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Abstract: Identifying people with a high risk of developing diabetes among those with prediabetes
may facilitate the implementation of a targeted lifestyle and pharmacological interventions. We
aimed to establish machine learning models based on demographic and clinical characteristics to
predict the risk of incident diabetes. We used data from the free medical examination service project
for elderly people who were 65 years or older to develop logistic regression (LR), decision tree
(DT), random forest (RF), and extreme gradient boosting (XGBoost) machine learning models for
the follow-up results of 2019 and 2020 and performed internal validation. The receiver operating
characteristic (ROC), sensitivity, specificity, accuracy, and F1 score were used to select the model
with better performance. The average annual progression rate to diabetes in prediabetic elderly
people was 14.21%. Each model was trained using eight features and one outcome variable from
9607 prediabetic individuals, and the performance of the models was assessed in 2402 prediabetes
patients. The predictive ability of four models in the first year was better than in the second year.
The XGBoost model performed relatively efficiently (ROC: 0.6742 for 2019 and 0.6707 for 2020). We
established and compared four machine learning models to predict the risk of progression from
prediabetes to diabetes. Although there was little difference in the performance of the four models,
the XGBoost model had a relatively good ROC value, which might perform well in future exploration
in this field.

Keywords: machine learning; prediabetes; incident diabetes; predictive models

1. Introduction

Diabetes is one of the significant public problems worldwide, resulting in 536.6 million
adults with diabetes, 541.0 million adults with impaired glucose tolerance (IGT), and
319.0 million adults with impaired fasting glucose (IFG) [1]. Prediabetes is often used to
refer to the latter two states and is more commonly observed in the elderly [2]. Due to the
growing economic burden and mortality caused by diabetes, the prevention of diabetes
is imminent. Unlike incurable diabetes, the majority of prediabetes patients, especially
the elderly, may revert to normoglycaemia or remain stable. Only a fraction of patients
with prediabetes progress to diabetes [3], and this proportion can be further reduced by
lifestyle and pharmacological interventions [4]. So, identifying people with a high risk
of developing diabetes among prediabetic patients may facilitate the implementation of
targeted interventions and avoid the burden of prevention for people at low risk.

Machine learning has been identified as a powerful tool for application in the medical
field [5]. According to electronic health records, Neves et al. [6] predicted the outcome
of diabetes by applying Bayesian Networks. Lama et al. [7] used a random forest (RF)
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classifier to train a model for predicting whether an individual develops prediabetes or
type 2 diabetes. Meng et al. [8] developed three multiple prediction models with logistic
regression (LR), artificial neural networks, and decision tree (DT) for predicting diabetes or
prediabetes. However, most machine learning models in the field of diabetes research are
aimed at the onset and complications. Prediction models of progression from prediabetes
to diabetes are limited, and they may not be reliable to generalize to Chinese people due to
ethnicity differences [9].

Thus, the purpose of this study is to train machine learning models for predicting
patients with prediabetes progress to diabetes based on demographic information and
laboratory results. We select LR, DT, RF, and extreme gradient boosting (XGBoost) to
build predictive models and optimize their hyperparameters by 10-fold cross-validation.
Accuracy, sensitivity, specificity, and receiver operating characteristic (ROC) are also used
to estimate the performance of these predictive models.

2. Materials and Methods
2.1. Study Design and Participants

We conducted a retrospective cohort study of participants who attended free health
screening service in Wuhan, China, between 2018 and 2020. This project has provided
annual physical examinations to adults older than 65 years, which covered 31.3% of the
elderly population in Wuhan (388,420/1,242,470, in 2018).

We restricted our study to 26705 participants with prediabetes at baseline whose
fasting plasma glucose (FPG) ≥ 6.1 mmol/L [10] and did not meet the criteria of diabetes as
defined below. Those who had missing outcomes or were lost to follow-up were excluded
(Figure 1). Available data included demographics, lifestyle, medical history, anthropometric
indices, and laboratory results. Ethical approval was obtained from the Ethics Committee
of Wuhan Center for Disease Control and Prevention (#WHCDCIRB-K-2018023).

