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Abstract: Three-dimensional printing polyetheretherketone (PEEK) provides a new choice for dental
prostheses, while its appropriate bonding procedure and adhesive performance are still unclear. This
study aimed to investigate the adhesive performance of printed polyetheretherketone (PEEK) after
acid etching to veneering resin. In total, 182 PEEK specimens (including 91 printed and 91 milled
specimens) were distributed to 14 subgroups (n = 13/subgroup), according to the manufacturing
process and surface treatment. The specimens were polished and etched with sulfuric acid for 0,
5, 30, 60, 90, 120, and 300 s, respectively. Two specimens in each subgroup were observed under a
scanning electron microscope (SEM) for surface and cross-section morphology separately. Then, the
specimens were treated with a bonding primer, and one specimen in each subgroup was prepared
for cross-sectional observation under SEM. The residual 10 specimens of each subgroup bonded
with veneering resin were tested with the shear bond strength tests (SBS) and failure modes analysis.
Statistical analysis was performed by one-way ANOVA followed by the SNK-q post hoc test (p < 0.05).
The etched pores on the PEEK surface were broadened and deepened under SEM over time. Printed
PEEK etched for 30 s obtained the best SBS-to-veneering-resin ratio (27.90 ± 3.48 MPa) among the
printed subgroups (p < 0.05) and had no statistical differences compared with milled PEEK etched for
30 s. The SBS of the milled subgroups etched from 5 to 120 s were over 29 MPa without significant
between-group statistical differences. Hence, printed PEEK can be coarsened effectively by 30 s of
sulfuric acid etching. The adhesion efficacy of printed PEEK to veneering resin was qualified for
clinical requirements of polymer-based fixed dentures.

Keywords: 3D printing; polyetheretherketone (PEEK); sulfuric acid; adhesives; prosthodontics

1. Introduction

Polyetheretherketone (PEEK), a high-performance polymeric material successfully
utilized in traditional industrial fields, has been gradually introduced into dentistry and
applied as a framework material of complete dentures, removable partial dentures, and
implant-supported prostheses [1–3]. Compared with existing dental materials, PEEK
shows better mechanical properties of flexural strength and fracture resistance [4,5]. Most
reported PEEK prostheses were fabricated with the CAD/CAM milling technique, while
the cost of excess material and time remain to be solved in the future [5–7]. Additive
manufacturing, also named 3D printing, offers a remarkable utilization rate of the material
and good shape ability, which has attracted the focus of researchers [8,9]. Currently, the
most widespread 3D printing technologies include selective laser sintering (SLS), fused
deposition modelling (FDM), stereolithography (SLA), digital light processing (DLP), lami-
nated object manufacturing (LOM), and so forth. Fused deposition modeling (FDM) is one
representative technique of 3D printing, by squeezing the filamentous fused thermoplastic
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material through a digitally controlled nozzle [10,11]. The thermoplastic materials (mostly
polymers) were stacked layer by layer, ending up as the ultimate shapes. Alteration of
printing direction or processing parameters would affect the mechanical properties of the
final products [11].

Pigments including TiO2 powders were filled into PEEK to improve the unfavorable
color of pure PEEK for clinical use, while this color-modified PEEK hardly improved the
aesthetic demand [12]. Explorations achieved good effects by coating veneering resin onto
the PEEK surface [5,13,14]. PEEK, as an inert material, has limited bonding strength com-
pared to conventional adhesives. Before bonding to the veneering resin, appropriate surface
treatment, including sandblasting, sulfuric acid etching, and bonding primer treatment,
could be mechanically or chemically helpful to the definitive adhesive properties [15,16].
It has been demonstrated that milled PEEK etched by sulfuric acid (98%) for 60 to 120 s
obtained reliable adhesive strength compared to resin composite [16,17]. Sulfuric acid
(98%) could have sulfonic functionalization with PEEK, resulting in micro-scale valleys
and pores over the PEEK surface, which could increase its surface roughness and wettabil-
ity [18,19]. Moreover, acid-etching combined with bonding primer treatment improved
its bonding performance with resin by the micro-interlocking of the bonding primer and
the etched PEEK pores, and the studies on tensile and shear bond strength showed that
the Visio.link was considered an appropriate bonding primer in the bonding of PEEK to
veneering resin [20–22]. However, due to different processes, optimal etching duration
and the microscopic details of the bonding interface are still unclear for the printed PEEK
to veneering resin. This study aimed to investigate the bonding efficacy between the
pretreated printed PEEK and veneering resin and observe the morphology of the bonding
interface. The first null hypothesis was that etching duration would not influence the
shear bond strength of veneering resin to PEEK. The second null hypothesis was that
PEEK made by two manufacturing processes did not present any differences in terms of
adhesive performance.

