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Abstract: Curcumin is a natural active product that has various pharmacological activities such 

as anti-inflammatory effects. Here, we report the synthesis and evaluation of 34 monocarbonyl 

curcumin analogs as novel anti-inflammatory agents. Among the analogs, the symmetrical 

heterocyclic type displayed the strongest inhibition of lipopolysaccharide (LPS)-stimulated 

expression of pro-inflammatory cytokines in macrophages. Analogs S1–S5 and AS29 reduced 

tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production in a dose-dependent 

manner and also displayed excellent stability and low cytotoxicity in vitro. In addition, ana-

log S1 dose-dependently inhibited LPS-induced extracellular signal-regulated kinase (ERK) 

phosphorylation. Furthermore, analogs S1 and S4 displayed a significant protective effect on 

LPS-induced septic death in mouse models, with 40% and 50% survival rates, respectively. 

These data demonstrate that the heterocyclic monocarbonyl curcumin analogs have potential 

therapeutic effects in acute inflammatory diseases.
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Introduction
Inflammation is part of a complex biological response that is induced by harmful 

stimulation, such as burns, pathogens, and chemical irritants. Over-expressed inflam-

matory cytokines are involved in the pathological processes of a number of diseases.1,2 

In particular, sepsis, a systemic inflammatory response syndrome characterized by 

cytokine storm and multi-organ failure that occurs during severe infection, is believed 

to be related to an exacerbated release of pro-inflammatory cytokines, such as tumor 

necrosis factor-α (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6).3,4 Excessive 

or sustained release of inflammatory cytokines leads to serious consequences, includ-

ing septic shock.5 Cytokines also play a vital role in the development of sepsis.6–9 The 

development of novel therapeutic agents that block pro-inflammatory pathways or 

inhibit the over-expression of cytokines has been the focus of researchers investigating 

the treatment of inflammatory disease.10–12 

Curcumin is a natural yellow product derived from the turmeric rhizome of the herb 

Curcuma Longa (Figure 1). Curcumin has shown to be non-toxic and exhibits various bio-

logical activities such as anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic, 

anti-bacterial, anti-fungal, anti-viral, anti-fibrotic and anti-ulcer effects.13–17 Curcumin 

treatment has been observed to have both preventive and therapeutic anti-inflammatory 

effects in various animal models.18 In addition, more than 65 clinical trials of curcumin 

have finished and curcumin is proven to be safe.19 Despite the effective activity of cur-

cumin on many cellular targets linked to a variety of diseases, low  bioavailability and 
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weak stability have significantly limited its clinical applica-

tion.20 To find new analogs with increased bioavailability and 

enhanced pharmacological activity, researchers have attempted 

the chemical modification of curcumin.21–23 Among these 

analogs, monocarbonyl analogs have received much attention 

as potential curcumin analogs, and the beta-diketone moiety, 

which is believed to be responsible for the weak metabolism, 

has been removed.24,25 Our group has adopted the strategy of 

synthesis of monocarbonyl curcumin analogs to overcome 

these limitations (Figure 1). Based on the aforementioned 

studies, and as a part of our ongoing research, 34 novel mono-

carbonyl analogs of curcumin were synthesized, and their 

cytokine-inhibitory and anti-sepsis effects were studied.

Materials and methods
chemical experimental procedures
The synthesis of enamide 2 and 7
To a stirred solution of cyclopentanone or piperidine or pyrone 

(20 mM) and p-TSA (200 mg) in cyclohexane (20 mL) was 

added morpholine (30 mM), and the mixture reaction was 

refluxed for four hours at 90°C. Subsequently, the solvent 

was removed under reduced pressure to give various activated 

enamine intermediates 2 or 7 as yellow viscous oils, and they 

were used directly without further purification.

general procedure for synthesis of s1–s5
To a stirred solution of Vanilline (10 mM) in ethanol (EtOH) 

