regulatory parameters Wa
b , ma and ha:

()
,

([() () ()]) (

x max

exp W v m v h expa
b

max
b a

max
a

ba

0
2 2 2Bcd 11)

(5)

where Λ is a control parameter, and vmax
b is the maxi-

mum observed intensity of gene b in the data. The justi-
fication for using this penalty function is that it remains
0 for

() () () / ,W v m v ha
b

max
b

b

a
max

a

a

2 2 2 1Bcd (6)

i.e. when the absolute value of the total regulatory
input is below a certain threshold, but rises steeply out-
side of those bounds. This allows individual parameter
values to become quite large, while keeping total

Jostins and Jaeger BMC Systems Biology 2010, 4:17
http://www.biomedcentral.com/1752-0509/4/17

Page 4 of 16

regulatory input within strict limits. We took Λ = 10-4.
Based on earlier results [20], we fix ha parameters to a
value of -2.5, which reduces the number of parameters
to be determined from n = 66 to 62.
The production, decay and diffusion rates, Ra, la and

Da are given explicit limits, such that any parameter
value outside these limits is considered unacceptable
and rejected. The ranges are 10 <Ra < 30, 0 <Da < 0.3
and 5 < ln 2/la < 20 for all a. These search space con-
straints are identical to those used in earlier studies
[19,20].
Serial Island Evolution Strategy
The evolutionary algorithm we are using is a parallel
Island (μ,l)-Evolution Strategy (piES). It is a parallel ver-
sion of the serial Island ES algorithm developed by
Fomekong et al., which was successfully applied to the
same gene network problem [19]. We will describe this
serial algorithm first. Wherever possible, we have used
the same values for optimisation parameters as used in
the earlier study.
The island ES algorithm operates on Nisl populations

of individuals, each with a population size l. Each popu-
lation is initialised independently, and selection, recom-
bination and mutation are performed only within
populations. A migration operation links the popula-
tions; in the serial algorithm, the best individual from
each island is copied to a population randomly selected
from a uniform distribution. Migration occurs every m
generations. We took m = 200 (experimental runs
showed little variation within the range of 50 to 200;
data not shown).
We denote the set of all possible individuals as I, with

individuals i in population p Î {1, ..., Nisl} denoted by
vector

ai

p , i Î {1, ..., l}. Each individual has a parameter
vector associated with it,

xi

p , as given in equation 4. We
define a fitness function F(

ai

p): I ® R, which is equal
to the objective function E(

ai

p) as defined in equation 3,
and use the penalty function Π(

ai

p): I ® R defined in
equation 5.
Selection is performed to produce a set of μ offspring

(here, we take μ = l/5), according to a selection opera-
tor sPf : I

l ® Iμ. The operator selects the top μ indivi-
duals of the population, according to a stochastic
ranking procedure based on both the fitness function
and the penalty function. This stochastic ranking
method–introduced by Runarsson et al. [35]–uses a
bubble-sort-like procedure, in which an arbitrary rank-
ing is produced, and l sweeps are performed, in which
each individual in turn (starting from the top) is com-
pared to the one directly below. If the result of the pen-
alty function for both individuals is less than or equal to
zero, the fitness values of the two are compared, and
the pair is ordered accordingly. If the penalty function
of the top individual is greater than zero, then there is a

probability Pf that the individuals will be ordered
according to their fitness, and a probability 1-Pf that
they will be ordered according to their penalty value.
This procedure is ended if there is no change in the
order in any given sweep. We use Pf = 0.45, which is
the value used in [19].
Recombination is then performed on the offspring,

using a recombination operator rl: I
μ ® Il. The opera-

tor first produces l-μ individuals as direct (asexual)
copies of the selected individuals in the parent popula-
tion, with the fittest l (mod μ) individuals being repre-
sented twice if l is not a multiple of μ.
Second, μ additional individuals are produced by

recombination; each individual

ai

p in the parent popula-

tion produces an offspring ai
p with parameter vector

xi
p by recombination between its own parameter vector

xi

p , the next fittest individual’s parameter vector

xi

p
1 ,

and the fittest individual’s parameter vector

x p

0 , using

the equation

x x x xi

p
i
p

i
p p(),1 0 (7)

where l is the recombination factor. We have taken
l = 0.85 as in [19].
The l-μ individuals that do not undergo recombina-

tion are then mutated, according to the local mutation
operator m{�, a}: I ® I. Mutation is performed according
to a non-isotropic self-adaptive mutation rule, in the
sense that each individual i has associated with it a step
size for mutation (a mutation rate) for each parameter j,
denoted as ij

p . This allows the step size to undergo
evolution under selection, giving an adaptive step-size
without having to specify a specific adaptation rule.
Mutation starts with a random change to the mutation
rate, given by

 ij
p

ij
p

i ijexp N N((,) (,))0 1 0 1 (8)

for i Î {μ + 1, ..., l} and j Î {1, ..., n}, where
 * / 2 n and * / 2n are tuning para-
meters. We have used �* = 1. Ni and Nij are a vector
and a matrix of random values sampled from a normal
distribution with zero mean and unit variance, which is
generated afresh each generation.
Next, we mutate the parameters

xij

p themselves, using

 x x Nij
p

ij
p

ij
p

j (,)0 1 (9)

for i Î {μ + 1, ..., l} and j Î {1, ..., n}, where N j (0, 1)
is another randomly sampled normal unit vector, gener-
ated at each generation.

Jostins and Jaeger BMC Systems Biology 2010, 4:17
http://www.biomedcentral.com/1752-0509/4/17

Page 5 of 16

Finally, we apply exponential smoothing to the step
sizes, to reduce fluctuations

 ij
p

ij
p

ij
p

ij
p() (10)

for i Î {μ + 1, ..., l} and j Î {1, ..., n}, where a is a
smoothing parameter. We have taken a = 0.2. ij

p then
becomes the mutation rate for the next round of muta-
tion [19].
Every τ generations, the populations are checked to

see if they have met the termination criterion (we take τ
= 20); at the same time, information on descent speed
(the current fittest individual and time since the pro-
gram was started) is saved to a log. The algorithm has
two termination conditions: it either runs for a preset
number of generations, or it halts when the lowest value
of the objective function remains below a particular pre-
set amount for r × τ generations. Preliminary investiga-
tion showed that the convergence time was relatively
constant across runs, so we use a constant number of
generations. We ran all runs for 40000 generations,
which we found to be long enough for virtually all runs
to converge.
Parallel Island Evolution Strategy
Parallelisation of the serial island-ES (iES) relies on run-
ning each population on a separate processor. Since
selection, recombination and mutation operate strictly
within populations, only the migration operation, check-
ing termination criteria and recording information for
log files need to be parallelised. The simplest parallelisa-
tion of the serial iES is a synchronous parallel island-ES
(piES). The algorithm is synchronous in the sense that
all communication occurs simultaneously across all pro-
cesses; when migration or other exchange of informa-
tion is required, each processor halts until all other
processes have caught up, and then all information is
exchanged. The synchronous algorithm does not modify
the behaviour of the serial algorithm, and is determinis-
tic in the sense that serial and parallel runs with the
same set of random seeds will produce exactly the same
solution.
Migration occurs according to the following scheme:

A node designated the master node generates a migra-
tion schedule, in which every population is assigned
another population to migrate an individual to, and this
schedule is broadcast to all nodes. The individual nodes
then communicate with each other point-to-point, with
each individual sending the parameter values for its
highest-ranking individual to its designated receiver, and
replacing its lowest ranking individual with the best
individuals of the population for which it is a designated
receiver.

