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Accounting for confounding by time, early
intervention adoption, and time-varying effect
modification in the design and analysis of
stepped-wedge designs: Application to a
proposed study design to reduce opioid-related
mortality
Lior Rennerta*, Moonseong Heoa, Alain H. Litwinb,c,d, Victor De Gruttolae

Background: Stepped-wedge designs (SWDs) are currently being used in the investigation of interventions to reduce
opioid-related deaths in communities located in several states. However, these interventions are competing with external
factors such as newly initiated public policies limiting opioid prescriptions, media awareness campaigns, and COVID-19
social distancing mandates. Furthermore, control communities may prematurely adopt components of the intervention
as they become available. The presence of time-varying external factors that impact study outcomes is a well-known
limitation of SWDs; common approaches to adjusting for them make use of a mixed effects modeling framework.
However, these models have several shortcomings when external factors differentially impact intervention and control
clusters.
Methods: We discuss limitations of commonly used mixed effects models in the context of proposed SWDs to investigate
interventions intended to reduce opioid-related mortality, and propose extensions of these models to address these
limitations. We conduct an extensive simulation study of anticipated data from SWD trials targeting the current opioid
epidemic in order to examine the performance of these models in the presence of external factors. We consider confounding
by time, premature adoption of components of the intervention, and time-varying effect modification— in which external
factors differentially impact intervention and control clusters.
Results: In the presence of confounding by time, commonly used mixed effects models yield unbiased intervention effect
estimates, but can have inflated Type 1 error and result in under coverage of confidence intervals. These models yield biased
intervention effect estimates when premature intervention adoption or effect modification are present. In such scenarios,
models incorporating fixed intervention-by-time interactions with an unstructured covariance for intervention-by-cluster-
by-time random effects result in unbiased intervention effect estimates, reach nominal confidence interval coverage, and
preserve Type 1 error.
Conclusions: Mixed effects models can adjust for different combinations of external factors through correct specification
of fixed and random time effects; misspecification can result in bias of the intervention effect estimate, under coverage
of confidence intervals, and Type 1 error inflation. Since model choice has considerable impact on validity of results
and study power, careful consideration must be given to choosing appropriate models that account for potential external
factors.
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1. Introduction

Stepped wedge designs (SWD) are a uni-directional crossover design in which clusters switch from the control to the
intervention condition at varying time points. The first phase is usually a baseline period in which no clusters receive
intervention. During the second phase, clusters are randomly assigned to intervention at pre-selected time points until all
clusters receive the intervention. The third phase corresponds to the follow-up period in which all clusters receive the
intervention. An example of a SWD is provided in Figure 1 and discussed in Section 1.1.

SWDs can be useful in public health settings where rolling out the intervention to all clusters at once is infeasible;
they also ensure that all clusters in the study eventually receive the intervention.1, 2 The SWD is particularly suitable
for implementing and evaluating complex health interventions.3–5 The current COVID-19 pandemic and opioid epidemic
provide settings in which such designs may prove useful; effective combinations of interventions are needed as soon as
possible, but rolling them out to each community in a short time period may not be feasible. In this paper, we will focus on
recently proposed SWDs to combat the opioid epidemic. In 2019, the National Institute on Drug Abuse (NIDA) awarded
Kentucky and Ohio roughly $100 million each to implement an integrated set of interventions in high-risk communities
using a SWD, with the objective of reducing opioid overdose deaths by 40% over a three-year period.6–9

Like most clinical trial designs, SWDs may be impacted by external factors that influence the primary outcomes. The
term ”rising tide” has been used to describe the situation when there is a drift towards improvement in the outcomes due
to factors external to the study.10 A rising tide may be seen in the current opioid epidemic, where the severity of this crisis
has led to new public policies, media awareness campaigns, and external interventions that will improve outcomes in
concurrence with any proposed interventions. For example, public policies were implemented to limit opioid prescriptions
in both Kentucky and Ohio in the summer of 2017.11 In addition, the Center for Disease Control and Prevention launched
intensive media awareness campaigns on the dangers of opioids in these states in September of 2017.12 In the current
COVID-19 pandemic, interventions rolled out at the community level will compete with social distancing measures,
novel treatments, and other interventions aimed at improving patient care. Such external factors may confound estimates
of the intervention effect estimate in SWDs. This occurs when (i) factors external to the study (e.g., new public health
policy) influence the primary outcomes over time, and (ii) the proportion of communities exposed to the intervention also
increases with calendar time. This situation has been referred to as confounding by calendar time;2, 13 an example of such
confounding is the rising tide described above.

Failure to account for confounding by time might result in severely biased intervention effect estimates,2, 3, 13–19 and lead
to both Type 1 and Type 2 errors. Hussey and Hughes suggested the use of mixed effects models for analyzing data from
SWD.16 To account for potential confounding by time, they recommend the incorporation of fixed time effects. However,
models that incorporate secular trends common to all clusters may not be appropriate in this setting, because only some of
the communities may be exposed to the external factors. Furthermore, the impact of these external factors on the outcome
will likely differ in each community.

For these reasons, Girling and Hemming, Hooper et al., and Hemming et al. have suggested incorporating random
cluster-by-time effects into the mixed effects models.13, 17, 20 This class of models captures confounding by time through
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these random effects. This is especially useful when the timing and level of exposure to external factors are unknown.
However, these models implicitly assume that the random effect variance is the same for all clusters across all time points,
and that the random time effects are independent within each cluster. Kasza et al. propose models with more general
within-cluster correlation structures.21 These models are more applicable to the scenarios discussed here, since outcomes
within a community are more likely to be similar for time periods before or after exposure to external factors. Furthermore,
since exposure to external factors may increase with time, variation in the outcome may change with time as well.