(12 mL) was added N-propionyl 4-piperidone, pyrone, or thi-

opyrone (5 mM) at room temperature, and hydrogen chloride 

(HCl) (gas) was bubbled into the mixture until the reaction was 

completed. Then the reaction mixture was poured into cold 

water (25 mL) to yield a colored precipitate. After filtration, 

the resultant colored solid was washed with water and used 

immediately for the next step without further purification. To a 

solution of the crude product in tetrahydrofuran (THF) (10 mL) 

was added propionyl or isobutyryl chloride (10 mM) in the pres-

ence of triethylamine (Et
3
N), resulting in S1–S5. The resulting 

crude products were purified by chromatography over silica gel 

using petroleum/ethyl acetate (EtOAc) as the eluent.

general procedure for the synthesis of as1–as15, 
as28, and as29
The stirred solution of 3 or 9 (2 mM) in EtOH (25 mL) was 

added to the various aldehydes (2 mM) at room temperature. 

Subsequently, HCl (gas) was bubbled into the mixture for 

30 minutes, and the mixture was stirred for 3 to 5 hours at 

50°C–70°C. The mixture was then poured into ice water and 

extracted with EtOAc (3×20 mL). The combined organic lay-

ers were washed with 10% sodium bicarbonate (NaHCO
3
), 

dried over anhydrous magnesium sulfate (MgSO
4
), filtered, 

and concentrated in vacuo. Flash chromatography of the 

residue over silica gel using EtOAc/petroleum as the eluent 

gave AS1–AS15, AS28 and AS29.

general procedure for the synthesis of as16–as27
Similar to the procedure described for the preparation of 

AS1–AS15 with the exception of using a different aldehyde, 

all the phenolic hydroxyls of the resulting products (1 mM)  

were estered by dropping the propionyl chloride (10 mM) in 

the presence of Et
3
N (0.25 mL) at 0°C, using THF (10 mL)  

as the solvent. The reaction mixture was stirred at room 

temperature overnight. Thin layer chromatography demon-

strated that the reaction had been completed. After removing 

the solvent, the resultant residue was chromatographed over 

silica gel using EtOAc/petroleum, as the eluent generated the 

desired products AS16–AS27.

cell line and reagents
Mouse macrophages and human normal hepatic HL-7702 

cells were obtained from the American Type Culture 
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Figure 1 Chemical structure of curcumin and the design of its monocarbonyl analogs.
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 Collection, Manassas, VA, USA. Cell culture reagents were 

obtained from Gibco Life Technologies, Grand Island, NY, 

USA. Fetal bovine serum (obtained from HyClone, Logan, 

UT, USA) was heat-inactivated for thirty minutes at 65°C. 

Lipopolysaccharide (LPS) and chemical reagents were 

purchased from Sigma–Aldrich, St Louis, MO, USA. Anti-

p-ERK and anti-ERK antibody was obtained from Santa 

Cruz Biotechnology, Santa Cruz, CA, USA; anti-p-p38, 

anti-p38, anti-p-JNK and anti-JNK were from Cell Signaling 

Technology, Danvers, MA, USA. Curcumin and compounds 

S1–S5, and AS1–AS29 were dissolved in dimethyl sulfoxide 

(DMSO) for in vitro experiments.

animals
Male C57BL/6 mice weighing 18–22 g were obtained 

from the Animal Center of Wenzhou Medical University 

(Wenzhou, People’s Republic of China). Animals were 

housed at constant room temperature with a 12:12 hour 

light:dark cycle, fed with a standard rodent diet, and provided 

with sufficient water. The animals were allowed to adapt to 

the laboratory environment for at least 7 days before their 

use in experiments. Protocols involving the use of animals 

were approved by the Wenzhou Medical University Animal 

Policy and Welfare Committee.

Enzyme-linked immunosorbent assay
Mouse macrophages were incubated in Dulbecco’s Modified 

Eagle’s Medium (DMEM) (Gibco, Eggenstein, Germany) 

and replenished with 10% fetal bovine serum (FBS), 

100 U/mL penicillin, and 100 mg/mL streptomycin at 37°C 

with 5% CO
2
. Cells were pretreated with compounds for 

30 minutes, then treated with LPS (0.5 μg/mL) for 24 hours. 