The collection of data related to descent speed and
the checking of termination criteria are performed
together. Every τ generations, the best individual in each
population is backed up, and the processors communi-
cate between each other to find the lowest value of the
objective function of any individual across all popula-
tions, which the master node records to a log file along
with a time-stamp. As every process is aware of the fit-
ness of the fittest individuals in all other populations,
both termination criteria can be evaluated separately on
each processor.
The disadvantage of the synchronous algorithm is that

processors spend a significant amount of time idle. The
asynchronous piES algorithm avoids this by having the
processors communicate asynchronously; for migration
and other communication, each processor sends infor-
mation to a memory buffer associated with the process
it is communicating with, which can then receive it at a
later time (whenever it is ready to receive), avoiding
waiting times.
For migration, every m generations each process

copies its best individual to the buffer of a randomly
selected population, and adds any individuals in its own
buffer to its population. No individuals are added if the
buffer is empty. Its buffer is then cleared. To avoid buf-
fer sizes growing without bound, each processor will
only place a maximum of 10 individuals in a given
population buffer at any time before waiting for the
them to be picked up (this is a rare event, and we have
not observed it in practise). Logging descent information
and checking the termination criterion also occurs asyn-
chronously. Every τ generations each processor sends
the fitness of its fittest individual to the buffer of a
designated master node. Every τ generations, the master
node collects the fittest individuals, records them to a
log and checks the termination criterion; if the termina-
tion conditions are met, the master node sends out a
terminate signal to the buffers of all processors. Similar
to migration, we avoid buffer overflows as follows: each
processor will leave a maximum of 50 messages in the
master node buffer before waiting for it to read them
(once again, we have never observed this in practise).
Parallel Lam Simulated Annealing
We use the parallel Lam Simulated Annealing (pLSA)
algorithm developed by Chu et al. [27], running on K
processors with one processor being arbitrarily defined
as the master node. Optimisation parameters are taken
from Jaeger et al. [14]. The algorithm is described in
depth elsewhere [25-27,36]. Briefly, SA functions by
defining an energy, given by the objective function E(

x)

plus the penalty function Π (

x) (equations 3 and 5,

respectively). During each iteration (or move) of the

Jostins and Jaeger BMC Systems Biology 2010, 4:17
http://www.biomedcentral.com/1752-0509/4/17

Page 6 of 16

algorithm, the K processors change their parameter set
x , to a new state x , according to an adaptive move
generation strategy. They then evaluate the energy dif-
ference between the old and new states ΔE = E(x)-E
(

x); if this is negative, the move is accepted; if not, then

it is still accepted with a probability exp(ΔE/T). The
temperature starts at T0 and is decreased according to
the Lam schedule, which gives the fastest decrease in
energy possible while maintaining the system is quasi-
equilibrium [25]. The Lam schedule requires informa-
tion on the mean and variance of the energy over time;
a set of running estimates of these are calculated using
specially designed estimators [26]. The same tempera-
ture is used across all nodes, and thus all processors
must periodically pool their local statistics (every τ itera-
tions) to allow the temperature schedule to be main-
tained [27]. This pooling of statistics allows the
temperature to be lowered K times as fast as in the
serial case.
To compensate for processes which leave the quasi-

equilibrium regime (due to the increased rate of tem-
perature decrease compared to the serial case), a mixing
of states is performed every m iterations. The energy
states of all processes are collected and redistributed
according to Boltzmann probability: the probability of
any given processor being assigned the state of process i
is given by exp E T exp E Ti jj

K
(/) / (/) 1

, where Ei is
the current energy of process i. This mixing of states
allows the best results to propagate, but also allows
nodes to explore higher energy solutions. It strongly
resembles the selection procedure used in evolutionary
algorithms.
In order to avoid the final solution being affected by

the initial conditions, the algorithm performs an ‘initial
burn’, in which each processor spends ninit iterations
running as normal serial SA at a constant temperature
T0. After that, the algorithm needs to run for another
ninit/K iterations to calculate initial statistics.
There are two types of potential stopping conditions

that could be used for the algorithm: the absolute condi-
tion, and the freeze condition. In the absolute condition,
the algorithm terminates after the absolute mean value
of E remains below a target energy for a certain period
of time. In the freeze condition, the algorithm termi-
nates after the absolute energy E changes by less than a
certain proportion over a certain period of time. As pre-
liminary investigations showed that the final energy and
the convergence time were both very variable, we exclu-
sively use the latter.

Algorithm Performance Metrics
All algorithm implementations write the current value
of the objective function and running times to log files
at regular intervals (every 20 generations for the piESs,

and every 10000 iterations for pLSA); these log files are
used to calculate mean descent curves with standard
errors and 95% ranges for each such interval. These
curves can be used to compare the value of the objective
function for different algorithms at any time during an
optimisation run, and give an estimate of the variability
in the algorithm’s performance. We choose two target
values of the objective function E, which correspond to
good solutions (E = 350000; previously shown to repre-
sent an accurate approximation of the data
[13,14,16,19,20]) and ‘good-enough’ solutions (E =
550000), which in most cases are sufficiently close to
the global solution to be usable as starting points for
local search strategies [15,19,20,24]. We calculate the
mean time taken to reach each target value for all runs
that have actually reached it, as well as the standard
error of this mean (s/(N runs), where s is the stan-
dard deviation of times-to-reach-the-target, and Nruns is
the number of attempts in a series of optimisation
runs). From this, we can calculate confidence intervals
based on the assumption of normally distributed error.
In addition, we calculate the success rate for reaching a
target value, defined as the proportion of runs that
reached that target (95% confidence intervals on this
value were also calculated, using the binomial distribu-
tion). In general, we give the inverse of the time taken,
which measures the efficiency of the algorithm, whereas
the success rate represents its robustness. Overall per-
formance of an algorithm needs to take into account
both of these measures.
In order to assess how effective our parallelisation of

the Evolution Strategy was, we calculate relative and
absolute speed-up. The relative speed-up is defined as

