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Abstract: Emerging shreds of evidence suggest that tumor-associated macrophages (TAMs) modulate
various hallmarks of cancer during tumor progression. Tumor microenvironment (TME) prime
TAMs to execute important roles in cancer development and progression, including angiogenesis,
matrix metalloproteinases (MMPs) secretion, and extracellular matrix (ECM) disruption. MicroRNAs
(miRNAs) are critical epigenetic regulators, which modulate various functions in diverse types of cells,
including macrophages associated with TME. In this review article, we provide an update on miRNAs
regulating differentiation, maturation, activation, polarization, and recruitment of macrophages
in the TME. Furthermore, extracellular miRNAs are secreted from cancerous cells, which control
macrophages phenotypic plasticity to support tumor growth. In return, TAMs also secrete various
miRNAs that regulate tumor growth. Herein, we also describe the recent updates on the molecular
connection between tumor cells and macrophages. A better understanding of the interaction between
miRNAs and TAMs will provide new pharmacological targets to combat cancer.

Keywords: tumor microenvironment (TME); microRNA (miRNA); dendritic cells (DCs);
interleukins (ILs); tumor-associated macrophages (TAMs); tumor-necrosis factor-α (TNF-α)

1. Introduction

TME contains fibroblast cells, stromal cells, epithelial cells, adipocytes, B-cells, T-cells, mast cells,
pericytes, macrophages, et cetera. Among these cells, tumor infiltrating macrophages play an
indispensable role in tumor growth and progression [1]. The origin of macrophages is from monocytes.
Under the inflammatory condition, circulating monocytes exit to the peripheral blood and further
differentiate into a subset of tissue macrophages and dendritic cells (DCs) [2]. Macrophages exhibit
remarkable heterogeneity in terms of phenotype and function in different tissue environments.
However, macrophages residing in tissue are originated from yolk-sac-derived erythroid-myeloid
progenitors [3,4]. Over the last two decades, accumulated data suggest that TME contains a
significant population of TAMs, which play an imperative role in cancer development such as
lung and ovarian [5,6]. The published reports suggest a positive correlation between the TAM
population and poor prognosis of various malignancies, counting breast, prostate, and bladder
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cancers [7–10].TAMs play a key role in the cancer development by increasing cancer cell mobility,
activation of MMPs, angiogenesis, extravasation, and immunosuppressive activity [6,11]. Another vital
characteristic of macrophages is phenotypic plasticity. Based on the cellular and molecular stimuli
and function, macrophages may be broadly categorized into classically-activated macrophages (also
known as M1-like macrophages: pro-inflammatory) and alternatively-activated macrophages (M2-like
macrophages: anti-inflammatory) [12]. In the presence of various stimuli, such as interferon (IFN)-γ,
lipopolysaccharide (LPS) and other microbial infections, M1-like macrophages are induced, which are
specified by generation of TNF-α, nitric oxide or other reactive oxygen species (ROS), and interleukins
(ILs), such as IL-12, IL-23, IL-6, IL-1, and IL-18. Thus, the M1-like phenotype exhibits a high potential
to kill cancer cells and microorganisms. Whereas key activating stimuli, such as glucocorticoids, IL-13,
IL-10, IL-4, TLR ligands and immune-complexes induce the maturation of monocytes into the M2-like
macrophages, which display Th2 response, matrix deposition, tissue repair and enhanced tumor
progression and metastasis [13,14]. Besides, M1 and M2-like phenotypes, macrophages exhibit a broad
spectrum of intermediate phenotypes between these two ends [13,14].

MiRNAs are tiny, single-stranded, 19–24 nucleotides long, endogenous, non-coding RNAs (nc
RNAs). Substantial research data depict that miRNAs are capable of turning-off the gene expression
either by degrading messenger RNA (mRNA) or translational repression. Within the nucleus, RNA
polymerase II transcribes the miRNAs encoding genes into primary miRNAs, which are further
processed by a series of enzymes, such as RNases III endonuclease, Drosha and Dicer, to form
mature miRNAs [15]. Multiple studies have demonstrated that TAMs have aberrant expression of
miRNAs [16–18]. MiRNAs can regulate tumor initiation, progression, and metastasis via targeting
tumor promoter or suppressor genes. Based on their effects on tumor growth and progress, miRNAs can
be divided into oncogenic or tumor-suppressive [19–22]. In addition, miRNAs exert their impacts
in a tissue-specific manner. For instance, a particular miRNA can function as either oncogenic or
tumor-suppressive depending on the cancer type [23,24].

Moreover, emerging preclinical and clinical reports depict that aberrant expression of few miRNAs
may act as prognostic and diagnostic biomarkers in a broad array of human malignancies [25–27].
In recent times, a series of experimental studies have deciphered the importance of miRNAs in several
immune cells, together with monocytes and macrophages. Over the last few decades, evidences
accumulated from studies have shown the significance of macrophages and their precursors cells
in developing tumor mass. Cross-talk between tumor-infiltrating macrophages and tumor cells is
vital for the development of heterogeneous populations in tumor mass, as well as in progression and
metastasis. MiRNAs are known to regulate heterogeneous tumor development at their various stages.

Herein, we spotlight mechanistic insights of the regulation of endogenous miRNAs in
the maturation, differentiation, pro-tumoral, anti-tumoral, and immunosuppressive functions of
macrophages. Understanding the crosstalk among miRNAs and immune cells, especially TAMs will
uncover the new drug targets.