After treatment, the culture media and cells were collected 

separately. The levels of tumor necrosis factor alpha (TNF-α) 

and interleukin-6 (IL-6) in the media were determined by 

enzyme-linked immunosorbent assay (ELISA) using mouse 

TNF-α and mouse IL-6 ELISA kits (eBioScience, San Diego, 

CA). The total quantity of the inflammatory factor in the 

media was standardized to the total protein amount of the 

viable cell pellets.

Western blot
Macrophages were treated with 0.5 μg/mL LPS for 20 

minutes before incubation with or without compounds for 

30 minutes. For the preparation of total cell proteins, mac-

rophages were washed with PBS and lysed. The proteins were 

separated by sodium dodecyl sulfate–polyacrylamide gel 

electrophoresis (SDS–PAGE), and were electrophoretically 

transferred onto nitrocellulose membrane. The membranes 

were first  incubated with the primary antibodies, then incu-

bated with the horseradish peroxidase (HRP)-coupled sec-

ondary antibodies. Detection was performed with enhanced 

chemiluminescence reagents, and the protein bands were 

quantified by densito metry using ImageJ image processing 

program (US National Institutes of Health, Washington, 

DC, USA).

Methyl thiazolyl tetrazolium assay
HL-7702 cells were seeded into 96-well plates at a density 

of 5,000 cells per well in Roswell Park Memorial Institute 

1640 medium, and replenished with 5% heat-inactivated 

serum, 100 U/mL penicillin, and 100 μg/mL streptomycin. 

Cells were incubated at 37°C in 5% CO
2
 for 24 hours. Cells 

were cultured with DMSO or 10 μM tested compounds for 24 

hours before the methyl thiazolyl tetrazolium (MTT) assay. 

A fresh solution of MTT (5 mg/mL) prepared in phosphate 

buffer solution was added to each single well. The plate was 

then incubated in a CO
2
 incubator for 4 hours, cells dissolved 

with 150 μL DMSO, and read for optical density at 490 nm. 

Viability was defined as the ratio (expressed as a percentage) 

of absorbance of treated cells to DMSO treated cells. 

in vivo study method
Compounds were firstly dissolved with macrogol 15 

hydroxy stearate (a nonionic solubilizer [BASF, Ludwig-

shafen, Germany]) for injection with or without medium 

chain triglycerides (MCT), from BASF, in a water bath at 

37°C. The concentration of compounds was 2 mg/mL. The 

concentration of solubilizer ranged from 5%–10%, and 

MCT 0.5%–2% in the final solution. For the vehicle, the 

mixture of solubilizer and MCT was prepared at 10% and 

2%, respectively. Male C57BL/6 mice weighing 18–22 g 

were pretreated with compound S1 or S4 (10 mg/kg) in a 

water solution by intravenous injection 15 minutes before the 

intraperitoneal injection of LPS (15 mg/kg). Control animals 

received a similar volume (200 μL) of vehicle. Body weight 

change and mortality were recorded for 7 days.

The stability experiment of active analogs
Compounds were dissolved in DMSO, and the concentra-

tion was 10 mM. The stock solution was diluted 10 times, 

and then added 1 μL diluent into an Eppendorf Tube which 

was assembled with 99 μL phosphate buffered saline 

(PBS). After that we could obtain the miscible liquid with 

the  concentration of 10 μM and add it into the cuvette 

which was read for optical density at 250–600 nm. The 

absorbance was read at set intervals (0, 5, 10, 15, 20, and 

25 minutes). 
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statistical analysis
The results are presented as means ± standard error of the 

means (SEMs). Student’s t-test was employed to analyze the 

differences between sets of data. Statistics were performed 

using GraphPad Prism 5.0 (GraphPad Software, La Jolla, CA, 

USA). P-values less than 0.05 (P0.05) were considered 

indicative of significance. All experiments were repeated at 

least three times.