Speed of Serial Algorithm with K islands
Speed of Parallel

 AAlgorithm running on K nodes

(11)

and represents a measure of the efficiency of the par-
allelisation in terms of communication overhead (if the
relative speed-up is equal to the number of processors,
then the algorithm does not loose speed due to commu-
nication overhead). The absolute speed-up is defined as

Speed of Serial Algorithm with K islands
Speed of Parallel

*

 Algorithm running on K nodes
,(12)

where K* is the number of islands resulting in optimal
serial algorithm performance, which we found to be
equal to 1 (see below). The absolute speed-up measures
how effective the parallel algorithm is compared to the
best serial algorithm, as opposed to merely the serial ver-
sion of the parallel algorithm. Thus it takes into account
both communication overhead and loss in efficiency due
to having a non-optimal number of islands. Note that

Jostins and Jaeger BMC Systems Biology 2010, 4:17
http://www.biomedcentral.com/1752-0509/4/17

Page 7 of 16

this is a much more stringent definition of parallel effi-
ciency than the relative speed-up (which is the value
more often given for parallel algorithms), but it is also
the measure most often required for practical decision
making, as it puts a value on exactly how much extra
speed will be gained by moving to a parallel algorithm,
assuming you are using an optimal serial algorithm.
We estimated 95% confidence intervals on absolute

and relative speed-up using Fieller’s theorem [37] for
confidence intervals on ratios of Gaussians. Errors on
ratios tend to be large, which explains the large confi-
dence intervals around the speed-up values.
Note that in the Simulated Annealing literature, the

value of the objective function is often called the
‘energy’, and in the Evolutionary Algorithms literature
the same value is often referred to as the ‘fitness’. To
avoid confusion, we use ‘value of the objective function’
or ‘objective value’ instead.
Code Implementation
The parallel (μ,l)-island-ES code is implemented in C++,
and is based on code written and used by Fomekong et
al. [19] (available at http://www.science.uva.nl/research/
scs/3D-RegNet/fly_ea). Parallel communication is imple-
mented using the Message Passing Interface (MPI). The
pLSA code is implemented in C, and is based on code
taken from the Supplementary Material of Jaeger et al.
[13], (available at http://flyex.ams.sunysb.edu/lab/gaps.
html). Little modification was made to the original pLSA
code, other than minor alterations to allow finer-scale
time-stamping in the log files for descent curves.
For both algorithms, we used a parameter scrambling

procedure to give the problem different starting condi-
tions; the pLSA algorithm reads in initial parameter
values, which were randomised prior to starting each
instance of the program, while the piES algorithm gener-
ates its starting conditions according to a random seed,
which is itself randomised for each optimisation run.
Both implementations were compiled using the Intel

C++ Compiler (ICC), and both implementations make
use of the QLogic implementation of the Message Pas-
sing Interface (MPI). Data analysis was performed using
the statistical programming language R [38].

Source code is available from the authors upon
request.
Optimisation runs were performed on the Darwin parallel

cluster of the University of Cambridge High Performance
Computing Facility (HPC; http://www.hpc.cam.ac.uk).

Results
Analysis of the Serial Island Evolution Strategy
The performance of the serial island-ES algorithm is
affected by the number of islands it uses [19]. However,
this dependence has never been investigated beyond
four islands. This is directly relevant for our parallelisa-
tion strategy: a perfect, synchronous parallel algorithm
running on K nodes (in which no time is lost on com-
munication) behaves exactly like a serial algorithm with
K islands running on a computer K times as fast. We
can thus calculate the theoretical limits of the algo-
rithm’s relative speed-up by dividing the speed of the
serial algorithm by the number of islands Nisl.
We performed 48 optimisation runs each using the

serial algorithm with 1, 2, 4, 8, 20 and 50 islands. The
number of individuals on every island was kept constant
(125), resulting in a meta-population size of 125 × K.
Note that our individual partitioning strategy differs
from that used by [19], who kept a constant meta-popu-
lation size, and decrease the population size with num-
ber of islands; the latter method may be more efficient
for smaller numbers of islands, but will lead to unfeasi-
bly small population sizes above about 10 islands.
The amount of time required to reach both ‘good-

enough’ and ‘good’ solutions is shown in Table 1, and
the speed of the algorithm for various number of
islands is plotted in Figure 1A. For both the ‘good’ and
‘good-enough’ targets, we observe a gradual decrease in
efficiency as the number of islands increases. This
decrease in efficiency occurs because the increased com-
putational load of adding more populations out-weighs
the increase in search capacity. We do not observe the
dramatic increase in efficiency of 4 islands over 1 island
reported by [19]; this is probably due to the different
ways in which population size is partitioned in our
approach.

Table 1 Run Times for Serial iES

N. Islands Time (Good-enough) Solutions × 106 Time (Good) Solutions × 106

1 3:35 (±0:54) 2.4 (±0.7) 9:51 (±1:05) 6.8 (±1.7)

2 3:49 (±0:42) 2.6 (±0.6) 10:27 (±1:01) 6.6 (±2.1)

4 4:33 (±1:03) 3.1 (±0.7) 13:24 (±1:00) 9.0 (±2.4)

8 7:30 (±2:08) 5.3 (±1.8) 28:02 (±0:47) 19.8 (±1.6)

20 10:09 (±1:52) 7.2 (±1.2) 31:17 (±0:58) 23.6 (±0.4)

50 16:03 (±1:39) 12.0 (±1.2) >36:00 >30

The time taken to reach ‘good-enough’ and ‘good solutions’ for the serial Island ES algorithm with different numbers of islands. The number of ODE Solutions is
also given. Times are given in hours and minutes (H:M), and the values in parentheses are 95% confidence intervals.

Jostins and Jaeger BMC Systems Biology 2010, 4:17
http://www.biomedcentral.com/1752-0509/4/17

Page 8 of 16

http://www.science.uva.nl/research/scs/3D-RegNet/fly_ea
http://www.science.uva.nl/research/scs/3D-RegNet/fly_ea
http://flyex.ams.sunysb.edu/lab/gaps.html
http://flyex.ams.sunysb.edu/lab/gaps.html
http://www.hpc.cam.ac.uk

We calculated the theoretical speed of a perfect paral-
lel algorithm on N nodes (assuming no communication
overhead) by dividing the speed of the serial algorithm
with Nisl islands by N. From this value, we produced a
theoretical absolute speed-up curve (Equation 12), by
dividing each theoretical parallel speed by the highest
mean speed of the serial algorithm for any number of
islands. This theoretical absolute speed-up curve is
shown in Figure 1B; the black line represents a perfect
absolute speed-up curve, where the speed-up of an algo-
rithm on N nodes is N times faster than the best serial
algorithm. We see that a perfect piES could continue to
give speed-up all the way up 50 nodes, with the ideal
50-node run being around 8-12 times faster than the
best serial algorithm.