2.2. Data Collection

Demographic characteristics included age, gender, marital status, and education level.
Lifestyle included smoking, drinking, and exercise. An anthropometric examination was
conducted by well-trained community physicians. Height and weight were measured with
subjects wearing light clothes without shoes. The body mass index (BMI) was calculated as
the individual’s body weight (kg) divided by the square of height (m). Waist circumference
(WC) was measured at the midpoint between the last rib and iliac crest. Blood pressure
was measured three times by an electronic sphygmomanometer when participants were in
a sitting position after 5 minutes of rest. Blood samples were drawn from individuals after
at least 8 hours of fasting for laboratory tests. Exercise was defined as those who had more
than three times of physical activity for 30 min per week. Smoking was defined as those
who reported smoking at least once per month. Drinking was defined as those who drink
alcohol more than once a month.

2.3. Definition of Outcome

An individual was regarded to reach the outcome of diabetes when FPG ≥ 7.0 mmol/L
according to the American Diabetes Association diagnostic criteria [11] or a self-reported
diagnosis by health care professionals during the follow-up.

2.4. Feature Selection

To reduce the computational complexity and generalization error of the model, it was
important to determine which variables were most relevant. We selected the least abso-
lute shrinkage and selection operator (LASSO) regression analysis to screen the candidate
features. Finally, 8 features that included education, BMI, WC, FPG, total cholesterol (TC),
triglyceride (TG), high density lipoprotein cholesterol (HDL-C), and Alanine aminotrans-
ferase (ALT) were selected to develop a machine learning model.
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Figure 1. Flowchart of study participants.

2.5. Machine Learning Model Development and Evaluation

The processed data were randomly divided into a training set and a test set in a
4:1 ratio. In order to explore the differences in predictive ability and risk factors between
1-year and 2-year risk of diabetes onset, we constructed machine learning models for two
forecast periods. Four machine learning algorithms, including LR, DT, RF, and XGBoost
were used to develop models on the training set. LR is a linear model for classification,
which predicts a probability value of occurrence of the objective using a sigmoid function
and is widely used in biomedicine [12]. A decision tree is a flowchart-like tree structure,
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where each attribute can represent one internal node in a generated decision tree and has
as many branches as its number of different value classes. Moreover, the final leaves of a
decision tree represent the decision attribute [13]. Random forest is a supervised learning
algorithm that randomly extracts multiple samples from the training set using a bootstrap
algorithm and then generates multiple decision trees [14]. The classification results of new
instances are determined by taking a majority vote over all the decision trees. XGBoost is
an ensemble machine learning algorithm based on decision tree, which was first proposed
by Chen and Guestrin [15]. As an optimized implementation of gradient boosting [16],
XGBoost shows excellent performance in regression and classification tasks.

Hyperparameters of each model are important for model performance. We performed
a 10-fold cross-validation for automated Bayesian optimization with 500 iterations to obtain
optimized hyperparameters of each model.

All the machine learning models were assessed for their risk discrimination perfor-
mance ROC curves on the test set. Multiple indicators containing sensitivity, specificity,
accuracy, and F1 score were used to evaluate the predictive ability of four models. We
further applied the Shapley Additive exPlanation (SHAP) algorithm to the training set for
the model explanation.

2.6. Statistical Analysis

Analysis of statistical description was performed by SAS (version 9.4). Data were
expressed as means ± standard deviation (normally distributed) or median (interquartile
range) (non-normally distributed). Categorical variables were shown as frequency and
percentages. A comparison among groups was conducted by one-way ANOVA, Wilcoxon
rank-sum test, or Chi-square test according to the data types. P values were two-tailed
and were considered to be significant when they were < 0.05. All model development and
optimization were achieved by Python (version 3.11).

3. Results
3.1. Baseline Characteristics of Data Sets Used for the Analysis

The baseline characteristics between the groups of participants with incident diabetes
at different time points are presented in Table 1. Within the free health screening project,
12009 elderly prediabetic subjects who met the inclusion criteria were included in our
study. All the participants had complete information on demographics, lifestyles, medical
history, and laboratory tests. During the two-year follow-up, a total of 3414 individuals pro-
gressed to diabetes from prediabetes, and their average annual rate of diabetes progression
was 14.21%.