The models described above assume that the random effects are identically distributed across clusters. This assumption
may not appropriate in settings where the impact of external factors systematically differs between intervention and control
communities. Kasza et al showed that the random effect covariance structure can have an important impact on the sample
size and power,21 and that misspecification of this covariance structure can lead to biased estimates of the intervention
effect.22

Given the discussion above, we consider three mechanisms through which time-varying external factors can impact
SWD studies: a) confounding by the time of the effects of interest, b) inducing or facilitating non-compliance, and c) time-
varying effect modification. The models we discuss below can accommodate all of these mechanisms, but interpretation
of results requires consideration of the way in which external factors are operating. Noncompliance might arise, for
example, through exposure to state-wide policies and media awareness campaigns that cause control communities to
adopt available components of the intervention prior to the scheduled roll-out time. Premature adoption of components
of the intervention may be seen as a form of rising tide; but its impact in this case arises through the effect of time on
exposure to intervention. This differs conceptually from confounding by time in which the outcome, measured over time,
is impacted by confounding factors that are unrelated to the intervention itself. Differential impact of external factors on
intervention compared to control communities may be viewed as time-varying effect modification; we return to this point
in the discussions below.

This paper discusses the issues described above in the context of a proposed SWD to reduce opioid-related mortality in
South Carolina, and shows these issues can be addressed through appropriate choice of mixed effects models, with regard
to both fixed time effects and random effect covariance structure. Our objectives are to (1) consider the implications of
assumptions regarding the impact of external factors for choice of mixed-models – with a focus on our motivating example;
(2) extend these models to accommodate different combinations of external factors; (3) conduct an extensive simulation
study to examine the performance of mixed effects models under different model assumptions. Performance is assessed
based on the bias, confidence interval coverage, power, and Type 1 error of the intervention effect estimate. We describe
more fully what this estimate represents below. An important component of our simulation study is the generation of latent
external factors from different distributions than that assumed by the model, i.e. normal distribution for random effects.
This allows for investigation of the robustness of our methods to violations of model assumptions.

The outline of this paper is as follows. Section 1.1 introduces the motivating example. In Section 2, we examine existing
mixed effects models for SWD, discuss their limitations, and introduce alternative models that improve robustness to
different combinations of external factors. Section 3 conducts an extensive simulation study to examine the adequacy of
these mixed-effects models under different scenarios regarding external factors. Discussion, extensions, and concluding
remarks are provided in Section 4.

1.1. Motivating example: HEALing Communities Study

The HEALing Communities Study: Developing and Testing an Integrated Approach to Address the Opioid Crisis7 is used
as an example to illustrate confounding by time in SWD. The purpose of this initiative was to develop and integrate a set
of evidence based interventions using cluster randomized trials to reduce opioid overdose fatalities by 40% over a 3-year
period in states nationwide. In response to this research funding announcement, our research team proposed a SWD to
implement a comprehensive external facilitation intervention in 18 of South Carolina’s counties that were hit hardest by
the opioid crisis.
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The proposed SWD design is displayed in Figure 1. Each cluster consists of all individuals in a given county. Each time
interval corresponds to a 3-month study period. The pre-intervention phase consists of two time periods between (study)
month 0 and month 6, in which all clusters are in the control condition. The roll-out phase consists of nine time periods
between months 6 through 33, where two clusters are randomly assigned to receive the intervention at the beginning of
each time period. The post-intervention phase, in which all clusters receive the intervention, occurs between months 33
through 39. Data pertaining to the communities considered in our proposal are provided in Supplementary Table 1. The
outcome, recorded at the end of each time period, consists of the total number of opioid overdose deaths in each cluster
during the 3-month time interval.

Phase
Study Month 0 3 6 9 12 15 18 21 24 27 30 33 36

Cluster 1 C C I I I I I I I I I I I
Cluster 2 C C I I I I I I I I I I I
Cluster 3 C C C I I I I I I I I I I
Cluster 4 C C C I I I I I I I I I I
Cluster 5 C C C C I I I I I I I I I
Cluster 6 C C C C I I I I I I I I I
Cluster 7 C C C C C I I I I I I I I
Cluster 8 C C C C C I I I I I I I I
Cluster 9 C C C C C C I I I I I I I
Cluster 10 C C C C C C I I I I I I I
Cluster 11 C C C C C C C I I I I I I
Cluster 12 C C C C C C C I I I I I I
Cluster 13 C C C C C C C C I I I I I
Cluster 14 C C C C C C C C I I I I I
Cluster 15 C C C C C C C C C I I I I
Cluster 16 C C C C C C C C C I I I I
Cluster 17 C C C C C C C C C C I I I
Cluster 18 C C C C C C C C C C I I I

Pre-intervention Post-intervention                                                                                      Roll-out

Figure 1. Proposed SWD for 18 South Carolina communities. ’C’ indicates cluster receives control and ’I’ indicates cluster receives intervention. All clusters are in the control
condition during the pre-intervention phase (months 0 through 6). During the roll-out phase (months 6 through 33), two clusters crossover to the intervention condition at the
beginning of each time period. In the follow-up phase (months 33-39), all clusters receive the intervention.

The proposed external facilitation intervention included the following components: 1) Integration of screening,
intervention, and referral to treatment within health care settings; 2) implementation of programs and providers prescribing
medication-assisted treatment and linkage to such treatment for people with opioid use disorder (OUD); 3) implementation
of evidence-based school and community-based OUD prevention programs; and 4) increasing availability and use of
naloxone by first responders and the community. Given the amount of effort and resources currently directed to the fight
against the opioid epidemic, there is potential for other events to affect the outcome. For example, in 2018 Executive Order
No. 2017-43 was passed in South Carolina; this order set a 5-day limit for certain opioid prescriptions.23 Also in 2018,
the South Carolina Division of Alcohol and Other Drug Abuse Services rolled out a media campaign to raise community
awareness of opioid addiction.24 This campaign included digital, social, and traditional media tactics, and was intended
to cover all counties in South Carolina. These external factors are part of a rising tide of interventions and are expected to
reduce the opioid-related death count over time. Failing to account for this rising tide in an analysis will cause an upward
bias in the estimation of the intervention effect. Similarly, an influx of synthetic opioids into the population will likely
be associated with an increase in the death rate over time. A failure to account for this will cause underestimation of
the intervention effect and may lead to Type II error. Another possibility is that control communities prematurely adopt
components of the intervention before the scheduled roll-out time. For example, the opioid overdose reversal medication
naloxone may become widely available in control communities prior to the scheduled roll-out time. Therefore premature
adoption of a successful intervention will improve the outcome in control communities and attenuate the estimate of the
intervention effect if unaccounted for.
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2. Methods

We first introduce some notation. We denote Yij as the summary measure of the outcome for cluster i during time period
j, i = 1, ..., N and j = 1, ..., n, where N denotes the number of clusters and n denotes the number of time periods in the
study, which are assumed to be common to all clusters. In the motivating example, Yij is an aggregate count of opioid
deaths in county i between months j and j + 1. Using summary measures for the outcome in each cluster has implications
when estimating the intervention effect under certain distributional assumptions for the outcome. We discuss this further
in Section 2.4.