Parallelisation Efficiency
To estimate the efficiency of our parallel algorithm, we
performed 50 runs each using both synchronous and
asynchronous implementations of the piES on 10, 20
and 50 processors. Running times and speed-up values
are given in Table 2, and the speed-up curve is plotted
in Figure 2; the speed-ups are calculated relative to the
serial runs discussed above, with the absolute speed-up
being calculated using the optimal island size of 1. The
relative speed-up for both parallel implementations is

close to perfect for 10 and 20 processors, and the effi-
ciency of the two algorithms is largely indistinguishable.
In contrast, the relative speed-up for the synchronous
algorithm is low for 50 processors, while the relative
speed-up remains high for the asynchronous algorithm.
This indicates that communication overhead due to idle
processors waiting for each other becomes significant
only above 20 processors.
The absolute speed-up (as defined in equation 12)

remains significant regardless of the number of nodes
used, showing that the parallel algorithm is always faster
than the best serial algorithm. As expected, the absolute
speed-up is generally lower than the relative speed-up:
these two measures increasingly diverge as the number
of processors increases, reflecting the negative effect of
adding islands beyond the optimum. However, the asyn-
chronous algorithm continues to gain speed as more
nodes are added all the way up 50 nodes, with the paral-
lel algorithm running on 50 processors nearly 10 times
faster in absolute terms than the best serial algorithm.

Comparison of Algorithms
To compare all three algorithms (synchronous and asyn-
chronous piES versus pLSA), we ran 50 pLSA runs each
on 10, 20 and 50 processors. Example descent curves
for the asynchronous piES and pLSA are shown in

Islands

S
pe

ed
 (

(ho
ur

s−
−1)

)

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

A

Islands
S

pe
ed

−
up

0 10 20 30 40 50

0
10

20
30

40
50

B

Figure 1 Behaviour of the serial island-ES. (A) The effect of the number of islands on serial algorithm performance. We plot the inverse of the
time needed to reach ‘good-enough’ and ‘good’ solutions (values of the objective function less than 550000 (blue) and 350000 (red)
respectively) against the number islands used. (B) Prediction of the maximum achievable absolute speed-up of a piES algorithm across different
numbers of islands, calculated by assuming that each island is running on a separate processor, and there is no communication overhead. To
achieve this we divide the time needed for an N-island ES to converge by the number of islands Nisl. This measure of the optimal parallel
performance is then divided with that of the fastest serial algorithm (running on 1 island). The resulting ratios are shown for ‘good-enough’ and
‘good’ solutions. The black line indicates perfect absolute speed-up. Note that no run on 50 islands was able to reach the ‘good’ solution value
within the time limit of 36 hours for jobs on the Darwin cluster. Error bars in (A) and (B) represent 95% confidence intervals on the mean.

Jostins and Jaeger BMC Systems Biology 2010, 4:17
http://www.biomedcentral.com/1752-0509/4/17

Page 9 of 16

Figure 3A; these are the mean descent curves for the 20
processor runs (the pattern is similar for the 10 and 50
node runs). Coloured regions around the descent curves
represent the region in which 95% of descent curves fall.
We observe a lower initial value of the objective func-
tion, a higher initial descent speed and a lower mean
convergence value for the piES compared to pLSA. In
addition, the piES shows far less variation in the descent
trajectory. Figure 3B compares synchronous and asyn-
chronous piES; there is a slight increase in initial des-
cent speed for the asynchronous algorithm over the
synchronous algorithm, but both algorithms perform
very similarly at later stages of the descent.
A comparison between the times required to reach the

‘good-enough’ target show an approximately linear
increase in speed with the number of processors for the
asynchronous piES (Figure 4A). In contrast, there is a
marked drop in speed-increase at 50 processors for both
pLSA and the synchronous piES algorithm (Figure 4A).
Both synchronous and asynchronous piES achieve vir-
tually perfect robustness regardless of the number of
processors, while pLSA becomes significantly less reli-
able as the number of processors increases (Figure 4B).
Table 3 gives the mean number of ODE solutions per-
formed by each algorithm to reach the ‘good’ and ‘good-
enough’ solutions; as expected, the synchronous and
asynchronous piES algorithms both perform roughly the
same number of ODE solutions, and the relationship
between number of ODE solutions for the piES and
pLSA algorithms follows the same pattern as the time
taken.
The behaviour of the algorithms changes significantly

when they are required to reach the ‘good’ target (Figure
5). While the asynchronous piES remains slightly faster
than the synchronous version, the speed of both algo-
rithms is largely independent of the the number of pro-
cessors. In contrast, an increase in the number of
processors does increase the reliability of the algorithms,

which both achieve the target nearly 100% of the time
when run on 50 processors. This contrasts strongly to
the behaviour of pLSA. The probability of reaching the
target value falls off dramatically with the number of
processors (falling as low as 4% on 50 processors); when
the algorithm is made highly parallel, the vast majority
of the jobs fail. However, the speed of the few runs that
actually reach the target value drastically increases with
the number of processors, showing that, while a major-
ity of highly parallel runs fail, the ones that do not
reach the target remarkable quickly.

Discussion
Parallel Efficiency of the Evolutionary Strategy
The results from the investigation of the serial algorithm
show an interesting outcome: increasing the number of
islands gives increased descent speed per generation,
even if the number of islands is very large. In the serial
case, this increased search capacity becomes outweighed
by the increased computational load of the population
when the number of islands increases beyond the opti-
mal number of 1. On the other hand, it suggests that
the algorithm has the capacity to be parallelised to a
large number of processors.
The rate at which the serial algorithm speed decreases

with the number of islands places a limit on the effi-
ciency of the parallel algorithm (as shown by the pre-
dicted limits in Figure 1B, which were closely matched
by the observed limits in Figure 2). However, this limit
only applies when migration rate and per-island popula-
tion size remain constant, and can likely be circum-
vented by tuning these values for a given set of islands
or nodes. For instance, the migration rate will probably
need to be elevated with an increased number of islands,
to allow solutions to propagate around the larger meta-
population. It may also be advantageous to decrease the
population size and increase the mutation rate; a smaller
population size will decrease computation time, and an

Table 2 Run Times for piES Algorithms

Algorithm Time (Good-enough) Time (Good) Relative Speed-up Absolute Speed-up

Serial iES

- 1 island 3:35 (±0:54) 9.51 (±1:05) - -

Sync piES

- 10 nodes 0:56 (±0:07) 3:55 (±0:16) 8.7 (7.5-9.8) 3.8 (2.9-4.8)

- 20 nodes 0:41 (±0:03) 4:09 (±0:14) 14.9 (12.3-17.4) 5.2 (4.1-6.4)

- 50 nodes 0:33 (±0:03) 3:40 (±0:16) 29.2 (25.8-32.6) 6.5 (5.0-8.0)

Async piES

- 10 nodes 0:47 (±0:06) 3:34 (±0:11) 10.3 (9.0-11.7) 4.6 (3.5-5.6)

- 20 nodes 0:40 (±0:05) 3:44 (±0:13) 15.2 (12.4-18.1) 5.4 (4.1-6.7)

- 50 nodes 0:25 (±0:02) 3:23 (±0:12) 38.5 (34.2-42.8) 8.6 (6.7-10.5)

The time taken to reach ‘good-enough’ and ‘good solutions’ for the optimal serial Island ES, and the two parallel piES algorithms, along with the relative and
absolute speed-up for each parallel algorithm (comparison is between ‘good-enough’ solutions). Times are given in hours and minutes (H:M) and the values in
parentheses are 95% confidence intervals.