2. Diverse Strategies Opted by TAMs to Promote Tumor Progression—A Sneak Peek into
Molecular Mechanisms

TAMs represent a significant population of immune cells in primary tumors and play an essential
role in cancer development [7–10]. Based on the clues received from TME, TAMs exhibit remarkable
phenotypic and functional heterogeneity. They can acquire either M1 or M2-like phenotype, as well
as various intermediate phenotypes between two ends [13,14]. It has been suggested that TAMs
residing in TME mostly display M2-like phenotype [5,7]. Over the last two decades, through extensive
experimental and clinical research, it has been shown that tumor cells and various types of immune
cells co-inhabit in almost all stages of neoplastic development [28]. One of the most prominent groups
among these immune cells is the TAMs. Several lines of evidences suggest that TAMs act as pro-tumoral
and exert their immunosuppressive role in TME by secreting certain growth factors, chemokines
and cytokines and, suppressing T-cell activation. In doing so, TAMs have pronounced effects in
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enhancing chemoresistance, angiogenesis, tumor cell proliferation, metastasis, EMT, and immune
evasion. Emerging studies suggest that TAMs might be used as predictive biomarkers for diagnosis of
many types of cancers and possible pharmacological targets in cancer therapy [29].

2.1. Proliferation and Growth of Cancer Cells

Since macrophages have different subtypes, they may play different roles in cancer development.
It has been found that M1-like macrophages can play a significant role in the initial stages of cancer
progression while M2-like macrophages generally participate in later stages [30,31]. Given that
TAMs secrete various growth promoting factors, such as EGF, FGF, et cetera, in the TME, which
causes proliferation of cancer cells. Moreover, it was observed that lactic acid produced by cancer
cells promotes tumor growth via enriching M2-like macrophages as well as enhancing vascular
endothelial growth factor (VEGF) expression [32]. TAMs increase the ovarian cancer tumor growth via
secreting developmental transcription factors including GATA binding protein-3 (GATA-3) through
exosomes [33].

2.2. Angiogenesis

Macrophages are well known to facilitate the angiogenesis process, which leads to a poor prognosis
in many cancers. The precursor cell linage of macrophages may move to tumor sites where they
can differentiate into macrophages. TAMs secrete various soluble angiogenesis promoting mediators
such as MMPs, basic fibroblast growth factor (bFGF), cathepsins, heparinase, uPA, platelet-derived
growth factor-F (PDG-F), macrophage-inhibitory factor, VEGF, chemokines and cytokines like C-C
motif chemokine ligand 2 (CCL2), CXCL8, IL1-β, transforming growth factors (TGF)-α and -β [34,35].
A positive correlation between the angiogenesis process and an abundance of TAMs has been noticed
in breast carcinoma. Under hypoxia, activation of HIF-2α increases the recruitment of macrophages,
which could promote the angiogenesis process [36]. It is suggested that HIF-2α can also induce VEGF
expression, a key player of angiogenesis [36,37]. Emerging evidence suggests that CCL2 is important
for the recruitment of TAMs in TME [38]. Since TAMs can secrete CCL2, which in turn recruit more
macrophages at the tumor site, it may play an indispensable role in the modulation of angiogenesis
and cancer progression [39]. In addition, TAMs secrete CCL18 that facilitates angiogenesis and tumor
growth in breast carcinoma [40].

2.3. Metastasis

TAM regulates almost every step of cancer progression through the production of a series of
signaling molecules such as cytokines, growth factors, chemokines, and inflammatory molecules.
Cytokines like TGF-β and CCL18 secreted by TAMs can induce invasive phenotype and mesenchymal
markers in tumor cells [28]. TNF-α released by TAMs has been reported to upregulate the transcription
factors such as Snail-1 and Zeb-1/2, which results in enhanced tumor growth via downregulating
E-cadherin expression [41]. The tumor-derived colony-stimulating factor-1 (CSF-1)/EGF paracrine loop
helps in the recruitment of TAMs around the blood vessels, which promotes cancer cell escape through
various mechanisms. TAMs derived proteolytic enzymes cathepsins B or S, (a serine protease) and
MMPs degrade the ECM components, thus facilitating the generation of the pre-metastatic niche [28,42].

Interestingly, Dhanasekaran et al. demonstrated that MYC and Twist-related protein 1 (TWIST1)
regulate transcriptional program in cancer cells, which in turn induces a plethora of cytokine production
such as IL-13, CCL2, CCL7, CCL5, and CXCL1 that mediates the TAMs recruitment and polarization [43].
Guo et al. have also observed that EGF, secreted from TAMs, activates the EGF-EGFR pathway that
contributes to EMT progression [31]. Apart from that, TAMs release chemokines like CCL18, which
can induce EMT in endothelial cells [40]. Furthermore, in pancreatic cancer cells, TAMs can induce
EMT via modulating TLR4/IL-10 axis [44].
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2.4. Resistance to Chemotherapy

The role of TAMs in imparting chemoresistance has been reviewed by Chen et al. [45]. In
progressive solid tumors, the resistance to chemotherapy and radiotherapy is widespread. Accumulated
experimental data have confirmed the involvement of TAMs in chemoresistance and hence, targeting
TAM population could be useful in the suppression of therapy resistance and tumor relapse [45]. As
demonstrated by Paulus et al., the CSF-1 kinase receptor targeting antibody significantly sensitizes
breast cancer cells to the chemotherapeutic drug [46]. TAM secretes IL-6 with pleiotropic potential,
which has been reported to contribute chemoresistance in breast cancer [45,47]. Furthermore, milk fat
globule epidermal growth factor VIII (MFG-E8) in TAMs enhances cisplatin resistance in tumor cells in
concert with IL-6 via regulating the signal transducer and activator of transcription-3 (STAT-3) and
hedgehog (Hh) signaling [45,48]. Moreover, IL-10 and IL-34 were found to mediate chemoresistance in
different malignancies [45,48].