We assume that the expected outcomes, denoted by µij = E[Yij ], come from a generalized linear mixed effects model
(GLMM) with link function g. In the motivating example we consider µij = E[Yij/Oi], where Yij assumes a Poisson
distribution (g = log link), and Oi is an offset for the population size of cluster i. We also assume that all clusters receive
the full intervention effect immediately after the scheduled implementation, i.e., that the intervention effect does not
change with time. We denote the intervention effect by θ, and set the corresponding design matrix Xij = 1 if clusters i
receives intervention at time j, and 0 otherwise.

2.1. Random intercept model to adjust for confounding by time

To adjust for confounding by calendar time, Hussey and Hughes recommended incorporation of a time effect in the
GLMM:16

g(µij) = α+ θ ×Xij + βj + b0i, (1)

where α is the intercept, θ is the intervention effect, βj is the discrete time effect, and b0i
iid∼ N(0, σ2

b0
) for i = 1, ..., N are

the random intercepts for each cluster.
In some cases, the timing and location of external factors are known in each cluster and their effects can be modeled.

Often, investigators are unaware of all factors affecting the outcome. Throughout this paper we assume exposure to these
factors are unknown. By incorporating only a single fixed effect for each time step, the standard Hussey and Hughes model
requires that the effects of time are common to all clusters, and that the correlation between any two observations in the
same cluster are independent of the time step. We note that with proper specification of the time effect, inference based
on this model adjusts for such confounding even when it cannot be measured. Therefore, the resulting intervention effect
estimate is unbiased. However, correct specification of the random effect structure is necessary for optimal precision.

2.2. Random period models to adjust for confounding by time

As misspecification of the time effects can lead to biased estimates of the intervention effect and its standard error, random
cluster-by-time period interaction effects have been incorporated in models.13, 17, 20 This formulation, referred to as the
Hooper/Girling model,21, 22 allows the random intercept for each cluster to vary by time period. This model is discussed
in Section 2.2.1 below.

2.2.1. Random cluster-by-discrete time effect (uncorrelated, with single variance)

g(µij) = α+ θ ×Xij + βj + bij , (2)

where bij
iid∼ N(0, σ2

b ) are the time-varying random intercepts for each cluster i at time period j, i = 1, ..., N and
j = 1, ..., n. These cluster-specific random effects are intended to capture the effects of confounding factors on the outcome
by allowing unique secular trends for each cluster. We note that throughout this paper, we may use the term ”confounding
factors” to indicate the presence of external factors that do not differentially impact intervention and control clusters.
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There are limitations to the model above that arise from the distributional assumptions regarding the random effects
bij : Constant variance over time, independence of the random effects, and identical correlation between two observations
in the same cluster between any two time periods. If exposure to confounding factors increases over time, the variance
of the random effect may increase as well. The assumption of independence of the random effects may be violated in
the scenario where confounding factors impact clusters at all time intervals after exposure. Such a scenario could lead to
greater similarity of random effects during time intervals that are entirely before or entirely after exposure than for random
effects for a mix of intervals that are both before and after exposure. Furthermore, while the Hooper/Girling model allows
both within-cluster and within-period variation, it imposes a constant correlation across time (for observations in the same
cluster).

2.2.2. Random cluster-by-discrete time effect (unstructured covariance) To account for the limitations described above,
we propose an unstructured covariance for the random cluster-by-discrete time interaction terms:

g(µij) = α+ θ ×Xij + βj + b∗ij , (3)

where b∗i = (b∗i1, ..., b
∗
in)

iid∼ N(0,Σb∗) for i = 1, ..., N . Similar to model 2, the cluster-specific random effects b∗ij allow
unique secular trends for each cluster. However, the unstructured covariance matrix Σb∗ imposes no restrictions on the
variance across time periods nor on the correlation between the latent time effects within each cluster, albeit with the
assumption that the correlation structure is the same for all clusters. While model 3 imposes fewer restrictions than
model 2, it requires the estimation of (n+1)×n

2 covariance parameters, which may greatly reduce the power to detect
an intervention effect and may lead to issues of identifiability of regression parameter estimates.

2.2.3. Random cluster by linear time effect An alternative to models 2 and 3 is to include a random slope for time in each
cluster:

g(µij) = α+ θ ×Xij + βj + b0i + b1i × tj , (4)

where (b0i, b1i) ∼ N(0,Σb0,b1) and Σb0,b1 is the 2× 2 covariance matrix for (b0i, b1i), i = 1, ..., N , and tj is the time
between the study start date and the beginning of time period j. The random effects b1i allow for unique linear time trends
in each cluster. Model 4 assumes the variance in the outcome changes monotonically with time and imposes restrictions
on the correlation between observations within a cluster, and is therefore more restrictive than model 3.

2.3. Random group-by-period models to adjust for confounding by time and early adoption or time-varying effect
modification

The models described in Section 2.2 are insufficient for the setting where external factors differentially impact intervention
and control clusters. This scenario may arise when such events lead to premature adoption of intervention components by
control clusters - a form of intervention noncompliance. We refer to this as early adoption, and assume this is unbeknownst
to the investigator. To model this scenario, we need to include group×time interaction terms, i.e., different fixed and
random effects for control and intervention clusters. Unlike group×time interaction models for time-varying treatments,
these models accommodate situations in which secular trends systematically differ between intervention and control
clusters.