Jostins and Jaeger BMC Systems Biology 2010, 4:17
http://www.biomedcentral.com/1752-0509/4/17

Page 10 of 16

elevated mutation rate will increase the search capacity
of individuals. This could make solutions less stable
within an island, an unwanted effect which is counter-
acted by the ability for good solutions to spread across
the population. We have not tuned the algorithm here
to allow for accurate comparison between algorithm
implementations and various numbers of islands and
processors. In practice, however, we can easily tune the
algorithm in serial (using the predicted absolute speed-
up), which will make testing these hypotheses relatively
simple, especially if compared to the complex and time-
consuming tuning required to reach optimal behaviour
of the pLSA algorithm [39].

Both synchronous and asynchronous parallel imple-
mentations of the island-ES scale well with the number
of nodes (Figure 2). That the relative speed-up is high
for the synchronous algorithm is a direct result of the
highly (almost embarrassingly) parallel nature of the
serial algorithm, and the asynchronous algorithm
improves on this even further to give a nearly perfect
relative speed-up for up to 50 processors. It is worth
pointing out that the change in migration schedule from
the synchronous to the asynchronous implementation is
relatively ad-hoc; that the algorithm does not lose effi-
ciency despite changing its behaviour is yet another tes-
tament to the flexibility of evolutionary algorithms.

Nodes

S
pe

ed
-u

p

0 10 20 30 40 50

0
10

20
30

40
50

Async ES
Sync ES

Relative
Absolute

Figure 2 Speed-up Curves for piES Algorithms. The relative and absolute speed-up curves for the synchronous and asynchronous piES
algorithms are shown; the solid black line corresponds to perfect speed-up, and the broken black line corresponds to the predicted maximum
absolute speed-up from Figure 1B. Error bars are 95% confidence intervals on the mean.

Jostins and Jaeger BMC Systems Biology 2010, 4:17
http://www.biomedcentral.com/1752-0509/4/17

Page 11 of 16

Contrast this to the difficulty with which many optimi-
sation algorithms are parallelised, including Simulated
Annealing [27]. The absolute speed-up is not as striking
as the relative speed-up, but it is also a far more strin-
gent measure of algorithm efficiency. The asynchronous
parallel algorithm on 10 nodes is 5 times faster than the
fastest serial version, and increasing this to 50 nodes
gives nearly a 10-fold increase in speed; in both cases,
speed-up is significant and comparable to the predicted
perfect absolute speed-up (compare Figures 1B and 2B).
Algorithm performance increases yet further if we

consider the robustness of convergence, which for good
solutions increases drastically with the number of pro-
cessors; an algorithm that has an initial descent 10-fold
faster than the serial version and is almost guaranteed
to converge on a good solution is indeed a powerful
tool for reverse engineering biological systems.

Simulated Annealing vs Evolutionary Strategy
The most striking feature of the descent curves of pLSA
and the piES algorithm (Figure 3A) is how much faster the
ES algorithm converges in almost all cases. Examining the

Figure 3 Descent Curves for piES and pLSA Algorithms. (A) Mean descent curves for the asynchronous piES and pLSA. (B) Mean descent
curves for the asynchronous and synchronous piES. Error bars show 95% confidence intervals on the mean. Coloured regions show the area in
which 95% of runs fall. All curves are for 10-node runs. Results for 20- and 50-node runs were similar (data not shown).

Jostins and Jaeger BMC Systems Biology 2010, 4:17
http://www.biomedcentral.com/1752-0509/4/17

Page 12 of 16

data closely, we can see that there are three aspects that
characterise the difference in the curves.
First, the piES mean descent curve begins at a much

lower objective function value than that of pLSA. This is
caused by differences in the initialisation procedure of the
two algorithms. The pLSA algorithm begins with a single
starting solution for all processors, which undergoes a
high temperature ‘burn period’ to erase dependence on
the initial condition. This is followed by a period of statis-
tics collection (in parallel) at constant, high temperature in
order to initialise estimator values for the temperature
schedule. This means that each of the K processors has an
individual initial state. In contrast, the piES algorithm

starts with a much larger number of randomly created
initial states equal to l × Nisl, allowing a far higher diver-
sity of objective values, and thus a lower expected mini-
mum initial objective value.
Second, the initial speed of descent is much higher for

the piES. This is probably due to a particular difference
in the early operation of the two algorithms. During the
early stages of descent, the annealing temperature is
high for pLSA, and thus there is little selection for bet-
ter solutions; once the temperature is lowered the selec-
tion for better solutions increases, but simultaneously
the solution is getting closer to the minimum, and the
slowing associated with the decreased move size coun-
teracts the lower temperature. The piES algorithm, in
contrast, begins a full selection schedule straight away,
allowing descent at maximum speed from the very start
of the algorithm. Note that the reason that the piES can
afford to start fast, but pLSA cannot, is that the multi-
individual nature of evolutionary algorithms allows a
diversity of individuals (and thus lower objective value
solutions) to remain despite a decrease in mean objec-
tive value; if pLSA was to decrease at this rate, it would
lose quasi-equilibrium and fail to converge, becoming
stuck in a local minimum.
Third, the piES algorithm converges to a lower mean

objective value across all runs than pLSA. The reason for
this appears to be driven by the unreliable nature of
pLSA compared to the more robust performance of the
piES, as shown in Figures 4B and 5B. While pLSA can
achieve very low values of the objective function (the
lowest objective value for pLSA was far lower than for

Figure 4 Comparison of Algorithms for ‘Good-enough’ Solutions. A comparison of (A) the speed and (B) the robustness or reliability of the
three algorithms (asynchronous and synchronous piES, and pLSA) for achieving a ‘good-enough’ solution (an objective function value of 550000
or less). The speed is the inverse of the time, in hours, taken to achieve the target value, and the robustness or reliability is the proportion of
runs that reached the target objective value. Error bars represent 95% confidence intervals on the mean.