2. Materials and Methods
2.1. Specimen Preparation
2.1.1. Fabrication of the Original Specimens

Table 1 shows the compositions and details of the materials used in this study. Ninety-
one disk-shaped PEEK specimens (diameter of 10 mm and thickness of 2 mm) were
milled from PEEK dental disks (Vestakeep, Evonik, Essen, Germany) by a milling machine
(UF-2SS-V, Haas Automation, Oxnard, CA, USA) under the water coolant. Ninety-one
printed PEEK specimens were prepared with PEEK filaments according to the same di-
mension. Table 2 summarizes the main printing parameters. Each specimen was polished
with an automatic water-cooled polishing machine (Mecatech234, PRESI, Grenoble, France)
using silicon carbide abrasive papers (Starcke; Matador, Germany) of 400-, 800-, 1200-,
1500-, 2000-, and 3000-grit for 6 min. Subsequently, all the specimens were thoroughly
cleaned by an ultrasonic bath in distilled water for 15 min and dried with oil-free air
(Figure 1). The experimental group was the printed group (P group), and the control group
was the milled group (M group).

Table 1. Main experimental material composition.

Materials Main Composition Manufacturers

PEEK compounds PEEK disk 80% PEEK, 20% TiO2 pigments Evonik, Germany
PEEK filaments 80% PEEK, 20% TiO2 pigments Evonik, Germany

Composite primer Visio.link MMA, Pentaerythritol triacrylate Bredent, Germany

Light-curing veneer composite Ceramage Carbamate dimethacrylate, aluminum
silicate glass, and hydroxyethyl methacrylate Shofu, Japan

The main composition was based on the information provided by the manufacturers. PEEK, polyetheretherketone; MMA, methyl methacrylate.
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Table 2. Parameters of the 3D printing process.

Description Value

Filament diameter 1.75 mm
Nozzle temperature 410 ◦C
Nozzle diameter 0.4 mm
Heated building chamber 180 ◦C
Layer thickness 0.2 mm
Raster angle Consistent with the longest edge
Printing speed 20 mm/s
Slicing software Medvance Vulcan v2.1
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Figure 1. The diagram showing the workflow in this study. The surface modification indicates the
pretreatment of PEEK. The surface characterization indicates microscopic morphology observation
and surface elemental compositions analysis of PEEK. EDS, energy-dispersive spectrometer. SEM,
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2.1.2. Sulfuric Acid Etching

According to the etching duration of sulfuric acid, both the P group and M group
were further divided into seven subgroups (n = 13/subgroup), respectively, which were
etched with 98% sulfuric acid (Sinopharm Chemical Reagent, Shanghai, China) for 0, 5, 30,
60, 90, 120, and 300 s. Then, all specimens were ultrasonically cleaned in deionized water
for 15 min to remove surface residues and dried with oil-free air. Two specimens in each
subgroup were prepared for observation of surface morphology.

2.1.3. Treatment with the Bonding Primer

The bonding primer (Visio.link, Bredent GmbH, Senden, German) was coated to
the remaining 11 specimens in each subgroup with a micro brush and then blown with
oil-free air for 20 s to form a thin layer. Subsequently, the bonding primer was polymer-
ized for 90 s with an LED curing light (Bluephase Style, Ivoclar Vivadent AG, Schaan,
Liechtenstein) in the wavelength range of 370–400 nm according to the manufacturer’s
instruction. One specimen in each subgroup was selected randomly for the observation of
cross-section morphology.

2.2. Microscopic Morphology and Surface Elemental Compositions

Two etched-only specimens in each subgroup were randomly selected and observed
separately for surface and cross-section morphology using a scanning electron microscope
(SEM) (S-4800, Hitachi, Tokyo, Japan) equipped with an energy-dispersive spectrometer
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(EDS). The specified specimens for cross-section observation were frozen in liquid nitrogen
for 10 min and snapped under to obtain a clear cross-sectional view. Another specimen
coated with the bonding primer in each subgroup was selected randomly for cross-sectional
microscopic observation.

2.3. Shear Bond Strength Tests

The veneering resin (Ceramage, Shofu, Kyoto Prefecture, Japan) was shaped in a
mold (4 mm in inner diameter, 5 mm in thickness), pressed onto the center of each PEEK
specimen surface, and light-polymerized for 3 min. All the specimens were stored in
distilled water at 37 ◦C for 24 h before testing. The specimens were mounted with a loading
jig on a universal testing machine (CMT4204, MTS, Shanghai, China). The shear bond
strength test was operated with a crosshead speed of 0.5 mm/min. The shear bond strength
(MPa) was defined as the ratio between the load at failure (N) and the area of the bonded
surface in square millimeters (mm2).