2.5. Immunosuppression

TAMs could exert their immunosuppressive functions in TME through various mechanisms [28].
It is suggested that TAMs can directly impair T-cell functions via multiple mechanisms, such as
inhibiting the proliferation of naïve T-cell, degradation of metabolites needed for T-cell division, and
suppressing T-cell activation via producing certain cytokines and chemokines [49,50]. It is evident
that TAMs may hamper the tumor-killing ability of tumor-infiltrating NK and T-cells thus creating an
immunosuppressive niche in TME with other immune cells [51,52]. Various cytokines and chemokines
secreted by M2-like phenotypes such as CCL5, CCL18, CCL17, CCL22, CCL20, CCL24, VEGF, PDGF-B,
IL-10, TGF-β, and prostaglandin eotaxin 2 (PGE2) are established immune suppressors [34,45]. TGF-β,
PGE2, and other chemokines from TAMs impair the DCs maturation, which destroys the balance
between innate and adaptive immunity [34,53]. Programmed death-ligand 1 (PD-L-1) expressed by
TAMs, the ligand for PD-1 in T-cells, is an active mediator of immunosuppression [31,54]. In addition,
TAMs may produce enzymes such as arginase-1 (ARG-1) and nitric-oxide synthase (NOS) which can
inhibit T-cell function [55,56].

3. MiRNAs Involved in Regulation of Macrophage Differentiation and Maturation

Macrophages are mostly derived from hematopoietic stem cells (HSCs), an embryonic progenitor,
via a multiple-step process. HSCs differentiate into myeloid progenitor (LMP), which under-regulated
conditions, further differentiate into granulocyte–monocyte progenitor (GMP), and then form
monocytes. Monocytes are precursors of macrophages. They enter in blood vessels and reach
different organs such as the liver, brain, heart, et cetera, to develop tissue-specific macrophages. Almost
all types of tissue-resident macrophages pose some sort of functional similarities in regard to their
phagocytic activity. However, based on the site of maturation and growth, macrophages exhibit diverse
phenotypes and functions. For example, lung alveolar macrophages, bone osteoclasts, liver Kupffer
cells, brain microglia, or peritoneal macrophages are evolved to execute tissue and organ specific
functions [57,58]. Substantial evidence has suggested the importance of miRNAs as the primary driver
of HSC self-renewal or differentiation. Additionally, it was observed that TAMs are unable to grow and
survive in TME for a long duration [11]. Therefore, it is imperative to continuously recruit precursor
cell lineage in TME to renew and maintain the macrophage population. A panel of miRNAs is involved
in HSC differentiation and maturation. Roy has reviewed the miRNAs implicated in HSCs maturation
in the human and mouse model [59]. Arsenic resistance protein 2 (Ars2) is an RNA binding protein
that is involved in processing and maturation of miRNAs, Ars2 depleted mouse developed impaired
bone marrow thereby miRNA plays an indispensable role in HSC fate determination [60]. Connell
and co-workers observed that the maintenance of HSCs in mouse bone marrow was accompanied by
higher intracellular expression of miR-29a, miR-125a-5p, miR-125b-5p, miR-126-3p, miR-130a, and
miR-155 [61]. However, reduced levels of miR-130a and miR-126 triggered the differentiation of HSCs
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in mature progeny [62]. Guo et al. have shown that miR-125a can regulate the stem cell pool via
regulating BAK1 mediated-HSC apoptosis [63]. Downregulation of miR-126 using lentiviral-based
sponges significantly enriches the HSC pool via targeting the PI3K/AKT/GSK3β axis. Thus, miR-126
is vital for the maintenance and activation of HSC, reflecting the significance of miRNAs in the
maturation of HSC [64]. PU.1 is a transcription factor expressed in early T-lymphoid, B-lymphoid,
monocytic and granulocytic cells [65]. PU.1 regulates the development of myeloid lineages from HSCs
progenitors and impact the differentiation of HSC into LMP through regulating the levels of miR-155,
miR-146a, miR-338, and miR-342 [66]. Overexpression of miR-146a promotes differentiation of HSCs
while its inhibition hampers the development of macrophages in early zebrafish development [66].
Furthermore, PU.1 inhibits the expression of the oncogenic miR-17-92 cluster, which transcribes seven
miRNAs involved in regulation of the various key cellular processes. PU.1 curtails the miR-17-92
cluster expression via targeting Egr2. Egr2 promotes histone demethylation in CpG island located at
miR-17-92 promoter via recruiting histone demethylase Jarid1b [67]. The CCAAT/enhancer-binding
protein (C/EBP) is necessary for the conversion of LMP to GMP. It increases the human-miR-223
expression, which promotes LMP differentiation [68]. The enhanced level of PU.1 facilitates the
differentiation and maturation of GMP to macrophages. In both humans and mice, miR-21 and
miR-196b facilitate the differentiation of GMP to monocytes [69]. Moreover, macrophages exhibit
elevated miR-424-5p, miR-362-3p, miR-335-5p, and miR-106-3p compared to progenitor cells, which
depicts that these miRNAs could promote maturation of macrophages [70]. The detailed list of miRNAs
regulating macrophage differentiation and maturation has been shown in Table 1. Overall, these
studies suggest that the cooperative action of multiple miRNAs regulates the macrophage development
and maturation process in both humans and mice. Unraveling the mechanism of miRNA-mediated
monocyte differentiation will likely provide candidate targets for pathophysiology.