At baseline, the majority of the study population had primary school and lower educa-
tion levels. The distribution of education was shown in the following categories: primary
school and lower: 7456 (62.09%); middle school: 2424 (20.18%); high school:1134 (9.44%);
and university and higher: 995 (8.29%). The mean BMI was 24.69 ± 3.42 kg/m2. The
mean WC was 86.02 ± 9.72 cm. The mean FPG was 6.44 ± 0.25 mmol/L. The mean
TC was 5.04 ± 1.05 mmol/L. The median TG was 1.34 (0.97). The mean HDL-C was
1.38 ± 0.42 mmol/L, and the median ALT was 18.20 (11.00).

3.2. Performance Comparison between Different Machine Learning Models

Four different machine learning models using LR, DT, RF, and XGBoost were con-
structed for two forecast periods: 1 and 2 years.
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Table 1. Baseline characteristics between the groups of participants with incident diabetes at different
time points.

Variables

2019
p Value

2020
p ValueWithout DM

(n = 10,231)
DM

(n = 1778)
Without DM

(n = 8595)
DM

(n = 3414)

Age (years) 72.06 ± 5.10 72.17 ± 5.22 0.393 72.08 ± 5.13 72.06 ± 5.10 0.813
Gender, n (%) <0.001 0.018

Male 4536 (83.36) 873 (26.14) 3813 (70.49) 1596 (29.51)
Female 5695 (86.29) 905 (13.71) 4782 (72.45) 1818 (27.55)

Education, n (%) <0.001 <0.001
≤Primary school 6485 (86.98) 971 (13.02) 5529 (74.16) 1927 (25.84)

Middle school 1990 (82.10) 434 (17.90) 1615 (66.63) 809 (33.37)
High school 931 (82.10) 203 (17.90) 764 (67.37) 370 (32.63)
≥University 825 (82.91) 170 (17.09) 687 (69.05) 308 (9.02)

Marital status, n (%) 0.383 0.897
Married 7762 (84.96) 1374 (15.04) 6541 (71.60) 2595 (28.40)
Divorced 57 (87.69) 8 (12.31) 44 (67.69) 21 (32.31)
Widowed 2331 (85.76) 387 (14.24) 1947 (71.63) 771 (28.37)

Unmarried 81 (90.00) 9 (10.00) 63 (70.00) 27 (30.00)
Hypertension, n (%) <0.001 <0.001

No 4893 (87.02) 730 (12.98) 4153 (73.86) 1470 (26.14)
Yes 5338 (85.39) 1048 (16.41) 4442 (69.56) 1944 (30.44)

Myocardial infarction, n (%) 0.463 0.298
No 10,177 (85.18) 1771 (14.82) 8555 (71.60) 3393 (28.40)
Yes 54 (88.52) 7 (11.48) 40 (65.57) 21 (34.43)

Coronary heart disease, n (%) 0.841 0.144
No 9632 (85.22) 1670 (14.78) 8106 (71.72) 3196 (28.28)
Yes 599 (84.72) 108 (15.28) 489 (69.17) 218 (30.83)

Angina pectoris, n (%) 0.828 0.437
No 10,187 (85.19) 1771 (14.81) 8556 (71.55) 3402 (28.45)
Yes 44 (86.27) 7 (13.73) 39 (76.47) 12 (23.53)

Fatty liver, n (%) 0.315 0.055
No 9979 (85.25) 1727 (14.75) 8393 (71.70) 3313 (28.30)
Yes 252 (83.17) 51 (16.83) 202 (66.67) 101 (33.33)

Exercise, n (%) 0.587 0.455
No 3942 (85.42) 673 (14.58) 3321 (71.96) 1294 (28.04)
Yes 6289 (85.06) 1105 (14.94) 5274 (71.33) 2120 (28.67)