Results and discussion
chemistry
The synthetic routes of the symmetrical and asymmetrical 

monocarbonyl analogs of curcumin (MACs) are shown in 

Figure 2. The synthesis of the symmetrical curcumin analogs 

S1–S5 began with the key Claisene–Schmidt condensation 

reaction between vanillin and corresponding heterocyclic 

ketone, including piperidone, pyrone and thiopyrone. All 

of the phenolic hydroxyls of the products were then estered 

with propionyl or isobutyryl chloride in the presence of 

Et
3
N. The asymmetrical monocarbonyl curcumin derivatives 

(AS1–AS29) were synthesized also through the aldol con-

densation strategy. Commercially available cyclopentanone 

3 or heterocyclic ketone 4 were activated with morpholine, 

and the resulting enamines 2 and 7 were condensed with 

vanillin and 2-chlorobenzaldehyde, respectively, to afford 

the desired unilateral unsaturated ketones. Subsequently, 

AS1–AS15, AS28, and AS29 were obtained by construct-

ing the second unsaturated ketone in an acidic environ-

ment. Finally, propionylation of the phenolic hydroxyls 

was carried out in the presence of Et
3
N to complete the 

Figure 2 The synthetic pathway for monocarbonyl curcumin analogs S1–S5, and AS1–AS29.
Note: reagents and conditions were a) morpholine, p-TSA, cyclohexane, reflux, 50%; b) vanillin, EtOH, reflux, HCl, 30%; c) differently aldehydes, HCl gas, EtOH, 50°C–
70°C, 10%–70%; d) THF, propionyl chloride, Et3N, rt, 5%–54%; e) piperidone, pyrone, or thiopyrone, HCl gas, EtOH, rt, 40%–50%; f) THF, propionyl, or isobutyryl chloride, 
et3N, rt, 8%–31%; g) piperidone or pyrone, p-TSA, cyclohexane, reflux, 40%–50%; h) 2-chlorodebenzaldehyde, EtOH, reflux, HCl, 30%–35%; i) 3,4-dihydroxybenzaldehyde 
or 3,4,5-trimethoxybenzaldehyde, HCl gas, EtOH, rt, 10%–15%.
Abbreviations: AS, asymmetrical monocarbonyl curcumin derivative; EtOH, ethanol; Et3N, triethylamine; Me, methyl; rt, room temperature; THF, tetrahydrofuran; TSA, 
toluenesulfonic acid; HCl, hydrochloric acid.
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synthesis of AS16–AS27. All compounds were purified 

by recrystallization or column chromatography. Their 

structures, determined by spectral data from electrospray 

mass spectrometry (ESI-MS) and proton nuclear magnetic 

resonance (1H-NMR) spectroscopy, are shown in Figure 2. 

Spectral data can be found in the Supplementary material. 

Before biological experiments were carried out, the purity 

of all compounds was detected by high-performance liquid 

chromatography (HPLC), as shown in the Supplementary 

material. 

Compounds inhibited LPS-induced  
TnF-α and il-6 production
TNF-α and IL-6 are two well-known pro-inflammatory cytok-

ines. It has been well demonstrated that they play important 

roles in the pathological development of many inflammatory 

diseases.26,27 To investigate whether the 34 synthetic analogs 

have anti-inflammatory activity, their ability to reduce LPS-

stimulated TNF-α and IL-6 production was determined in 

macrophages. After pretreatment with compounds for 30 

minutes, macrophages were treated with LPS for 24 hours. 

The levels of cytokines in the culture media were determined 

by ELISA. The results of the anti-inflammatory assay of 

two series of monocarbonyl curcumin analogs are shown in 

Figure 3. Initial screening showed that most of the analogs 

attenuated the LPS-induced TNF-α and IL-6 secretion at a 

dosage of 10 μM. Several of the synthetic analogs exhibited 

a more potent inhibitory ability than curcumin. In particular, 

the heterocyclic analogs (S1–S5, and AS29) showed stronger 

inhibition than the others, with a range of 59.5%–83.4%. 