Table 1. List of miRNAs regulating macrophage function.

miRNAs Involved in Macrophage Polarization Function Reference

miR-375
Facilitates macrophage

recruitment, M2-like phenotype
and tumor progression

[71]

miR-23a/miR-27a/miR24-2 cluster
Promote M1-like phenotype,
inhibit M2-like phenotype in

breast cancer
[72]

miR-340-5p Promotes M2 polarization in
glioblastoma [73]

miR-155, miR-125b-2
Macrophage re-programming to
M1-like phenotype in pancreatic

cancer
[74]

miR-29a-3p Promotes M2 polarization in
OSCC [75]

miR-222-3p Promotes M2-like phenotype in
ovarian cancer [76]

miR-940 Promotes M2 polarization in
epithelial ovarian cell carcinoma [77]

miR-203 Promotes M2 polarization and
metastasis in CRC [78]

miR-145 Promotes M2-like phenotype in
CRC [79]

miR-16 Promotes M1-like phenotype in
breast cancer [80]

miR-103a Increases M2 polarization in lung
cancer [81]

miR-21-3p, miR-181d-5p, miR-125b -5p
Promote M2 polarization, cancer

cell migration, proliferation in
EOC

[82]

miR-301a-3p
Enriches M2-like macrophages via
modulating PTEN/PI3Kγ axis in

pancreatic cancer
[83]

miR-132, miR-29b-1, miR-27a, miR-146a, miR-222
Higher expression of these
miRNAs promote M2b-like

phenotype
[59,84]

miR-let7a, miR-320a, miR-146a Promote M2-like phenotype [85–87]
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Table 1. Cont.

miRNAs Involved in Macrophage Polarization Function Reference

miR-142-3p Inhibit M2 polarization, reduces
tumor growth in HCC [88,89]

let-7c Inhibits M1 polarization and
promote M2-like phenotype [90]

miR-1246
Promote M2 polarization via

modulating STAT3 and NF-κB
axis.

[88,91]

let-7d-5p Promote M2-like phenotype [16]

miR-451, miR-21 Influence macrophage
polarization in glioblastoma [92]

Extracellular miRNAs Secreted from Cancer Cells
Regulating Cancer Progression or Chemoresistance Function Reference

miR-221, miR-222 Promote tamoxifen resistance in
breast tumor cells [93]

miR-1246 Imparts chemoresistance in
ovarian cancer cells [94]

miR-21
Induces chemoresistance in

neuroblastoma, enhances miR-155
expression

[95]

miR-23a-3p Promotes tumor cell escape via
impairing T-cell function [96]

miR-204-5p Regulates cisplatin resistance in
EOC [97]

miR-let7a

Creates an immunosuppressive
environment by enhancing the

expression of M2-like phenotype
associated genes

[85]

miR-142-3p Induces malignant phenotype in
oral carcinoma [98]

miR-105
Promotes tumor progression and
metastasis via degrading vascular

endothelial barriers
[99]

miR-214
Promotes tumor growth via

deregulating PTEN and impairing
T-cell function in mouse model

[100]

miR-21, miR-29a
Induces inflammatory response in
NSCLC cells via activating NF-kB

pathway
[101]

Extracellular miRNAs Derived from TAMs Regulating
Cancer Progression or Chemoresistance Function Reference

miR-7
Inhibits metastasis in EOC via

modulating EGFR/AKT/ERK1/2
axis

[102]

miR-365 Promotes gemcitabine
chemoresistance in PDAC [103]

miR-29a-3p, miR-21-5p Establish an immunosuppressive
environment in EOC [104]

miR-155-5p, miR-21-5p
Increase migration and invasion of

colon cancer cells via
downregulating BRG 1

[105]

miR-125a/b
Negatively influence tumor cell

division and stemness properties
of HCC via targeting CD90

[106]

miR-21 Induces chemoresistance in gastric
cancer [107]

miR-501-3p Progression of PDAC via
modulating TGF-β [108]

miR-223 Imparts cisplatin resistance in EOC [109]

miRNAs Involved in Macrophage Differentiation and
Maturation Function Reference

miR-155, miR-146a, miR-338, and miR-342 Facilitate the progression of HSCs
differentiation process [66]

miR-17-92 cluster: miR-18a, miR-17, miR-92a, miR-19a,
miR-19b-1, miR-20a

Inhibition of their expression by
PU.1 promote HSCs differentiation [67]

miR-146a, miR-126, miR-29a, miR-155, miR-130a, miR-125a/b,
miR-338, miR-342, miR-21, miR-196b