Smoking, n (%) 0.705 0.883
No 8804 (85.15) 1536 (14.85) 7403 (71.60) 2937 (28.40)
Yes 1427 (85.50) 242 (14.50) 1192 (71.42) 477 (28.58)

Drinking, n (%) 0.295 0.212
No 8544 (85.35) 1467 (14.65) 7188 (71.80) 2823 (28.20)
Yes 1687 (84.43) 311 (15.57) 1407 (70.42) 591 (29.58)

BMI (kg/m2) 24.56 ± 3.41 25.48 ± 3.31 <0.001 24.44 ± 3.42 25.34 ± 3.33 <0.001
WC (cm) 85.57 ± 9.73 88.65 ± 9.23 <0.001 85.20 ± 9.68 88.10 ± 9.52 <0.001
SBP (mmHg) 139.17 ± 19.48 140.30 ± 18.70 0.023 138.96 ± 19.52 140.28 ± 18.96 <0.001
DBP (mmHg) 80.99 ± 11.09 81.57 ± 10.64 0.041 80.86 ± 11.11 81.60 ± 10.79 0.001
FPG (mmol/L) 6.42 ± 0.24 6.54 ± 0.26 <0.001 6.40 ± 0.24 6.52 ± 0.26 <0.001
TC (mmol/L) 5.05 ± 1.05 4.99 ± 1.03 0.021 5.06 ± 1.05 5.00 ± 1.03 0.007
TG (mmol/L) 1.32 (0.96) 1.50 (1.06) <0.001 1.30 (0.93) 1.48 (1.05) <0.001
HDL-C (mmol/L) 1.39 ± 0.40 1.34 ± 0.51 <0.001 1.40 ± 0.40 1.33 ± 0.44 <0.001
LDL-C (mmol/L) 2.80 ± 0.92 2.76 ± 1.02 0.147 2.78 ± 0.93 2.81 ± 0.95 0.231
ALT (U/L) 18.00 (11.00) 19.10 (12.00) <0.001 18.00 (10.90) 19.00 (12.00) <0.001
AST (U/L) 22.00 (8.30) 22.00 (9.90) 0.797 22.00 (8.30) 22.30 (9.50) 0.034
TBil (µmol/L) 12.80 (6.80) 13.10 (6.20) 0.131 12.80 (6.90) 12.90 (6.50) 0.931
Scr (µmol/L) 77.50 (29.00) 76.90 (29.00) 0.107 78.00 (28.00) 76.00 (29.00) <0.001
BUN (mmol/L) 5.80 (2.26) 5.70 (2.05) 0.002 5.83 (2.29) 5.67 (2.07) <0.001
SUA (µmol/L) 332.93 ± 99.46 347.54 ± 95.61 <0.001 333.43 ± 99.44 344.32 ± 97.40 <0.001

Data are shown as means ± standard deviation for normally distributed variables, median (interquartile range)
for non-normally distributed variables, and percentages for categorical variables. DM: Diabetes mellitus; BMI:
Body mass index; WC: Waist circumference; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; FPG:
Fasting plasma glucose; TC: Total cholesterol; TG: Triglyceride; HDL-C: High density lipoprotein cholesterol;
LDL-C: Low density lipoprotein cholesterol; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase;
TBil: Total bilirubin; Scr: Serum creatinine; BUN: Blood urea nitrogen; SUA: Serum uric acid.
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3.2.1. 1-Year Forecast Period

Among these 12009 participants, 1778 (14.81%) had developed diabetes within 1 year
after baseline. The performance of the four machine learning models is displayed in
Figure 2a and Table 2. All the models obtained the optimal hyperparameters using Bayesian
optimization except LR (with default hyperparameters). The XGBoost model performed
relatively well (ROC: 0.6742), followed by the RF model (ROC: 0.6697), and the DT model
ranked last (ROC: 0.6530). Due to the imbalance ratio reaching 5.75, we identified the
optimal threshold using an ROC curve. The XGBoost model showed good sensitivity
(0.6569) but relatively poor specificity (0.5972) and accuracy (0.6066). The F1 score of
XGBoost ranked second among these models. The confusion matrix of XGBoost is presented
in Figure 3a.