In models 5 through 7, we incorporate a fixed discrete time effect, βj , that is common to all clusters. Because
incorporating a group-by-discrete time interaction may lead to loss of power and potentially also to nonidentifiability,
we include a fixed linear time effect in the control group by incorporating the term γ × tj × 1{Xij=0} in models 5 through
7. In this setting, incorporation of a linear time effect in the control group models the effect of early adoption of a beneficial
intervention on overdose death rates as a monotonic decrease with time.
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We note that these same set of models would also be appropriate for the setting of time-varying effect modification.
An example would be changes in insurance policy that either enhance the effect of the intervention (because access to
opioid treatments that are not part of the intervention is reduced in control clusters) or reduce it (because such access is
increased in control clusters). Both scenarios can be accommodated by the models below. In these models, the estimate
of θ provides the intervention effect estimate, and γ captures the effect of early adoption. When time-varying effect
modification is present, the parameter γ captures the difference in the effect of external factors between intervention and
control groups. We discuss these models further in Sections 2.3.1 through 2.3.3.

2.3.1. Random cluster-by-intervention-by-discrete time effect (uncorrelated, with single variance for each group)

g(µij) = α+ θ ×Xij + βj + γ × tj × 1{Xij=0} + bij + cij × 1{Xij=0}, (5)

where γ × tj is the difference in the time effect between control and intervention clusters at time period j, and
cij ∼ N(0, σ2

c ) is a random time effect for control cluster i at time period j for i = 1, ..., N and j = 1, .., tIi , where tIi is
the time period in which the intervention was scheduled to be rolled-out to cluster i. For control clusters that prematurely
adopt intervention components, the cluster-specific random effects (cij) would be expected to be larger (in magnitude)
than those that do not. Model 5 is an extension to Model 2 (Hooper/Girling), in which the variance of the cluster-by-
time period random effects systematically differ between intervention and control clusters. This model is subject similar
limitations as those discussed in Section 2.2.1.

2.3.2. Random cluster by-intervention-by-discrete time effect (unstructured covariance for each group) To account for the
limitations of model 5, we propose allowing an unstructured covariance for the random cluster-by-discrete time interaction
terms in each group:

g(µij) = α+ θ ×Xij + βj + γ × tj × 1{Xij=0} + b∗ij + c∗ij × 1{Xij=0}, (6)

where c∗i = (c∗i1, ..., c
∗
i,tIi

)
iid∼ N(0,Σc∗

i
) for i = 1, ..., N . Here Σc∗

i
consists of the first tIi rows and columns of Σc∗ , where

Σc∗ is the unstructured covariance matrix for a control cluster scheduled to receive the intervention during the final period
of the roll-out phase. Similar to model (5), the cluster-specific random effects, c∗ij , are intended to capture the effects of
premature exposure to intervention components. This is an extension of model 3, which assumes the random cluster-by-
discrete time effects shared a common (unstructured) covariance matrix. While the random effect covariance structure in
model 6 has less restrictions than in model 5, it requires the estimation of (n+1)×n+(nτ−1)×(nτ−2)

2 covariance parameters
and is subject to similar limitations as discussed in Section 2.2.2. Here we define nτ as the number of time periods prior
to the follow-up phase of the study.

2.3.3. Random cluster by-intervention-by-linear time effect Similar to model 4, we can impose a random slope for time
in each group.

g(µij) = α+ θ ×Xij + βj + γ × tj × 1{Xij=0} + b0i + b1i × tj + (c0i + c1i × tj)× 1{Xij=0}, (7)

where (c0i, c1i) ∼ N(0,Σc0,c1) and Σc0,c1 is the 2× 2 covariance matrix for (c0i, c1i), i = 1, ..., N . The cluster-specific
random effects c1i allow for unique linear time trends in each control cluster and are intended to capture the effects of
premature adoption of intervention components.

2.3.4. Fixed effects for linear time in all clusters To further limit loss of power and potential nonidentifiability due to the
large number of parameters, we replace the fixed discrete time effect in models 5 through 7, βj , with a fixed linear time
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effect, β × tj , in models 8 through 10. This strategy may be useful in situations when the combined effects of external
factors result in monotonic changes in the outcome over time (e.g., rising tide). For example, the implementation of a new
policy intended to reduce opioid prescriptions in conjunction with media awareness campaigns may decrease the level of
opioid overdose deaths with time.

g(µij) = α+ θ ×Xij + β × tj + γ × tj × 1{Xij=0} + bij + cij × 1{Xij=0} (8)

g(µij) = α+ θ ×Xij + β × tj + γ × tj × 1{Xij=0} + b∗ij + c∗ij × 1{Xij=0} (9)

g(µij) = α+ θ ×Xij + β × tj + γ × tj × 1{Xij=0} + b0i + b1i × tj + (c0i + c1i × tj)× 1{Xij=0} (10)

2.4. Estimation

The estimands of interest in our setting may depend on the goals of the study and the nature of the time-varying external
factors that impact the study. In the setting where only confounding by time is of concern, the causal estimand is the
average (across clusters) intervention effect on the outcome of interest– which is assumed to be fixed. Unbiased estimation
is made possible by inclusion of a fixed time effect as described above. In the setting of early adoption, the causal estimand
of interest to investigators might also be the average intervention effect (compared to the control condition with no early
adoption), but unbiased estimation is only possible if either we can accurately model the effect as a function of time or
can measure the amount of early adoption (we return to this point in the discussion). Alternatively, investigators might be
interested in the randomized intervention effect as a function of time, which would likely wane with time because of the
early adoption. Finally we consider the setting where time-varying external factors are effect modifiers. Here investigators
might, once again, be interested in a causal estimand that is the average effect of intervention as a function of time. As
before, the effect of the external factors must be modeled in order to obtain unbiased estimates of this estimand. We note
that although spline and other flexible models might be used, we considered only the parametric models described above
for inference. To investigate their robustness, we use different models for data generation (the mechanism of which is
generally unknown) than for inference.

The models for inference in Section 2 can be fit by specifying the Poisson family in the glmer function (package: lme4)
in R.25 Of note, when the outcome is a summary measure for each cluster (as is the case in our motivating example),
we ran into estimation difficulties when specifying random cluster-by-discrete time effects when the outcome distribution
was assumed to be Gaussian. This is due to incorporation of a residual term for each cluster for each time period, which
yields unidentifiable random effects. This issue does not arise under Poisson distributional assumptions, since the variance
is directly proportional to the mean and thus residual terms are not estimated. To accommodate the Gaussian distribution
assumption in this scenario, multiple communities per cluster13, 17, 20 or multiple intervals per time period would be needed.