2.4. Failure Modes Analysis

The fractured surfaces of all tested specimens in 2.3.2. were observed under the
stereomicroscope (SMZ1500, Nikon, Tokyo, Japan) at ×20 magnification. Failure modes
were classified into four types: (1) adhesive failure between PEEK and resin materials,
(2) cohesive failure within PEEK, (3) cohesive failure within resin materials, and (4) mixed
failure with both cohesive and adhesive failures. Representative PEEK fractured surfaces
were selected for further SEM observation at ×30 magnification.

2.5. Statistical Analysis

Statistical analysis was performed using one-way ANOVA, followed by the SNK-q
post hoc test using the SPSS V26.0 (IBM, Armonk, NY, USA). The statistical significance
was set at α = 0.05.

3. Results
3.1. Surface Elemental Compositions of the Etched PEEK

Figure 2 shows the energy dispersive spectrum of the etched PEEK surfaces. No
statistical difference was found in the weight percent of sulfur element among the etched
printed and milled PEEK subgroups.
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3.2. Surface Morphology

The morphology of the etched surface (Figure 3) and cross-section (Figures 4 and 5)
under SEM showed that with the extension of etching duration, the etched pores were
broadened. After the treatment of the primer, the cross-section SEM images of the etched
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interface at ×1000 and ×2500 magnification (Figures 4 and 5) showed an increasing trend
of the bonding primer penetrating depth along with the etching duration. The mean of
etching thickness was given in Table 3.
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Figure 5. The SEM images showing the cross-section morphology of the etched PEEK before and after the treatment of
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Table 3. Sulfuric acid etching time points applied to the different groups.

Etching Duration (Seconds)
Etching Thickness (µm)

Printed PEEK Milled PEEK

0 0 0
5 5.61 ± 0.17 6.18 ± 0.58
30 11.76 ± 0.21 11.84 ± 0.45
60 19.58 ± 0.23 18.08 ± 0.54
90 26.86 ± 0.28 24.05 ± 0.29
120 31.38 ± 1.39 29.60 ± 1.15
300 58.92 ± 0.88 62.86 ± 1.38

Data are Mean ± SD based on five measurements of etching thickness shown in Figures 4 and 5 before the
application of primer.

3.3. Shear Bond Strength (SBS) Test

Among the printed PEEK subgroups, P30 presented the optimal SBS value 27.90 ± 3.48 MPa
(p < 0.05). The SBS values of the M5, M30, M60, M90, and M120 subgroups were significantly
greater than those of M0 and M300 (p < 0.05), while there was no statistical difference
among the M5, M30, M60, M90, and M120 subgroups (Figure 6).
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3.4. Failure Modes Analysis

Table 4 shows the counted failure modes. Figure 7 shows the relative morphology of
fracture surfaces.

Table 4. Failure modes of each testing group after different surface treatments.

Etching Duration (Seconds)
Printed PEEK Milled PEEK

A AC C-P C-r A AC C-P C-r

0 10 0 0 0 9 1 0 0
5 7 0 3 0 8 2 0 0
30 5 4 1 0 4 5 0 1
60 7 1 2 0 3 6 0 1
90 6 1 3 0 3 5 0 2
120 5 1 3 0 5 4 0 1
300 6 2 2 0 5 5 0 0

A, adhesive failure; AC, combination of cohesive and adhesive failure; C-P, cohesive failure of PEEK; and C-r, cohesive failure of
veneering resin.
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(A) Adhesive failure between PEEK and resin materials, (B) cohesive failure within PEEK, (C) cohe-
sive failure within resin materials, and (D) mixed failure with both cohesive and adhesive failures.

4. Discussion

The surface modification of PEEK is one of the major focuses prior to its extensive
clinical application. In this present study, the bonding interface and the shear bond strength
of acid-etched PEEK to veneering resin were systematically investigated. With the bonding-
strength-to-veneering-resin ratio following the international standard (ISO 10477: 2020)
(above 5 MPa) [23], the printed PEEK showed similar but not identical performance with
milled PEEK. Thus, the null hypotheses of the study were rejected.