Mediate differentiation and
maturation of HSCs by regulating
expression of various target genes

[61,63,64,66,69,110]
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Table 1. Cont.

miRNAs Regulating Recruitment of Macrophages at Tumor
Site Function Reference

miR148b Inhibits TAM infiltration in tumor [111]

miR-375 Induces TAM infiltration in breast
cancer [71]

miR-125b Reduces recruitment of
macrophages at tumor site [112]

4. MiRNAs Involved in Macrophage Activation and Polarization

Based on the molecular signals received from TME, macrophages exhibit a continuum of
phenotypes to perform different cellular and biochemical functions. We can have a general classification
of macrophages by grouping them into M1 and M2-like phenotypes. Furthermore, on the basis of
activation status and functional heterogeneity, M2-like macrophages may be categorized into four
subsets: M2a, M2b, M2c, and M2d [42]. The detailed description of these subsets has been given in
Table 2. TAMs constitute the major portion as inflammatory cells in TME; they display the similar
morphological and functional characteristics as M2-like macrophages [5,7,113]. Therefore, TAMs are
recognized as new subgroup of M2d [42]. Of note, the clear classification of macrophages subtypes is
complex. It is difficult to identify a specific type of macrophages using single set of specific markers.
One main feature of all M2-like macrophages is the generation of ARG-1 enzyme that reduces T-cell
activation [55,114]. Graff and co-workers performed the miRNA profiling studies on mammalian
macrophages to identify the miRNAs associated with macrophage responses to inflammatory
stimuli and aberrantly expressed miRNAs regulating phenotypic switch of macrophages [84].
They demonstrated that miR-125a-3p and miR-26a-2 promote M1-like phenotype; miR-193b facilitates
M2a polarization; or miR-29b-1, miR-27a, miR-222, and miR-132 enforce polarization towards M2b-like
phenotype; respectively [84]. TAMs mostly belonging to the M2d sub-class have been found to
be associated with poor prognosis [7,42,113]. Mounting evidence from recent studies has shown
that many signaling molecules such as phosphatases, cytokines, kinases, receptors, and miRNAs
regulated by various signaling mechanisms may control the macrophage phenotypic switch [115,116].
This activation and polarization of macrophages has been dictated by TME signals which recruit
the transcription factors. It has been reported that STAT-1, IRF-5, NF-κB pathway, AKT2, and their
downstream target genes such as TNF-α, TLRs, IL-1, IL-6, IL-12, CCL2, and CXCL10 are critical
for maintaining M1-like phenotype while STAT-6, IL-4R, IRF-4, peroxisome proliferator-activated
receptor δ (PPARδ), PPARγ, and Jumonji domain-containing protein 3 (JMJD3) promote the M2-like
phenotype [115]. These macrophage polarizations are modulated by several miRNAs, which further
provide potential targets to manipulate the macrophage function. Figure 1 and Table 1 explain the
miRNAs regulating macrophage activation and polarization.



Int. J. Mol. Sci. 2020, 21, 7117 8 of 22

Table 2. Classification of M2-like macrophages.