Figure 2. Receiver operating characteristic (ROC) curves derived for prediction horizon of 1 and
2 years using the four models based logistic regression (LR), decision tree (DT), random forest (RF),
and extreme gradient boosting (XGBoost): (a) 1-year forecast period; (b) 2-year forecast period.

Table 2. Performance of four machine learning models for two forecast periods.

Metrics
Machine Learning Models

LR DT RF XGBoost

1-year forecast period

Sensitivity 0.5559 0.5213 0.5824 0.6569
Specificity 0.6876 0.7004 0.6807 0.5972
Accuracy 0.6669 0.6724 0.6653 0.6066
F1 score 0.3432 0.3325 0.3527 0.3433

2-year forecast period

Sensitivity 0.6232 0.5580 0.5754 0.6130
Specificity 0.6016 0.6612 0.6647 0.6443
Accuracy 0.6078 0.6316 0.6391 0.6353
F1 score 0.4772 0.4653 0.4780 0.4913

LR: Logistic regression; DT: Decision tree; RF: Random forest; XGBoost: Extreme gradient boosting.
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Figure 3. Confusion matrices derived for prediction horizons of 1 and 2 years based on the extreme
gradient boosting (XGBoost): (a) 1-year forecast period; (b) 2-year forecast period.

3.2.2. 2-Year Forecast Period

The number of incident diabetes reached 3414 (28.43%) during the 2-year follow-
up. The performance of the four machine learning models is presented in Figure 2b and
Table 2. The ROC value of all models for the 2-year forecast period was lower than for
the 1-year forecast period. The XGBoost model still performed relatively efficiently, with
a comparatively higher ROC value of 0.6707. The threshold was adjusted again because
of an increased number of positive cases. The imbalance ratio decreased to 2.52, and the
model for predicting 2-year risk changed accordingly. The optimal threshold was inferred
by the ROC curve and increased from 0.14 (1-year forecast period) to 0.30 (2-year forecast
period). Compared to the 1-year forecast period, the sensitivity of the XGBoost model
decreased, and the specificity and accuracy of XGBoost increased. The F1 score rose to first.
The confusion metrix of XGBoost was presented in Figure 3b.

3.3. Analysis of Feature Importance

Taking the XGBoost model with a little higher ROC value (in both forecast periods)
and F1 score (in 2-year period) into account, we decided to explain the results of our work
based on this machine learning model. To interpret the importance of each feature in the
XGBoost model, the ranking of the input features’ importance is shown in Figure 4, and the
SHAP summary plot is presented in Figure 5. For two different prediction horizons, FPG,
TG, and WC ranked consistently among the top three (Figure 4). The SHAP values of most
features decreased to some extent during the 2-year forecast period. In view of the fact that
Figure 4 can only show the correlation but not the direction of features, Figure 5 could be a
good supplement. The red dots in the SHAP summary plot indicated higher feature values,
and the blue dots indicated lower feature values. When the SHAP value of features was
greater than zero, such as FPG, TG, WC, BMI, and ALT, that suggested that they were risk
factors for diabetes onset.
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Figure 4. Feature importance in predicting incident diabetes according to the XGBoost model.
The Shapley additive explanation (SHAP) algorithm is used to calculate the SHAP value which
approximates how much each feature contributes to the average prediction for the dataset. (a) 1-year
forecast period. (b) 2-year forecast period.

Figure 5. SHAP summary plot of the XGBoost model. (a) 1-year forecast period. (b) 2-year
forecast period.

4. Discussion

In this retrospective cohort study, we established and evaluated prediction models
for identifying individuals at high risk of progression from prediabetes to diabetes within
1–2 years. The XGBoost model incorporated education, BMI, WC, FPG, TC, TG, HDL-C,
and ALT and provided a relatively good classification of risk among all the models overall.
However, the discriminatory ability of all models decreased as the forecast period increased.
In addition, it was found that there was not much difference in performance among the
four models.