Compound S5, which has a thiopyrone skeleton, displayed 

the greatest activity, with an inhibition ratio of 98.7%. As 
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Figure 3 Curcumin and curcumin analog inhibition of LPS-induced secretion of (A) TnF-α and (B) il-6 in mouse macrophages. 
Notes: Macrophages were seeded on a plate with the density of 4.0×105/ml overnight at 37°C and 5% CO2. Macrophages were pre-incubated with the vehicles, curcumin or 
curcumin analogs (10 μM) for 2 hours, followed by stimulation with LPS (0.5 μg/ml) for an additional 22 hours. The levels of TnF-α and il-6 in culture medium were detected 
by ELISA and were standardized by the total protein. The results were indicated as the proportion of LPS control. Each bar expresses mean ± seM of three experiments. 
statistical difference with regard to lPs was demonstrated: *P0.05, **P0.01.
Abbreviations: LPS, lipopolysaccharide; IL-6, interleukin-6; DMSO, dimethyl sulfoxide; CUR, curcumin; TNF-α, tumor necrosis factor-α; ELISA, enzyme-linked immunosorbent 
assay; SEM, standard error of the mean.
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for the cyclopenta-containing monocarbonyl analogs, com-

pound AS12, which has a heterocyclic-methylthiophen R
2
 

substitution-group, also showed an inhibition ratio over 50% 

on IL-6 production. Of the asymmetrical analogs, only the 

4-piperidone derivative AS29 exhibited a strong inhibitory 

effect. Therefore, the design of novel monocarbonyl cur-

cumin analogs with a symmetric and heterocyclic scaffold 

may improve the anti-inflammatory activity of this group 

of compounds.

Quantitative structure–activity 
relationship study
A quantitative structure–activity relationship (QSAR) study 

was carried out to demonstrate the effects of various sub-

stituents on the anti-inflammatory activity of the analogs. 

To obtain a QSAR model, the molecular structures of all 

the curcumin analogs were built with Maestro Version 9.1 

(Schrödinger, New York, NY, USA) and represented by 

a series of molecular descriptors. All calculations were 

based on the semi-empirical parameterized model 6 (PM6) 

method. A detailed description of the QSAR study is pre-

sented in the Supplementary material. Scatter plots showing 

predicted activities versus experimental values are displayed 

in Figure 4. Statistically significant models, Equation 1 

(Eq1) and Equation 2 (Eq2), containing three different 

variables, were obtained for the anti-TNF-α and anti-IL-6 

activities of the compounds, respectively. Both models pos-

sessed relatively high regression coefficients: R 2=0.86 for 

TNF-α  inhibition and R2=0.89 for IL-6 inhibition. To further 

estimate the QSAR model, leave-one-out (LOO) cross-vali-

dation was performed. The Q-squares from LOO validation 

were 0.85 and 0.88 for TNF-α inhibition model and IL-6 

inhibition model, respectively. LOO cross-validation mani-

fested the final models as robust and satisfactory. The high-

quality QSAR results indicated that the anti-inflammatory 

activities of curcumin analogs are highly correlated with 

their chemical structures. Comprehensive consideration of 

the structure–activity relationship (SAR) and QSAR results 

showed that molecular symmetry and electronegativity may 

play a crucial role in the anti-inflammatory activity of these 

monocarbonyl curcumin analogs.

active compounds dose-dependently 
inhibited LPS-induced cytokines 
production
The dose-dependent inhibitory effects of six of the above-

mentioned compounds, S1–S5 and AS29, on LPS-induced 

TNF-α and IL-6 production were studied. After pretreatment 

with analogs at a series of concentrations (1.0, 2.5 and 5 μM) 

for 30 minutes, cells were treated with LPS (0.5 μg/mL) 

for 24 hours. An ELISA assay was used to determine the 

amount of TNF-α and IL-6 released. As shown in Figure 5, 

all six compounds exhibited good, dose-dependent reduction 

of LPS-induced TNF-α and IL-6 production. This result 

further demonstrates the potential of these analogs as anti-

inflammatory agents.