Subtype Functions Key Activating
Stimuli Markers References

M2a

Anti-inflammatory
and tissue repair,

killing of the
infectious parasites

M-CSF, IL-13, IL-14

CD206, MHC-II,
FZZI, CD163,
Arg-1, IL-10,

TGF-β, WNT5b

[117–124]M2b

Increases infection,
immunoregulation,
tumor growth and

progression

TLR, IL-1R
antagonist,

immunocomplexes

CD206, CD86, IL-6,
IL-1, IL-10 TNF-α

M2c

Immunosuppression,
phagocytosis,

tissue remodeling,
matrix deposition,
and efferocytosis

IL-10,
glucocorticoids

CD206, CD163,
IL-10, MERTK,
ECM, TGF-β

M2d
Angiogenesis, anti
and pro-tumoral

properties

A2AR ligands,
TLR, IL-6

IL-10, IL-12, VEGF,
TGF-β
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A plethora of cytokines and chemokines expressed in TME, such as TNF-α, TNF-β, CCL2,
CSF-1, IL-4, IL-10, VEGF, and angiopoietin-2 (ANG-2) perform an indispensable function in
macrophage differentiation, maturation, plasticity, and activation [13,36]. Interestingly, miRNAs
regulate various transcription factors that control macrophage plasticity and activation. To understand
the significance of miRNAs in the activation and polarization of macrophages, Zhang et al. used M1
and M2-like macrophages isolated from mouse bone marrow to determine the miRNAs associated
with macrophage phenotypic switch. By performing miRNA profiling, they demonstrated that
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M1-like phenotype was accompanied by enhanced intracellular levels of miRNAs, such as miR-204-5p,
miR-451, miR-155-5p, and miR-181a, and reduced expression of miR-143-3p, miR-125-5p, miR-146a-3p,
and miR-145 [125]. In this study miRNA signatures associated with differentiation and polarization
of mouse bone marrow-derived macrophages were established, which may be used as potential
targets for re-programming of macrophages. In another study, Jiménez et al. performed miRNA
profiling to unravel the miRNAs associated with macrophages differentiation and polarization in
human monocytes. They demonstrated four highly expressed miRNAs: miR-181a- 5p, miR-125b-5p,
miR-125a-5p, and miR-193b-3p associated with M1-like phenotype [70]. In the same study, elevated
expression of miR-500a-5p and miR-502-3p, miR-181a-5p and reduced levels of miR-181a were
demonstrated in M2a-like macrophages stimulated by IL-4. Whereas in M2c-like macrophages
induced by IL-10, enhanced expression of miR-21-5p, miR-146b-5p, and miR-22-3p and diminished
expression of miR-200a-3p and miR-339-3p were noticed. Apart from these studies, several miRNAs
have been identified which can participate in macrophages development process. For instance,
overexpression of miR-124 in macrophages derived from mouse bone marrow promotes M2-like
phenotype as evident by higher expression of markers such as ARG-1 and FIZZI-1 associated
with M2-like phenotype [126]. Similarly, overexpression of miR-146a in peritoneal macrophages
promotes the alternative pathway via targeting PPARγ, inhibin βA subunit of activin A (INHBA),
and Notch-1 [127,128]. MiRNAs facilitate macrophage phenotype switching via targeting various
transcription factors. It has been demonstrated that miR-127 and miR-125b promote the M1-like
phenotype via targeting Bcl-6 and IRF-4, respectively [129,130]. Some other miRNAs impacting
macrophage polarization via regulating expression of transcription factors/activators have been shown
in Figure 1. Depending on the stimuli received from TME, the impact of few miRNAs such as miR-142,
miR-125a/b, and miR-155 on macrophage polarization (M1 to M2 transition) might be bidirectional.
The detailed mechanism of these miRNAs has been reviewed by [88,131]. Since different sets of miRNAs
regulate TAM phenotypic transition; this offers a unique opportunity to manipulate the functions of
TAMs. For instance, enforced expression of miRNAs that promote re-education of macrophages from
M2 to M1-like phenotype could be helpful to suppress cancer cell growth and division.

Moreover, the re-education of TAMs might also activate other tumor cell killing cells. It will also
be interesting to develop small molecules/therapeutics that could regulate the activity of a specific
set of miRNAs to manipulate macrophage functions. Macrophage polarization regulation is a very
complicated process that involves cooperative action of multiple factors such as cytokines, growth
factors, chemokines, transcription factors, et cetera. The regulatory roles of miRNAs on these factors
add more complexity. Because of the involvement of integrated miRNAs networks in TAM polarization
and activation, it would be interesting to unravel how multiple miRNAs act in a cooperative manner
under in vivo conditions.

5. MiRNAs Involved in Regulation of Recruitment, Infiltration and Immunosuppressive
Function of Macrophages

It has been shown that a subset of the immune cells like MDSCs, macrophages, and DCs are
attracted by active secretion of a series of chemokines by tumor cells. Notably, circulating monocytes
are recruited by CCL2-CCR2 signaling. Apart from that, CCL5-CCR5 signaling axis in macrophages
is associated with advanced stages of different tumor types. Under the hypoxic condition, CXCL12
secreted by tumor cells causes infiltration of CXCR4 expressing TAMs in solid tumors. Some other
chemokines such as CCL7, CX3CL1, and factors like M-CSF and VEGF are also involved in TAMs
migration and recruitment [132,133]. MiRNAs can also act as a determinant in macrophage recruitment
at tumor site via producing various growth factors, chemokines, cytokines, et cetera. [4,88]. Chen et al.
reviewed the critical role of miRNAs in the recruitment of monocytes/macrophages at the tumor
location [88]. It is suggested that TAMs constitute up to 50% of total TME [134–136]. Enhanced levels
of miR-375 were noticed in breast cancer cells, which promote the recruitment of macrophages via
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modulating CCL2. Frank et al. demonstrated the influence of miR-375 expression on recruitment and
infiltration of macrophages using tumor spheroid and in vivo xenograft models [71].

Moreover, the authors concluded that during apoptosis, breast cancer cells transfer miR-375 to
TAMs. This process increases the infiltration and recruitment of macrophages into the TME [71].
Thus, miR-375 can modulate the tumor development process in breast cancer [71]. Contrary to this,
an inverse correlation has been demonstrated between miR-125b and TAMs in testicular germ cell
tumors (TGCTs). Overexpression of miR-125b in testicular tumor cells significantly reduced the TAMs
population at tumor site via inhibiting the production of tumor-promoting cytokines such as CSF-1
and CX3CL1 [112]. In HCC, a low level of miR-148b enhances CSF-1 expression, which leads to TAMs
infiltration and metastasis [111]. Another study performed by Chai et al. on HCC has shown that
miR-26a inhibits recruitment of macrophages at tumor sites via targeting M-CSF [137]. The present
study also suggests that the expression level of miR-26a might be used as a prognostic biomarker for
the determination of cancer grade.

TAMs are mostly known to play immunosuppressive roles in TME [45]. MiRNAs, as multifaceted
modulators affect the function of cells present in TME including TAMs via influencing the levels of
immune modulators. Knockdown of miR-155 in TAMs enhances the IL-10 production, which increases
their immunosuppressive abilities [138].