The sulfur element was detected from all the etched PEEK specimens’ surface, in-
dicating the sulfonation reactions that happened on the PEEK surface. The sulfonation
and the introduction of -SO3H groups on the PEEK surface have been proved in studies
using Fourier Transform Infrared Spectroscopy (FTIR), thermal and chemical analyses, or
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energy dispersive spectrometry (EDS) [18,19,24–26]. The introduction of the -SO3H groups
promoted the formation of the porous structure and enhanced PEEK wettability [25,27]. In
addition to the sulfonation, PEEK was completely soluble in concentrated sulfuric acid at
25 ◦C, which is rarely mentioned in the previous studies’ focus on the surface modification
of PEEK [28]. The solubility of PEEK in concentrated sulfuric acid is evidence against
the prolongation of sulfuric acid etching duration. In addition, the SEM results showed
that the dissolution of PEEK caused etching pores and destruction of the surface structure.
The variation of etching pores and the deepening of the etching thickness were reported
from the cross-sectional perspective for the first time. The etching pores and thickness of
PEEK surfaces increased with the extension of the etching time resulting in weaker surface
strength, especially in the groups of 120 and 300 s (Figure 5).

As shown in the adhesion interface from a pilot experiment (Figure 8), etched PEEK
and veneering resin were stuck together by the primer and were not in direct touch with
each other. In addition, Figure 4 shows that the primer penetrated part of the etched pores
while the bottom part of the pores was still vacant. Thus, the adhesion interface included
resin, primer, mixing layer (the etched PEEK penetrated by the primer, becoming thicker
with the extension of etching duration), etched pores of PEEK, and the unetched PEEK. No
mixing layer was observed from the unetched PEEK after primer treatment (Figure 4).
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The shear bond strength (SBS) values showed that the adhesive properties of printed
PEEK specimens were slightly lower than the milled groups to veneering resin. Among
milled PEEK subgroups, the milled PEEK etched by concentrated sulfuric acid for 5 to
120 s (M5 to M120) achieved stable and reliable adhesive strength to veneering resin,
consistent with conclusions from previous studies (60 to 120 s) [16]. Among the printed
PEEK subgroups, the specimens etched for 30 s (P30) obtained the best SBS-to-veneering-
resin ratio. Other experimental printed subgroups, though lower in SBS than P30 and
corresponding milled PEEK subgroups, were still higher than P0, and above 5 MPa, the
required value was ISO 10477:2020 [23]. Considering the SEM images, the prolonged
etching time could bring wider etching pores for the primer to penetrate and to form a
thicker mixing layer; however, it weakened the surface structure of PEEK, resulting in
lower surface strength of PEEK. These results indicated that a longer etching duration
might cause surface damage, and thus is not recommended by the authors. Considering
the convenience of clinical practice and adhesive performance, the authors recommend the
etching duration of 30 s as the optimal etching time for printed PEEK. For milled PEEK, in
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which group no statistical difference was observed from 5 s to 120 s, the duration of etching
suggested by authors is less than 120 s.

In terms of failure modes analysis, no cohesive failure was observed in PEEK, and
most failures occurred in the primer or resin layer among the milled PEEK subgroups. On
the contrary, the stripping off of the etched surface layer of the printed PEEK was noticed
(Figure 6), showing that the bonding strength between resin and the etched printed PEEK
was greater than the interlayer bonding strength of the fused PEEK filaments. The weaker
interlayer bonding strength in the printed PEEK may result in a weaker shear bond strength
to the resin than that of milled PEEK. Furthermore, the printing parameters such as nozzle
temperature, layer height, and wait-time were reported to have a profound influence on
interlayer bonding strength in printed PEEK [29]. Future adjustments on the printing
parameters to enhance the properties of printed PEEK are suggested by the authors.

One limitation of this study was the fact that no thermocycling or long-term water
storage was carried out before the shear bond strength tests. According to most studies on
adhesive performance, artificial aging procedures would have an impact on the shear bond
strength, which was approximate to the actual bonding strength. Therefore, artificial aging
procedures should be included to assess the stability of the bonding strength in subsequent
studies. In addition, as a promising alternative material in dentistry, the biocompatibility
of PEEK is still of significance. It was reported that the milled PMMA had less cytotoxicity
than the traditional one, indicating that the manufacturing process could influence the
residue of the ingredients and the biocompatibility of material [30]. Future studies on the
biocompatibility of printed PEEK are also needed.

5. Conclusions

Based on the results of the study, the following conclusions were drawn:

(1) The adhesive property of 3D-printed PEEK can satisfy the clinical needs of polymer-
based fixed dentures according to ISO 10477:2020, although slightly lower than that
of milled PEEK.

(2) The appropriate etching duration of milled PEEK was less than 120 s since prolonged
etching duration might cause surface damage and compromise the adhesive efficacy.

(3) Thirty seconds was considered as the ideal etching duration for printed PEEK.
(4) 3D-printing procedures need to be improved for better interlayer bonding strength of

PEEK and better surface adhesive performance.
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