Table 3 Number of ODE Solutions for Parallel Algorithms

Algorithm Solutions × 106

(Good enough)
Solutions × 106

(Good)

Sync piES

- 10 nodes 8.4 (±1.1) 34.5 (±3.7)

- 20 nodes 12.2 (±1.0) 69.8 (±5.0)

- 50 nodes 23.0 (±2.2) 149.7 (±12.1)

Async piES

- 10 nodes 8.6 (±1.1) 37.6 (±3.4)

- 20 nodes 14.6 (±1.8) 73.7 (±5.9)

- 50 nodes 22.4 (±1.9) 168.0 (±10.1)

pLSA

- 10 nodes 21.4 (±4.0) 26.1 (±5.3)

- 20 nodes 20.1 (±1.7) 28.8 (±5.4)

- 50 nodes 31.5 (±15.9) 43.3 (±20.7)

The mean number of ODE Solutions performed before reaching ‘good-
enough’ and ‘good’ solutions for the Synchronous and Asynchronous piES
algorithms, and pLSA.

Jostins and Jaeger BMC Systems Biology 2010, 4:17
http://www.biomedcentral.com/1752-0509/4/17

Page 13 of 16

either implementation of the piES), the large proportion
of runs that fail to reach good solutions increases the
mean final objective value to above that of the piES. This
also explains why we see so much faster convergence to
the ‘good’ target in Figure 5A compared to 4A. When dif-
ficult targets are set, the failure rate for simulated anneal-
ing increases drastically, and thus the only runs that
converge are in the small minority of ‘good’ runs. This
implies that the increased speed for the ‘good’ target at
20 and 50 nodes is largely an artifact of the high failure
rate, or at least should be judged in light of their rarity.
The unreliable nature of pLSA has been commented

on before [19], with significant failure rates even for
small 2-gene networks used as a test problem [27]. The
fact that island-based evolutionary algorithms can be
highly reliable function optimisers in large parameter
estimation problems has been well established [40]. It is
difficult to say precisely why our island-ES should be
more reliable than a pLSA; both involve within-proces-
sor means of landscape searching (mutation/recombina-
tion in the piES, move generation in pLSA), and both of
them involve a process by which solutions propagate
from processor to processor (migration in the piES,
mixing of states in pLSA). It is possible that the diversity
within each population in the piES prevents the propa-
gation of solutions stuck in local minima throughout
the population; even if a locally minimal solution
spreads to all populations, there will still be higher-
objective valued individuals that will continue to search
the state-space outside of this minimum, and once they
achieve a lower solution than the local minimum they
will begin to propagate. This does not occur in pLSA; if

every processor is stuck in a local minimum, then there
are no back-up individuals to allow for an escape.

Further Methodological Improvements
The complexity of models in systems biology is con-
stantly increasing, and thus the speed required of opti-
misation is always growing. The Drosophila
segmentation system alone consists of interactions
between dozens of genes and gene products [30], and to
model all of them would create a drastic increase in
computational complexity. Future methodological devel-
opments in optimisation will have to address how this
increasing complexity will be handled.
Comparisons between gap gene circuits with 4 or 6

genes indicate that even a very moderate increase in
model complexity can lead to a significant decrease in
reliability of the pLSA algorithm (J. Jaeger; unpublished
results). Our observations indicate that lack of robust-
ness of the pLSA algorithm is due to the fact that most
pLSA runs fail. On the other hand, those runs that con-
verge, do so very rapidly. Therefore, efficiency of the
pLSA algorithm could be improved significantly, if we
managed to find a reliable method to separate failing
from promising runs early on during optimisation. Such
an approach has been suggested previously [41].
While the piES is both faster and more reliable than

pLSA, Figure 2 shows that the communication overhead is
starting to become a problem even for the asynchronous
algorithm at around 50 processors. Moreover, as the num-
ber of processors increases, the difference between relative
and absolute speed-up increases due to the use of popula-
tions beyond the optimum number. Therefore, it seems

Figure 5 Comparison of Algorithms for ‘Good’ Solutions. A comparison of (A) the speed and (B) the robustness or reliability of the three
algorithms (asynchronous and synchronous piES, and pLSA) for achieving a ‘good’ solution (an objective function value of 350000 or less). Axes
and error bars as in Figure 4.

Jostins and Jaeger BMC Systems Biology 2010, 4:17
http://www.biomedcentral.com/1752-0509/4/17

Page 14 of 16

unlikely that the piES algorithm will scale well into the
hundreds of processors and we must seek further algorith-
mic improvements to increase scalability, robustness and
efficiency of optimisation.
One method for increasing the speed of both pLSA and

piES algorithms comes from the observation that local
searches tend to converge very rapidly and reliably to the
global minimum, given initial conditions which are suffi-
ciently close to the global solution [42]. This suggests a
hybrid approach, which uses a global search algorithm
for the initial phase–during which descent curves are
steep (Figure 3)–and switches to a local search method
once the descent curve has begun to flatten out. The role
of the global optimisation algorithm now becomes to
descend as fast as possible to a low-enough value of the
objective function for the local search to converge. Many
local search methods exist that can be parallelised for
this purpose [43]. The critical issue is to determine the
ideal switch-over point from global to local search. This
can have a large impact on the efficiency of the hybrid
algorithm, as a late switch wastes time on slow global
descent, while a premature switch causes failure of the
local search method to converge [44]. As a first step
towards such a hybrid approach, local search methods
have been shown to significantly improve the quality of
solutions for the gap gene problem obtained by pLSA
[15,24] or a serial iES [19,20]. The piES algorithm seems
particularly suited for this, as it achieves a relatively low
objective value very fast (Figure 3).
An alternative approach for increasing parallel effi-

ciency–specific to evolutionary algorithms such as the
piES–is the hierarchical approach [45]. A hierarchical
algorithm consists of small groups of processes that run
one specific aspect of an evolutionary algorithm. For
example, in master-slave algorithms, a master processor
performs all operations except evaluating the objective
function, which is farmed out to other computers. Such
master-slave clusters can in turn form part of a larger evo-
lutionary algorithm (such as an island-ES). This becomes
especially relevant as the complexity of the model, and
thus the computational cost for calculating the objective
function, increases. Hierarchical genetic algorithms have
been applied to a variety of problems [45], and have been
particularly effective in a grid computing environment
[46]. Furthermore, they are ideally suited for running on
multi-core architectures or highly multi-threaded graphics
cards. An appropriate hierarchical implementation of the
piES would be straightforward to implement, which could
lead to a highly efficient, massively implementation of this
parallel optimisation algorithm.