In the models above, the fixed time effects βj and β are modeled to capture confounding by time. The fixed time effects
γ captures the effect of early adoption or time-varying effect modification. These effects are all identifiable because the
design matrices are full rank. Without additional assumptions, however, the above models cannot distinguish among the
effects of external factors, early intervention adoption, or of other time-varying factors. Rather, they model temporal
trends that may be a consequence of these factors; such models allow for assessment of the impact of such trends on bias,
power, and Type 1 error. When used in analysis, our simulation studies demonstrate that these models can reduce bias in
estimation of intervention effects, in the settings appropriate for their use.

3. Simulation study

We conduct a simulation study to investigate the impact of external factors and noncompliance on the bias, coverage
probability of 95% confidence intervals, power, and Type 1 error of the intervention effect estimate. The data are simulated
based on the motivating example described in Section 1.1. In this setting, we have N = 18 clusters and n = 13 time
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periods. The intervention is rolled out to each cluster according to the time line provided in Figure 1. In all data generating
models, the outcomes Yij are simulated from a Poisson distribution, and represent the number of opioid overdose deaths
in cluster i during time period j. Here g is the log link, and the population size of cluster i, Oi, is included as an offset
in all models. That is, g(µij) = log(E[Yij ]/Oi). The intercept α is set to -10 and the standard deviation of the random
intercept, σb0 , is set to 0.30. These numbers were determined using the opioid death counts in the 18 South Carolina
clusters between 2016 and 2018. The data are provided in Supplementary Table 1. The intervention effect θ is set to
log(0.6), which represents the target 40% reduction in opioid overdose deaths due to intervention (Section 1.1).

3.1. Simulation scenarios

We apply models 1 through 10 under four general scenarios: (1) standard, (2) confounding, (3) early adoption, and (4)
confounding + early adoption or effect modification. We set the number of simulations for each scenario at 500. The
data generation process for each scenario is summarized in Table 1, and is described in more detail below. It is important
to distinguish between the data generation models described in this section, which are used to simulate the data, and
the analysis models (for inference) described in Section 2, which are used to analyze the data. In these simulations, we
intentionally generate the data from different models than those used for analysis. For example, we simulate the effect
of confounding due to a rising tide by randomly selecting communities exposed to the underlying external event at each
time point, and for each community, randomly generating the impact of the confounding factors on outcomes at each time
point. This allows for investigation of the robustness of the proposed analysis models to both the parameterization of the
fixed and random effects and the underlying processes (e.g., external factors, early adoption, etc.) that cause confounding,
noncompliance, and/or effect modification.

In the first scenario (standard) we assume no confounding, early adoption, or effect modification is present; all clusters
receive the intervention during the scheduled time period and no external factors influence the outcome. The data are
generated according to scenario 1 in Table 1. The data generation model for scenario 1 is the same as (analysis) model 1
defined in Section 2.1, with βj = 0 for j = 1, ..., n.

In the second scenario, all clusters not currently exposed to confounding factors by time period j have a 1 in N chance of
exposure. Once exposed, each cluster continues to be exposed through the remainder of the study period. This is intended
to reflect the situation where confounding factors have long-lasting effects, such as new public policies limiting opioid
prescriptions and media awareness campaigns. The number of clusters exposed to confounding factors at each time period
j, n′j , is simulated from a Binomial(N ′j , 1/N) distribution, where N ′j is the total number of clusters unexposed to the
confounding factors prior to time period j.

Once exposed, the effect of confounding factors on the outcome in cluster i is set to vary uniformly at each time period
j. Specifically, we let t′i denote the time period in which cluster i is exposed to confounding factors. We simulate βij
under 2 settings. For j ≥ t′i, we simulate βij ∼ unif [−1, 0], corresponding to a positive effect of confounding factors on
the outcome opioid overdose deaths (scenario 2.1). This is intended to represent a rising tide of events aimed at improving
outcomes. We set βij = 0 for j < t′i, indicating that cluster i has yet to be exposed to confounding factors. To represent
a negative impact of confounding factors on the outcome, we simulate βij ∼ unif [0, 1] for j ≥ t′i and βij = 0 for j < t′i
(scenario 2.2).

In the third scenario (early adoption), the number of clusters prematurely adopting intervention components during each
time period j, n∗j , is simulated from a Binomial(N∗j ,

N−N∗
j +1

2×N ) distribution. Here N∗j is the number of control clusters
which have not adopted any intervention components by time period j. This set up reflects the nature of SWD, where the
number of control clusters at risk for early adoption decreases with time as more clusters crossover to the intervention
group by design. This formulation allows the probability of exposure to intervention components increase at each time
point j (for an unexposed cluster). This situation is feasible in certain settings, such as when intervention components
become more widely available with time, thus increasing the probability of exposure for a control cluster.

For all time periods j in which a cluster is subjected to early adoption, the magnitude of the early intervention adoption
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Table 1. Data generation models for simulations under each scenario.

Scenario Data generating model and scenario description Impact on outcome Index
Standard log(µij) = α+ θ ×Xij + bi

Description: No confounding, early adoption,
or effect modification

None. 1

Confounding log(µij) = α+ θ ×Xij + βij + bi
Description: At each time period j, n′j clusters
randomly exposed to event inducing confounding for
remainder of study period;
n′j ∼ Binomial(N ′j , 1/N), where N ′j is total number
of clusters unexposed to event prior to time period j.

βij ∼ unif [−1, 0] if cluster i
exposed during time period j; 0
otherwise.

2.1

βij ∼ unif [0, 1] if cluster i
exposed during time period j; 0
otherwise.

2.2

Early adoption log(µij) = α+ θij × 1{Xij=0} + θ ×Xij + bi
Description: At each time period j, n∗j control
clusters prematurely adopt intervention components;
n∗j ∼ Binomial(N∗j ,

N−N∗
j +1

2×N ), where N∗j is
the number of control clusters not receiving the
intervention prior to time period j.

θij ∼ unif [θ, 0] if control cluster i
prematurely adopts intervention at
time period j; 0 otherwise.