Figure 4 Plots of predicted activity against the corresponding experimental activity on (A) TnF-α and (B) IL-6 inhibition. 
Note: Numbers in parentheses mean the standard deviation of the coefficients.
Abbreviations: PER, predicted activity; EXP, experimental activity; TNF-α, tumor necrosis factor-α; IL-6, interleukin-6; Eq, equation; IR, inhibition rate; EEVA, electronic 
eigenvalue descriptors; RDF, radial distribution function; EVA, eigenvalue descriptor; SAS, solvent-accessible surface; N, the number of compounds taken into account in the 
regression; R2, the multiple correlation coefficient; Radj

2, adjusted multiple correlation coefficient; s, residual standard error.
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s1 attenuated lPs-induced erK 
phosphorylation
In the lipopolysaccharide–toll-like receptor 4 (LPS–TLR4) 

inflammatory pathway, NF-κB, a nuclear transcriptional fac-

tor, and mitogen-activated protein kinases (MAPKs) play key 

roles in regulating inflammatory cytokine gene expression.28 

Curcumin has been demonstrated to reduce a variety of 

gene transcriptions via suppressing the activation of NF-κB 

and MAPKs.29 To identify the possible signaling pathways 

involved in the anti-inflammatory effects of compounds 

S1–S5 and AS29, we first examined the effect of these six 

compounds on LPS-activated NF-κB and MAPKs. Three 

types of MAPKs have been identified: extracellular signal-

regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and 

p38 MAPK. Under resting conditions, NF-κB is bound to 

inhibitory κB proteins such as IκB-α, which sequester NF-κB  

in cytoplasm as an inactive complex. In response to LPS, 

IκBα is subjected to ubiquitylation, followed by proteasome-

mediated degradation, after which NF-κB moves into the 

nucleus to promote the transcription of inflammatory genes.30 

Thus, we used a Western blot to detect IκB degradation and 

the phosphorylation of ERK, JNK, and p38 in LPS-stimulated 

macrophages with or without the pretreatment of these com-

pounds. As illustrated in Figure 6A, the addition of LPS for 

20 minutes resulted in obvious phosphorylation of MAPKs 

(ERK, P38, and JNK) and degradation of IκB-α. Pretreat-

ment with the anti-inflammatory active analogs S1–S5 and 

AS29 at 10 μM did not reduce the MAPK phosphorylation 

and IκB-α degradation, with the exception of S1, which 

significantly inhibited the LPS-induced phosphorylation 
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Figure 5 Active compounds dose-dependent inhibition of the production of (A) TnF-α  and (B) IL-6 induced by LPS in mouse macrophages. 
Notes: (A and B) cells were seeded on a plate with the density of 4.0×105/ml overnight at 37°C and 5% CO2. Macrophages were pre-incubated with vehicle (DMSO) 
or analogs at 1, 2.5, and 5.0 μM for 2 hours, followed by stimulation with LPS (0.5 μg/ml) for an additional 22 hours. The levels of TnF-α and il-6 in culture medium 
were detected by ELISA and were standardized by the total protein. The results were indicated as the proportion of LPS control. Each bar expresses mean ± seM of 3–6 
independent experiments. statistical difference with regard to lPs was demonstrated: *P0.05, **P0.01.
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standard error of the mean.

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2014:8submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2168

Zhang et al

of ERK. To determine the dose-dependent effect of S1, 

macrophages were pretreated with doses of 2.5, 5, or 10 μM 

for 30 minutes. LPS was then added, and the macrophages 

were incubated for an additional 20 minutes. As shown in 

Figure 6B, S1 dose-dependently attenuated LPS-induced 

ERK phosphorylation. These data confirm that S1 can inhibit 

LPS-induced ERK phosphorylation and may therefore be a 

potential ERK inhibitor. These results indicate that there may 

be a mechanistic difference among these curcumin analogs, 

although they are derived from the same structural lead.