Conclusions
Progress in systems biology crucially depends on effi-
cient and innovative computational methods. In the case

of the gap gene network, it was an innovative
approach–the gene circuit method [9,10]–that allowed
the extraction of regulatory information directly from
the intact wild-type system. This reverse-engineering
approach is generally applicable to the quantitative
study of pattern-forming and other complex gene regu-
latory networks, if powerful optimisation methods are
available to fit gene circuit models to data. Our investi-
gation has shown that both implementations of the piES
algorithm are significantly more efficient than pLSA
both in terms of speed and reliability. We have demon-
strated that the asynchronous piES algorithm exhibits
excellent parallel speed-up for up to 50 processors, and
have provided a detailed discussion of why it outper-
forms the pLSA algorithm on various accounts.
It was not our intention here to achieve a systematic

benchmark comparison of different optimisation strate-
gies. This has been achieved elsewhere [28,42]. Instead,
we attempt to provide a practical guide on what kind of
algorithm works best on a real-world biological problem,
which we believe to be representative for the nature and
complexity of many reverse-engineering problems which
arise in the study of regulatory networks involved in
physiology, development and ecology. The asynchronous
piES algorithm is a powerful computational tool, which
allows yet another incremental increase in the complex-
ity of models that can be successfully fitted, and thus
increases the breadth of our knowledge of the complex-
ity of natural systems. We think that our piES algo-
rithms not only demonstrate the power, but also the
potential of evolutionary computation. Evolutionary
algorithms are inspired by the processes of real-world
evolution, and as such they potentially have available to
them the tools that lead to the most successful optimi-
sation run we have yet examined [47]. It is apparent
that there is a whole array of modifications and
improvements that can be made to such algorithms,
some of which are already known, and many more that
are yet to be discovered.

Acknowledgements
JJ was supported by the UK Biotechnology and Biological Sciences Research
Council (grant number BB/D00513) and the MEC-EMBL agreement for the
EMBL/CRG Research Unit in Systems Biology. LJ wishes to thank the
Cambridge Computational Biology Institute for funding and support. This
work was performed using the Darwin Supercomputer of the University of
Cambridge High Performance Computing Service http://www.hpc.cam.ac.uk,
provided by Dell Inc. using Strategic Research Infrastructure Funding from
the Higher Education Funding Council for England.

Author details
1Laboratory for Development & Evolution, University Museum of Zoology,
Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK.
2Wellcome Trust Sanger Institute, Hinxton, UK. 3EMBL/CRG Systems Biology
Research Unit, Centre de Regulació Genòmica (CRG), Universitat Pompeu
Fabra, Dr Aiguader 88, 08003 Barcelona, Spain.

Jostins and Jaeger BMC Systems Biology 2010, 4:17
http://www.biomedcentral.com/1752-0509/4/17

Page 15 of 16

http://www.hpc.cam.ac.uk

Authors’ contributions
LJ implemented both versions of the piES algorithm, performed optimisation
runs, algorithm comparison and the statistical analysis of optimisation
results. JJ proposed the research and supervised the work. LJ and JJ wrote
the manuscript.

Received: 9 November 2009 Accepted: 2 March 2010
Published: 2 March 2010

References
1. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman M:

Module networks: identifying regulatory modules and their condition-
specific regulators from gene expression data. Nat Genet 2003, 34:166-76.

2. Horvath S, Dong J: Geometric Interpretation of Gene Coexpression
Network Analysis. PLoS Comp Biol 2008, 4:e1000117.

3. Pe’er D, Regev A, Elidan G, Friedman N: Inferring subnetworks from
perturbed expression profiles. Bioinformatics 2001, 17:S215-24.

4. Sachs K, Perez O, Pe’er D, Lauffenburger D, Nolan G: Causal Protein-
Signaling Networks Derived from Multiparameter Single-Cell Data.
Science 2005, 308:523-9.

5. Ong I, Glasner J, Page D: Modelling regulatory pathways in E. coli from
time series expression profiles. Bioinformatics 2002, 18:S241-8.

6. Nam D, Yoon S, Kim J: Ensemble learning of genetic networks from time-
series expression data. Bioinformatics 2007, 23:3225-31.

7. Kamme F, Salunga R, Yu J, Tran D, Zhu J, Luo L, Bittner A, Guo H, Miller N,
Wan J, Erlander M: Single-Cell Microarray Analysis in Hippocampus CA1:
Demonstration and Validation of Cellular Heterogeneity. J Neurosci 2003,
23:3607-15.

8. Shepard K, Gerber A, Jambhekar A, Takizawa P, Brown P, Herschlag D,
DeRisi J, Vale R: Widespread cytoplasmic mRNA transport in yeast:
Identification of 22 bud-localized transcripts using DNA microarray
analysis. Proc Natl Acad Sci USA 2003, 100:11429-34.

9. Mjolsness E, Sharp D, Reinitz J: A connectionist model of development.
J Theor Biol 1991, 152:429-53.

10. Reinitz J, Sharp D: Mechanism of eve stripe formation. Mech Dev 1995,
49:133-58.

11. Surkova S, Myasnikova E, Janssens H, Kozlov KN, Samsonova A, Reinitz J,
Samsonova M: Pipeline for acquisition of quantitative data on
segmentation gene expression from confocal images. Fly 2008, 2:58-66.

12. Reinitz J, Mjolsness E, Sharp D: Model for cooperative control of positional
information in Drosophila by bicoid and maternal hunchback. J Exp Zool
1995, 271:47-56.

13. Jaeger J, Surkova S, Blagov M, Janssens H, Kosman D, Kozlov K, Manu M,
Vanario-Alonso C, Samsonova M, Sharp D, et al: Dynamic control of
positional information in the early Drosophila embryo. Nature 2004,
430:368-71.

14. Jaeger J, Blagov M, Kosman D, Kozlov K, Myasnikova E, Surkova S, Vanario-
Alonso C, Samsonova M, Reinitz DSJ: Dynamical Analysis of Regulatory
Interactions in the Gap Gene System of Drosophila melanogaster.
Genetics 2004, 167:1721-37.

15. Gursky VV, Jaeger J, Kozlov KN, Reinitz J, Samsonov AM: Pattern formation
and nuclear divisions are uncoupled in Drosophila segmentation:
comparison of spatially discrete and continuous models. Physica D 2004,
197:286-302.

16. Perkins T, Jaeger J, Reinitz J, Glass L: Reverse engineering the gap gene
network of Drosophila melanogaster. PLoS Comp Biol 2006, 2:e51.

17. Gursky VV, Kozlov KN, Samsonov AM, Reinitz J: Cell divisions as a
mechanism for selection in stable steady states of multi-stationary gene
circuits. Physica D 2006, 218:70-6.

18. Jaeger J, Sharp D, Reinitz J: Known maternal gradients are not sufficient
for the establishment of gap domains in Drosophila melanogaster. Mech
Dev 2007, 124:108-28.

19. Fomekong-Nanfack Y, Kaandorp J, Blom J: Efficient parameter estimation
for spatio-temporal models of pattern formation: case study of
Drosophila melanogaster. Bioinformatics 2007, 23:3356-63.