In both forecast periods, the XGBoost model performed relatively well. This was
not unexpected; the predictive ability of XGBoost has manifested in previous studies of
diabetes onset [17] and complications [18]. As an ensemble machine learning algorithm,
XGBoost was not affected by the correlation of independent variables, which was exactly
the problem that the LR model needed to solve. So, it might be a good choice to use the
XGBoost algorithm for modeling in future studies.

Unsurprisingly, consistent with other studies [19–21], FPG was the strongest contribu-
tor to the models. We also found that the contribution of WC was higher than that of BMI in
both forecast periods, which modestly supports the view that the reliability of BMI for de-
termining obesity, a well-known major risk factor for diabetes, was questioned [22] because
BMI did not distinguish fat mass from lean mass [23] and WC represented central obesity.

Notably, the proportion of biomarkers reached 62.5% (5/8) among the features in-
cluded in the models. This confirmed the finding that risk evaluation constructed based on
biomarkers was superior to that based on non-laboratory indicators [24]. The inclusion of
biomarkers as input in the machine learning modeling will be a trend in the future.
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We acknowledge that the performance of our models was not competitive with results
presented in the literature for other relative machine learning research [25–27]. This may,
in part, be attributed to the fact that all of the participants were elderly, who generally
had several comorbid diseases. The well-known risk factors and biomarkers in elderly
individuals were less sensitive to diabetes onset than in younger adults.

The insufficiency of features might also be one of the reasons why our XGBoost model
did not perform as well as in other research [28], whose model included 300 features. After
all, in addition to demographic and lifestyle, nutrition intake has also been found to be an
important predictor of incident diabetes [29]. However, high-dimensional features generally
bring about information redundancy and overfitting problem. Considering that our model
included only eight features, we thought this level of performance was acceptable.

Even so, to the best of our knowledge, this was the first study to establish models
designed for the prediabetes population in mainland China. The majority of previous
studies [30–32] focused on the diabetes onset of the general population, ignoring the
transitional and high-risk state for the development of diabetes. Given that the proportion
of regression to normal glucose levels was much higher than progression towards diabetes
among prediabetes [33], changing the screening objects to prediabetes seemed to be more
conducive to allocating health resources.

China faces significant disease and economic burdens due to diabetes and its compli-
cations [34]. Identifying high-risk groups among prediabetic patients using the predictive
machine learning model we proposed could reduce the economic burden of diabetes
through the implementation of targeted lifestyle and pharmacological interventions, even
more so given the fact that our model was applicable to China’s national conditions. Aim-
ing to provide free charge essential health services for all citizens, the central government
launched the National Basic Public Health Service Program (BPHS), containing 14 items, of
which a vital part was geriatric health services [35]. This implied that under the current
health policy, no additional data collection would be needed.

Nevertheless, the present study has some limitations worth noting. The major lim-
itation of the present study is the models’ limited performance, which might be related
to suboptimal sample sizes and the fewer features. Considering the particularity of our
target population, further research should be undertaken to expand the sample size and
explore features that are more sensitive to the geriatric population. Second, the number of
incident diabetes might be underestimated, for OGTT was not included in the definition
of diabetes. However, it is infeasible to use OGTT during a mass free health screening
project due to its relatively expensive cost. Moreover, the data used in the study lacked
the features known to be diabetes risk factors such as glycosylated hemoglobin and family
history of diabetes. In addition, only participants who can be followed up were included in
our study. Meanwhile, because developing models could only be based on the participants
who reached the follow-up endpoint, we cannot rule out that death could have led to
some selection bias. Therefore, the generalization of the research to the whole geriatric
population should be cautious. Furthermore, the lack of information on lifestyle changes
during follow-up might confound the predictive ability of baseline features. Finally, all
the participants included in our study were Chinese, so the predictive model may not be
generalizable to other ethnicities.

5. Conclusions

In conclusion, we evaluated the performance of several prediction models using four
machine learning algorithms based on the demographic, anthropometric indices, and
laboratory results. The XGBoost model might be an effective prediction model, which
might perform well in future exploration in this field.
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