6. Extracellular MiRNAs Secreted from TAMs

Tumor cells in the TME usually secrete a lot of soluble extracellular vesicles (EVs), like microvesicles
and exosomes. Exosomes and microvesicles are composed of lipids, proteins, ncRNAs and nucleic
acids. They are well-known to play a significant role in cell to cell communication [139,140]. In general,
microvesicles are larger (>100 nm) in diameter as compared to exosomes, and generated from
plasma membrane, whereas exosomes consist of lipid bilayer membrane, are smaller in size (below
50–100 nm), and derived from late endosomes or multi-vesicular bodies (MVBs). Exosomes are a
significant mediator of intercellular communications for both pathological and physiological conditions;
therefore, tumor cell-derived exosomes always demanded the attention of cancer biology researchers.
From research within the last few years, exosomes derived miRNAs were shown to mediate cellular
communications within the TME and can carry out immune modulation to a different extent [141].
In epithelial ovarian cancer (EOC), TAMs derived exosomes loaded with miR-29a-3p and miR21-5p
directly inhibit STAT3 signaling in CD4+T cells. Inhibition of STAT3 signaling reduces IL-4, IL-6,
and TNF-α production with a significant increase in anti-inflammatory IL-10 levels, creating an
imbalance between Treg/Th17 cells, thus establishing the immunosuppressive microenvironment which
promotes ovarian cancer progression [104]. Based on these results, it was demonstrated that targeting
these miRNAs or exosomes might be an effective approach to inhibit ovarian cancer progression.
Lan et al. showed that in colon cancer, TAMs derived exosomes enriched with miR 21-5p and miR155-5p
increase the tumor cell migration and invasion [105]. MiR-21-5p also creates an immunosuppressive
environment in epithelial ovarian carcinoma [104]. In HCC, exosomal miR125a/b released from
TAMs in the TME negatively influences tumor cell division and stemness properties by targeting
CD90 [106]. Wang et al. suggested that exosomes containing miR-125a/b could be potential therapeutic
targets to design next-generation therapeutics for HCC patients [106]. Whereas, exosomal-miR-21
secreted from M2-like macrophages imparts chemoresistance in gastric cancer cells by modulating
the PI3K/Akt axis [107]. In the same study, it was shown that targeting miR-21 derived from TAMs
could be a potential approach to suppress chemoresistance in gastric cancer patients. Similarly, in
EOC, miR-7 carrying exosomes derived from TAMs inhibit metastasis by targeting the EFGR/AKT
pathway [102]. In another study, Feng et al. observed that miR-155-5p loaded exosomes released from
TAMs promote intracranial aneurysm (IA) formation and TAM infiltration via targeting Gremlin 1
(GREM1) [142]. Furthermore, the tumor-promoting role of exosomes enriched with miR-155-5p and
miR-21-5p was noticed in colorectal cancer. This report has shown miR-155-5p and miR-21-5p released
from M2-like macrophages enhances tumor cell proliferation and metastasis [105]. Uptake of exosomes
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containing miR-365 by PDAC cells confers resistance to gemcitabine [103]. This study highlights
the importance of exosomes for therapeutic purposes. Exploiting the exosomes for delivering the
therapeutic agents, including miRNAs antagonists represents the new approach for cancer therapy.
In addition, the tumor-promoting role of miR-223 via modulating myocyte-specific enhancer factor
2C (MEF2C) has been established in breast cancer cells [143]. Furthermore, another research group
has shown that exosomes loaded with miR-223 can induce the chemoresistant phenotype in EOC
cells [109]. Based on the results, the authors demonstrated that the exosomes loaded with miR-223
might be used as a prognostic biomarker for the progression of ovarian carcinoma. Exosomal miR-365
released from TAMs in pancreatic adenocarcinoma induces gemcitabine chemoresistance by activating
the cytidine deaminase [103]. A schematic diagram showing the release of extracellular miRNAs from
M2-like macrophages has been given in Figure 2. With all these unusual complex interventions of
miRNAs loaded in exosomes derived from TAMs in cancer progression, more and more research is
required to characterize miRNAs from TAMs and other competent immune cells.
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7. Extracellular miRNAs Secreted from Cancer Cells