20. Ashyraliyev M, Jaeger J, Blom J: Parameter estimation and determinability
analysis applied to Drosophila gap gene circuits. BMC Syst Biol 2008, 2:83.

21. Gursky VV, Kozlov KN, Samsonov AM, Reinitz J: Model with Asymptotically
Stable Dynamics for Drosophila Gap Gene Network. Biophysics (Moscow)
2008, 53:164-76.

22. Manu S, Spirov A, Gursky V, Janssens H, Kim A, Radulescu O, Vanario-
Alonso C, Sharp D, Samsonova M, Reinitz J: Canalization of gene
expression in the Drosophila blastoderm by gap gene cross regulation.
PLoS Biol 2009, 7:e1000049.

23. Manu S, Spirov A, Gursky V, Janssens H, Kim A, Radulescu O, Vanario-
Alonso C, Sharp D, Samsonova M, Reinitz J: Canalization of gene
expression and domain shifts in the Drosophila blastoderm by
dynamical attractors. PLoS Comp Biol 2009, 5:e1000303.

24. Ashyraliyev M, Siggens K, Janssens H, Blom J, Akam M, Jaeger J: Gene
Circuit Analysis of the Terminal Gap Gene huckebein. PLoS Comp Biol
2009, 5:e1000548.

25. Lam J, Delosme JM: An Efficient Simulated Annealing Schedule:
Derivation. Tech Rep 8816 Electrical Engineering Department, Yale, New
Haven, CT 1988.

26. Lam J, Delosme JM: An Efficient Simulated Annealing Schedule:
Implementation and Evaluation. Tech Rep 8817 Electrical Engineering
Department, Yale, New Haven, CT 1988.

27. Chu K, Deng Y, Reinitz J: Parallel Simulated Annealing by Mixing of
States. J Comp Phys 1999, 148:646-62.

28. Moles C, Mendes P, Banga J: Parameter Estimation in Biochemical
Pathways: A Comparison of Global Optimization Methods. Genome Res
2003, 13:2467-74.

29. Zi Z, Klipp E: SBML-PET: A systems biology markup language based
parameter estimation tool. Bioinformatics 2006, 22:2704-5.

30. Akam M: The molecular basis for metameric pattern in the Drosophila
embryo. Development 1987, 101:1-22.

31. Foe V, Alberts B: Studies of nuclear and cytoplasmic behaviour during
the five mitotic cycles that precede gastrulation in Drosophila
embryogenesis. J Cell Sci 1983, 61:31-70.

32. Poustelnikova E, Pisarev A, Blagov M, Samsonova M, Reinitz J: A database
for management of gene expression data in situ. Bioinformatics 2004,
20:2212-21.

33. Pisarev A, Poustelnikova E, Samsonova M, Reinitz J: FlyEx, the quantitative
atlas on segmentation gene expression at cellular resolution. Nucl Acid
Res 2009, 37:D560-6.

34. Press W, Teukolsky S, Vetterling W, Flannery B: Numerical recipes in C: the art
of scientific computing Cambridge University Press New York, NY, USA 1992.

35. Runarsson T, Yao X: Stochastic ranking for constrained evolutionary
optimization. IEEE Trans Evol Comp 2000, 4:284-94.

36. Kirkpatrick S, Gelatt C, Vecchi M: Optimization by Simulated Annealing.
Science 1983, 220:671-80.

37. Fieller EC: The Biological Standardization of Insulin. J Roy Stat Soc 1940,
7:1-64.

38. R Development Core Team: R: A Language and Environment for Statistical
Computing R Foundation for Statistical Computing, Vienna, Austria 2008
[http://www.R-project.org], [ISBN 3-900051-07-0].

39. Chu KW: Optimal Parallelization of Simulated Annealing by State Mixing.
Phd Stony Brook University 2001.

40. Mühlenbein H, Schomisch M, Born J: The parallel genetic algorithm as
function optimizer. Parallel Comp 1991, 17:619-32.

41. Nakakuku Y, Sadeh N: Increasing the efficiency of simulated annealing
search by learning to recognize (un)promising runs. Proc Natl Conf
Artificial Intelligence John Wiley & Sons 1995, 1316.

42. Mendes P, Kell D: Non-linear optimization of biochemical pathways:
applications to metabolic engineering and parameter estimation.
Bioinformatics 1998, 14:869-83.

43. Verhoeven M, Aarts E: Parallel Local Search. J Heuristics 1995, 1:43-65.
44. Rodriguez-Fernandez M, Mendes P, Banga J: A hybrid approach for

efficient and robust parameter estimation in biochemical pathways.
BioSystems 2006, 83:248-65.

45. Cantu-Paz E: A survey of parallel genetic algorithms. Calculateurs Paralleles,
Reseaux et Systems Repartis 1998, 10:141-71.

46. Lim D, Ong Y, Jin Y, Sendhoffand B, Lee B: Efficient Hierarchical Parallel
Genetic Algorithms using Grid computing. Future Generation Computer
Systems 2007, 23:658-70.

47. Darwin C: On the Origin of Species John Murray 1859.

doi:10.1186/1752-0509-4-17
Cite this article as: Jostins and Jaeger: Reverse engineering a gene
network using an asynchronous parallel evolution strategy. BMC Systems
Biology 2010 4:17.

Jostins and Jaeger BMC Systems Biology 2010, 4:17
http://www.biomedcentral.com/1752-0509/4/17

Page 16 of 16

http://www.ncbi.nlm.nih.gov/pubmed/12740579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12740579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11473012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11473012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15845847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15845847?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12169553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12169553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17977884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17977884?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12736331?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12736331?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/13679573?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/13679573?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/13679573?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1758194?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7748785?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18820476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18820476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7852948?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7852948?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15254541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15254541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15342511?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15342511?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17196796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17196796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17893088?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17893088?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17893088?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18817540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18817540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19750121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19750121?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14559783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14559783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16926221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16926221?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2896587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2896587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6411748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6411748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6411748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15059825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15059825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17813860?dopt=Abstract
http://www.R-project.org
http://www.ncbi.nlm.nih.gov/pubmed/9927716?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9927716?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16236429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16236429?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	The Problem: Drosophila Gap Gene Circuits
	Mathematical Model
	Quantitative Spatial Gene Expression Data
	Model Fitting by Optimisation

	Optimisation Algorithms
	Search Space Constraints
	Serial Island Evolution Strategy
	Parallel Island Evolution Strategy
	Parallel Lam Simulated Annealing

	Algorithm Performance Metrics
	Code Implementation

	Results
	Analysis of the Serial Island Evolution Strategy
	Parallelisation Efficiency
	Comparison of Algorithms

	Discussion
	Parallel Efficiency of the Evolutionary Strategy
	Simulated Annealing vs Evolutionary Strategy
	Further Methodological Improvements

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	References