3

Confounding +
Early adoption
(or Effect mod-
ification)

log(µij) = α+ βij + θij × 1{Xij=0} + θ ×Xij + bi
Description: At each time period j, n′j clusters are
randomly exposed to confounding events and n∗j
control clusters prematurely adopt intervention
components, where n′j and n∗j are defined above.
Control clusters may be exposed to both confounding
factors and early adoption. Data generation model for
effect modification is similar.

βij ∼ unif [−1, 0] if cluster i
exposed to confounding event
during time period j; 0 otherwise.
θij is defined as above.

4.1

βij ∼ unif [0, 1] if cluster i
exposed to confounding event
during time period j; 0 otherwise.
θij is defined as above.

4.2

Data is simulated under 4 general scenarios. The data generating model for each simulation scenario is displayed in the second column. Here µij is the
expected rate of opioid overdose deaths in cluster i during time period j, θ is the intervention effect and is set to log(0.6), and Xij is an indicator of whether
cluster i is scheduled to receive intervention during time period j and is based on the SWD represented by Figure 1. The fixed intercept α is set to -10 and

the random intercept bi is simulated from a N(0, 0.30) distribution. A description of the selection process for exposure to confounding events or early
adoption is provided in the second column (below the data generating model). The impact of confounding factors and/or early adoption on the outcome is

detailed in the third column. In scenarios 2 and 4, we allow confounding factors to have either a positive impact on the outcome (scenarios 2.1 and 4.1) or a
negative impact on the outcome (scenarios 2.2 and 4.2).

effect is set to vary uniformly. Denote t∗i as the time period of early adoption for cluster i and denote tIi as the time period in
which the intervention was scheduled to be rolled-out to cluster i. We simulate θij ∼ unif [θ, 0] for j = t∗i , ..., t

I
i − 1, and

θij = 0 otherwise. Thus the maximum effect of early intervention adoption on the outcome for exposed control clusters is
set to θ. In this scenario, the event (i.e., early adoption) has a positive effect on the outcome in the control group only.

In the fourth scenario, the effects of confounding factors and early adoption are simulated in the same manner as
in scenario 2 and scenario 3, respectively. In scenario 4.1, confounding factors have a positive effect on the outcome. In
scenario 4.2, confounding factors have a negative effect on the outcome. The negative impact of confounding factors on the
outcome is partially offset by the positive impact of early adoption on the outcome (for control communities) in scenario
4.2. The data generation model for time-varying effect modification is similar to the generation model for simultaneous
confounding and early adoption described in scenario 4. Here, the parameters βij would be interpreted as the effects of
external factors on the outcomes in the intervention communities, and θij would be interpreted as the differences in the
effects of external factors between intervention and control communities.

3.2. Results

Simulation results are presented in Table 2. Under scenario 1 (standard), all models yield unbiased estimates of the
intervention effect, reach nominal confidence interval coverage rates, and preserve Type 1 error. Model 1, which does
not include any random effects for time, yields unbiased estimates of the intervention effect in scenario 2 (confounding),
where external factors do not differentially impact control and intervention clusters. However, coverage probabilities are
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below the nominal level of 0.95 and Type 1 error is inflated. Model 1 is heavily biased in scenarios 3 (early adoption) and
4 (confounding & early adoption), where external factors differentially impact intervention and control clusters.

Table 2. Simulation Results.

Time effects Scenario 1 Scenario 2.1 Scenario 2.2
Model Main Interaction Standard Confounding (+) Confounding (-)
index fixed random fixed random %bias SD SE cov pwr α %bias SD SE cov pwr α %bias SD SE cov pwr α

1 disc 0.4 0.08 0.08 0.94 1 0.05 -0.5 0.11 0.08 0.83 1 0.20 0.7 0.10 0.09 0.92 1 0.10
2 disc H/G 0.3 0.08 0.08 0.94 1 0.04 -0.4 0.10 0.10 0.93 1 0.07 0.7 0.10 0.09 0.93 1 0.07
3 disc UN 0.9 0.10 0.11 0.96 1 0.03 0.6 0.12 0.12 0.95 0.99 0.07 2.3 0.12 0.12 0.95 0.99 0.04
4 disc lin 0.5 0.08 0.08 0.93 1 0.06 0.1 0.11 0.08 0.82 1 0.21 0.5 0.10 0.09 0.90 1 0.12
5 disc H/G lin H/G 0.6 0.25 0.24 0.93 0.6 0.05 8.0 0.28 0.26 0.93 0.53 0.05 4.2 0.28 0.26 0.93 0.53 0.07
6 disc UN lin UN 1.5 0.29 0.31 0.96 0.38 0.03 9.3 0.32 0.33 0.95 0.39 0.05 6.8 0.32 0.35 0.96 0.32 0.04
7 disc lin lin lin 0.9 0.25 0.24 0.93 0.59 0.05 9.2 0.29 0.23 0.87 0.62 0.13 5.0 0.28 0.26 0.93 0.54 0.09
8 lin H/G lin H/G -0.4 0.14 0.14 0.95 0.96 0.05 -4.7 0.16 0.16 0.94 0.85 0.08 4.5 0.17 0.16 0.92 0.92 0.08
9 lin UN lin UN -1.5 0.16 0.17 0.96 0.85 0.02 -2.7 0.18 0.19 0.96 0.79 0.04 5.3 0.19 0.2 0.95 0.8 0.04

10 lin lin lin lin -0.8 0.14 0.14 0.94 0.95 0.05 -9.8 0.17 0.13 0.81 0.88 0.18 2.2 0.18 0.15 0.92 0.92 0.12
Time effects Scenario 3 Scenario 4.1 Scenario 4.2

Model Main Interaction Early adoption Confounding (+) & Early adoption Confounding (-) & Early adoption
index fixed random fixed random %bias SD SE cov pwr α %bias SD SE cov pwr α %bias SD SE cov pwr α