The toxicity and stability of active 
compounds 
As a natural active product, curcumin exhibits no toxicity and 

is very safe in clinical trials. Before the in vivo experiment, 

an MTT assay was used to test the cytotoxicity of six active 

analogs, S1–S5 and AS29, in the human normal hepatic cell line 

HL-7702. As shown in Figure 7A, all six analogs showed low 

toxicity at a concentration of 10 μM, indicating that they are 

relatively safe. However, the clinical applications of curcumin 

have been significantly limited by its poor chemical stabili-

ty.20 The monocarbonyl analogs of curcumin are designed to 

improve chemical stability by removing the central β-diketone 

moiety. Thus, the stability of the new synthetic analogs in 

phosphate buffer (pH 7.4) containing 5% DMSO were tested 

here using the ultraviolet-visible (UV-visible) absorption 

spectra at different times (0, 5, 10, 15, 20 and 25 minutes). The 

optical density (OD) values of the maximal absorption peak 

of  curcumin decreased quickly, and analogs S1, S3, S4, S5, 

and AS29 showed much higher stability than curcumin, while 

S2 slightly decomposed during the incubation (Figure 7B–H). 

Meanwhile, the half-life of the most active compounds S1 and 

S4 were detected by HPLC in vitro. As shown in Figure S1, 

the half-lives of S1 (120 minutes) and S4 (240 minutes) 

are longer than the compound curcumin (90 minutes). These 

results indicate that the active compounds are chemically more 

stable than curcumin in vitro.

Anti-inflammatory effect of S1 and S4  
in vivo
LPS has been implicated as an important pathogenic fac-

tor for the induction of sepsis, which is characterized by 

an inflammatory cytokine storm. Curcumin and its analogs 

have been reported to have therapeutic effects on sepsis and 

septic shock.31 We have illustrated the inhibitory effects of 

these analogs on LPS-induced pro-inflammatory cytokine 

production. We further determined whether two representa-

tive compounds, S1 and S4, were able to relieve septic shock 

through inhibition of LPS-induced inflammatory response 

in mice. The water-soluble formulations of S1 and S4 were 

prepared for intravenous injection. Mice were injected 

intraperitoneally (ip) with LPS at the dosage of 15 mg/kg 

15 minutes after the intravenous (iv) injection of 10 mg/kg  

S1or S4, and their survival rates were monitored for 7 days. 
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The results in Figure 8 show that 100% of the animals 

injected with LPS alone died within 3–4 days as a result of 

septic shock. In septic animals administrated with S1 and 

S4, the survival rates were increased significantly compared 

with the LPS-alone group (40% in the S1-treated group and 

50% in the S4-treated group). Thus, these data suggest that 

S1 and S4 exhibit anti-inflammatory activity in vivo.

Conclusion
In summary, we synthesized a series of symmetrical and 

asymmetrical analogs of curcumin and estimated their anti-

inflammatory activities against LPS-induced TNF-α and IL-6 

release in mouse macrophages. The majority of analogs effec-

tively inhibited the LPS-induced production of TNF-α and 

IL-6. Together with the SAR and QSAR analysis, we found 

that the monocarbonyl curcumin analogs with symmetric and 

heterocyclic structures have stronger anti-inflammatory activ-

ity. Six compounds with potent anti-inflammatory activity 

also exhibited excellent chemical stability and low toxicity in 

vitro. Mechanistically, compound S1 significantly inhibited 

LPS-induced phosphorylation of ERK. Furthermore, S1 and 

S4 were selected for in vivo anti-sepsis testing and were 

found to markedly decrease LPS-induced lethality in septic 

mice. All of these results indicate that these novel monocar-

bonyl curcumin analogs may serve as potential agents for the 

treatment of various inflammatory diseases.
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