1 disc -33.6 0.09 0.09 0.49 0.98 0.04 -33.1 0.12 0.08 0.44 0.94 0.20 -32.8 0.11 0.09 0.53 0.95 0.10
2 disc H/G -33.6 0.09 0.09 0.51 0.97 0.04 -33.4 0.11 0.10 0.56 0.89 0.07 -32.8 0.11 0.10 0.58 0.92 0.07
3 disc UN -32.7 0.10 0.11 0.7 0.88 0.03 -32.3 0.13 0.12 0.72 0.79 0.06 -31.8 0.13 0.13 0.76 0.78 0.05
4 disc lin -33.4 0.09 0.08 0.46 0.98 0.04 -33.0 0.12 0.08 0.43 0.94 0.20 -32.8 0.11 0.09 0.49 0.95 0.09
5 disc H/G lin H/G -8.0 0.24 0.24 0.95 0.49 0.04 2.1 0.30 0.27 0.92 0.49 0.08 -4.0 0.31 0.27 0.91 0.47 0.10
6 disc UN lin UN -3.9 0.28 0.32 0.98 0.29 0.01 4.8 0.34 0.34 0.94 0.33 0.04 2.9 0.37 0.37 0.95 0.29 0.04
7 disc lin lin lin -6.8 0.24 0.24 0.95 0.47 0.04 4.2 0.31 0.24 0.85 0.59 0.14 -2.4 0.31 0.26 0.9 0.48 0.11
8 lin H/G lin H/G -3.0 0.14 0.14 0.95 0.93 0.03 -6.6 0.18 0.16 0.90 0.83 0.07 2.9 0.17 0.16 0.95 0.90 0.07
9 lin UN lin UN -1.9 0.16 0.18 0.97 0.83 0.02 -1.8 0.20 0.19 0.93 0.76 0.05 2.5 0.20 0.20 0.96 0.73 0.05

10 lin lin lin lin -2.9 0.14 0.14 0.94 0.94 0.05 -10.8 0.18 0.13 0.81 0.87 0.21 1.0 0.17 0.15 0.93 0.92 0.11

%

bias ( θ̂−θ
θ

), standard deviation (SD), estimated standard error (SE), coverage rate of 95% confidence interval (cov), power (pwr), and Type 1 error (α) of
estimated intervention effect. Rows correspond to fitting models 1 through 10 under the scenarios described in Table 1; +/- imply positive/negative effect of

confounding factors on outcome. Models include discrete (disc) or linear (lin) fixed time effects for all clusters (main effect) and/or control clusters
(interaction effect). H/G , UN, and lin indicate Hooper/Girling, unstructured, and linear random effect structure for time effects.

Models 2 through 4, which include random cluster-by-time effects, yield unbiased estimates of the intervention effect
when external factors do not differentially impact control and intervention clusters (i.e., scenarios 1 and 2). Model 3, which
assumes an unstructured covariance for the random cluster-by-time interactions, performs the best with regard to coverage
probabilities of the 95% confidence intervals and Type 1 error preservation. Model 2, which assume a single variance for
the random cluster-by-time interactions (Hooper/Girling model), perform slightly worse on these metrics. Model 4, which
assume a random slope for time for each cluster, has the highest inflation in Type 1 error with coverage probabilities
well below the nominal level of 0.95. Models 2 through 4 are overpowered for scenarios 1 and 2. These models perform
poorly when early adoption is present in scenarios 3 and 4 (i.e., when external factors differentially impact intervention
and control clusters). The estimated intervention effect is reduced by 31.8% to 33.6% in these scenarios.

The performance of models with and without intervention-by-time interactions is compared in Figure 2. Models without
intervention-by-time interactions are displayed in the left column, where the blue shapes correspond to models 2 through
4. For comparison, we include models which replace the discrete main effect for (fixed) time in models 2 through 4, βj ,
with the linear fixed effect β × tj . These models are labeled by the red shapes in the left column of Figure 2. The models
in the right column of Figure 2 include fixed and random intervention-by-time interactions. These models correspond to
models 5 through 10.

Models 5 through 10 perform well in all simulation scenarios. When no confounding or early adoption is present
(scenario 1), these models yield little bias, reach nominal coverage probabilities for 95% confidence intervals, and preserve
Type 1 error. When only confounding factors are present (scenario 2), all models have less than 10% bias. These models
generally reach nominal confidence interval coverage probabilities and preserve Type 1 error. The exceptions are models
7 and 10, which include random cluster-by-group-by-linear time interaction effects.
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Figure 2. Performance of models with and without fixed and random intervention-by-time interactions. Models are compared across scenarios listed in Table 1. First row compares
intervention effect estimates± empirical standard error. Horizontal gray line: true intervention effect θ = log(0.6). Second, third, and fourth rows compare models on coverage
rate of 95% confidence intervals, Type 1 error rate, and power, respectively. Horizontal gray lines indicate 95% coverage rate, 0.05 Type 1 error rate, and a power of 0.80 in
the second, third, and fourth rows, respectively. Covariance structure for cluster-by-time random effects: Hooper/Girling labeled by circles, unstructured labeled by triangles, and
linear labeled by diamonds. Models which incorporate a discrete term for the main effect for time (fixed) are labeled by blue shapes; models which incorporate a linear term are
labeled by red shapes. Models without intervention-by-time interactions displayed in left column, where blue shapes correspond to models 2 through 4 in Section 2. Models with
intervention-by-time interactions displayed in right column, and correspond to models 5 through 10 in Section 2. Models 5 through 10 include a linear time effect for the fixed
intervention-by-time interaction term.

When external factors differentially impact intervention and control clusters due to early adoption (scenarios 3 and 4),
models 5 through 10 greatly reduce the bias in the intervention effect estimate compared to models which do not include
intervention-by-time interactions. Models 6 and 9, which assume an unstructured covariance for the random cluster-by-
group-by-discrete time interactions, generally yield the lowest bias, while reaching nominal coverage probabilities of the
95% confidence intervals and preserving Type 1 error. Models 5 and 8 (Hooper/Girling models) perform slightly worse
on these metrics. Models 7 and 10 have the highest inflation in Type 1 error and coverage probabilities well below the
nominal level.

The choice of a discrete or linear term for the fixed time effect does not impact power in models without intervention-
by-time interactions. This result is expected given the findings of Grantham et al.26 For models which include intervention-
by-time interaction terms (i.e., models 5 through 10), the strongest correlate of power is the fixed effect for time. Models
with discrete time effects, which incorporate a parameter for each time period, have much lower power compared to
models which incorporate a single parameter corresponding to a linear time effect. For a given fixed time effect, models
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with a random slope for time achieve the highest power (model 7 among fixed discrete time effects; model 10 among
fixed linear time effects). Models which assume an unstructured covariance for random cluster-by-time effects achieve the
lowest power (model 6 among fixed discrete time effects; model 9 among fixed linear time effects).

4. Discussion

SWDs and alternative cluster randomized trials are currently being used to implement interventions to reduce opioid
overdose deaths in communities across several states. However, these interventions are competing with newly initiated
public policies and media awareness campaigns. Furthermore, control communities may adopt components of proposed
interventions as they become readily available. These scenarios induce confounding by time, treatment noncompliance,
and time-varying effect modification. Given the difficulties in capturing the timing and exposure levels of external factors,
we considered mixed-effects models which incorporate fixed and random time effects to account for these latent factors.
We discussed the limitations of commonly used models in the context of proposed SWDs to combat the opioid epidemic,
and proposed solutions to accommodate deviations from these assumptions.

Through our simulation study, we showed that mixed effects models are sensitive to the scenarios considered here
(i.e., confounding, noncompliance, and effect modification). While the Hooper/Girling model17, 20 offers an improvement
over the standard Hussey and Hughes model,16 it may result in severely biased estimates of the intervention effect when
secular trends systematically differ between intervention and control clusters. Even in scenarios where these models do
capture the secular trend, we demonstrated how incorrect specification of the cluster-level covariance over time can yield
under coverage of confidence intervals and inflation of Type 1 error. Similar conclusions have been reached in other
studies.3, 22, 22, 27, 28

Alternatively, models which allow secular trends to systematically differ between the intervention and control clusters
through incorporation of fixed and random group-by-time effects offer a major improvement in terms of bias reduction.
Our simulation studies confirmed that models incorporating unstructured cluster-level covariances for the random
intervention-by-cluster-by-time interaction terms yielded nominal confidence interval coverage rates and preserved Type
1 error (i.e., models 6 and 9). However, these models may be underpowered for certain parameterizations of the fixed time
effects.

The proposed mixed-effects modeling framework discussed in this paper treats external factors as latent processes;
these are accounted for through the incorporation of fixed and random time effects. This modeling strategy is useful in
practice because investigators are often unaware of all external factors affecting the outcome, let alone each cluster’s level
of exposure to these factors. For the models considered in this study, correct specification of the fixed time effects were
primarily responsible for the attenuation of bias in the intervention effect estimate.

Our results also have potential implications for data collection in stepped-wedge studies. As previously noted,
unbiased estimation of the estimands of interest in settings of time-varying effect modification and early adoption rely
on assumptions about these effects. Information collected during the study on the processes of interest could also be
incorporated in models. Doing so is more straightforward in a setting in which external events, such as changes in insurance
policy, cannot be affected by outcomes on the study. For issues such as early adoption of treatment, one must be concerned
about the potential “confounding by indication” wherein participants or their providers might make choices based on the
individual characteristics as they vary over time. In this context, unbiased estimation of the average intervention effect
would require correct modeling of the selection mechanism as a function of measured confounders for early intervention
adoption. An alternative estimand, which is simply the randomized intervention effect as a linear function of time (e.g.,
models 8-10) might also be of interest; interpretation of such results might also benefit from knowledge of the extent of
early adoption in the population of interest.
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4.1. Limitations and Future Research

An important limitation of the models we discussed in this paper is that they assume the intervention effect does not vary
with time. Models attempting to account for both secular trends which differ by intervention group, and time-varying
treatment effects, may lead to unidentifiable intervention effect estimates. Furthermore, the approach discussed here is
limited to GLMM. Generalized estimating equations (GEE) also allow for correlation in the outcomes, and are robust
to misspecification of the covariance structure.29 Ren et al. show that GEE is more robust to model misspecification
than linear mixed models when the random intercepts differ by intervention group. Future work is needed to explore the
performance of GEE models in the context considered here, where secular trends in the control and intervention clusters
arise from different mechanisms, and differentially impact clusters within each group. Several nonparametric methods
have also been proposed that use within-period3, 27, 30 or between period3 comparisons to account for confounding by time.
While these models are robust to misspecification of the random effects, the performance of these models when external
factors differentially impact intervention and control clusters, such as in the case of early intervention adoption, has not
been explored.

Although our paper focused on stepped-wedge designs, the secular trends in outcomes induced by rising tides and early
intervention adoption may also be present in other types of cluster randomized trials. Simulation studies are needed to
determine the impact of such scenarios on the bias of the intervention effect estimate, Type 1 error, and power in these
settings. We note that Grantham et al. establish a sufficient condition for when the choice of time parameterization does
not impact the variance of the estimated intervention effect in cluster randomized trials.26 This information can be useful
in the planning of such trials. While Grantham et al establish that categorical or linear fixed time effects do not impact the
variance estimator of the intervention effect in SWD, this was not the case when group-by-time interaction terms were
modeled (as demonstrated by our simulation study). Future investigation is needed to establish sufficient conditions in the
presence of interactions.

4.2. Conclusion and Recommendations

Stepped-wedge designs are particularly suitable for epidemics and pandemics, where complex health interventions are
needed as soon as possible. Given the urgency of such situations, other policies and interventions aimed at improving
outcomes will likely be implemented in concurrence with any proposed interventions. Studies must therefore consider
these issues during the planning stages. We have shown that models which incorporate fixed and random group-by-
time effects are effective in reducing bias when external factors differentially impact intervention and control clusters.
However, incorporation of such time effects may impact power and must be accounted for in sample size calculations.
Models incorporating an unstructured covariance for the random intervention-by-cluster-by-time interaction effects are
most effective in reducing bias, reaching nominal confidence interval coverage, and preserving Type 1 error; but they can
lead to severely under powered studies when used in conjunction with discrete fixed time effects. One strategy is to use
fixed parametric intervention-by-time effects with the unstructured covariance; these models perform reasonably well in
the scenarios considered here. Alternatively, one can impose a more restrictive covariance structure such as exponential
decay over time, Hooper/Girling covariance, or random slopes for time. To account for potential under coverage of
confidence intervals and Type 1 error inflation, randomization based inference should be used.31, 32 Simulation studies
may be needed to estimate sample size and power for certain models, as formulas to calculate them are not currently
available for many random effect covariance structures.
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