Innate immune cells always play a considerable role in the regulation of multistep cancer
development. Short ncRNAs such as miRNAs have continued to be in the spotlight for the last
three decades as they are the critical modulators of transcription and translation processes within
the cell [144]. MiRNAs secreted from tumor cells affect the cells present in TME including TAMs,
thus regulate the metastasis process of the tumor. An important role of exosomal/EVs- miRNAs
released from cancer cells is to regulate macrophage phenotypic switch. Several exosomal extracellular
miRNAs have been reported to regulate this process, for instance, exosomes loaded with miR-222-3p
derived from EOC cells induce the M2-like phenotype via regulating the SOCS3/STAT3 pathway [76].
In another study, exosomes containing miR-940 released from ovarian cancer cells under hypoxic
conditions induce M2-like phenotype in macrophages, which increases ovarian cancer progression [77].
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Colon cancer cells exhibiting the gain of function p53 mutation secrete exosomes enriched in miR-1246,
which promote M2 polarization of macrophages, thus creating a tumor supportive environment [145].
In CRC, Takano et al. have shown that exosomes enriched in miR-203 could help in the differentiation
of monocytes to TAMs, which may impart enhanced cell growth, proliferation, and migration.
Additionally, exosomal miRNA-203 in serum could be used as a prognostic biomarker for cancer
progression and metastasis, and suppression of miR-203 might be a potential approach to combat
CRC progression [78]. Macrophages are also polarized by exosomes carrying miR-let7a released from
hypoxic cancer cells. MiR-let7a induces M2-like phenotype in bone-marrow-derived macrophages
via targeting the insulin/AKT/m-TOR signaling pathway, which enhances the tumor progression [85].
Activation of transcription factor Snail, that regulates EMT process, increases the production of
exosomal miR-21. Uptake of exosomes loaded with miR-21 by CD14+ human monocytes suppresses
the M1-like macrophages and induces a switch to the M2-like phenotype [146]. Hsu et al. demonstrated
an enrichment in M2-like macrophages which was accompanied by transfer of miR-103a loaded EVs
from hypoxic lung cancer cells to macrophages. They observed that miR-103a downregulates tumor
suppressor gene (PTEN) in macrophages which in turn activated AKT/STAT3 pathways as well as
multiple angiogenic, immunosuppressive, and tumor-promoting factors [81]. Under the hypoxic
conditions, cancer-cell derived miR-125b-5p, miR-21-2p, and miR-181d-5p promote M2-like phenotype
of macrophages, which may be involved in cancer initiation, angiogenesis, and metastasis [82]. A shift
to the M2-like phenotype has been observed in macrophages when they uptake exosomes with elevated
expression of miR-503 from glioma cells [147]. A few miRNAs secreted from cancer cells promoting
M2-like phenotype have been shown in Figure 3.
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It has been shown that miR-19a-3p secreted by breast cancer cells increases VEGF expression
and STAT3, inducing M2 to M1 polarization of TAMs [148]. Similarly, glioma cell-derived EVs
containing miR-21 and miR-451 induce the shifting of the cytokine profile of macrophage towards
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immunosuppressive phenotype [92]. In glioblastoma, extracellular miRNAs serve as promising
prognostic and diagnostic markers in cancer biology and can unravel a more robust approach to
defeat this disease. Few miRNAs, for example, miR-29a and miR-21 derived from lung tumor cells,
can promote tumor progression via activating the Toll-like receptor (TLR) mediated inflammatory
response [101]. Furthermore, Challagundla et al. have shown a positive association between two
tumor-promoting miRNAs; miR-155 and miR-21. Concerted action of these two miRNAs contributes
to chemoresistance of cancer cells [95]. In addition, uptake of EVs enriched with miR-145 derived from
colorectal cancer cells by macrophages increases their oncogenic effects via downregulation of histone
deacetylase 11 (HDAC11) [79]. Guo et al. found that exosomal transfer of miR-20a-5p released from
breast cancer cells facilitate breast cancer development and metastasis [149]. They demonstrated that
exosomal transfer of miR-20a-5p promotes migration of breast tumor cells to bone [149]. In another
study performed on breast cancer cells depicts that transfer of extracellular miR-375 from tumor cells
to TAMs induced their migration and infiltration [71]. In cancer cells, it has been shown that the
treatment of anti-cancerous compound epigallocatechin gallate (EGCG), enhanced the level of miR-16
in both tumor cells as well as exosomes derived from cancer cells. Exosomal miR-16 was engulfed
by M2-like macrophages, which induced M2 to M1 polarization of macrophages via inhibiting the
NF-kB pathway [80]. In addition treatment of EGCG reduced the migration and infiltration of M2-like
macrophages via curtailing the expression of certain immunomodulators [80]. In pancreatic cancer,
extracellular miRNAs such as miR-155, miR-125b-2 promote M1-like phenotype while under oxygen
deprived condition, miR-301a-3p triggered M2-like phenotype via modulating PTEN/PI3Kγ axis [74,83].
In HCC, miR-23a-3p from liver cancer cells activates Akt, which increases inflammatory cytokines
and PD-L1 expression [96]. All these studies suggest that tumor cells secrete extracellular miRNAs
to communicate with TAMs and other cells present in TME. These miRNAs regulate key signaling
molecules in TAMs and ultimately decide the phenotype and function of TAMs. Manipulation of
macrophages such as M2 to M1 polarization may be a potential approach to combat cancer.

8. Conclusions and Future Perspective

The signaling events and biology of TME are well understood from previous studies, however, little is
known about how TAMs and other cells present in TME create a niche for cancer progression. Recently,
an emerging shred of evidence suggests the implication of miRNAs in this process. In the last
decade, a series of studies have shed light on the underlying mechanisms driven by miRNA to
elicit early phases of carcinogenesis and inflammatory response. Unraveling the link between
miRNA and cancer progression process may open the door to inventing new diagnostic and
therapeutic strategies. This article focuses on the significance of miRNAs in macrophage differentiation,
maturation, and functions. MiRNAs regulate almost all the biological and physiological processes
associated with macrophages. Most of the studies related to these processes are based on the
mechanistic investigation of individual miRNAs. However, macrophage development and functions
are facilitated by the cooperative action of multiple miRNAs. It would be fascinating to study
how various miRNAs cooperate to control cellular and molecular signaling inside the macrophages.
Since individual miRNAs may have multiple target genes, thus it could regulate several biological
processes. Hence, understanding the integrated networks modulated by the concerted action of
numerous miRNAs represents a challenge. Inevitable outcomes in this field may provide a new
paradigm regulating cancer progression and metastasis and eventually uncover new pharmacological
targets to inhibit carcinogenesis. Many microarray analysis have been done to understand the signaling
networks inside the tumor cells, however, a series of studies have confirmed the connection between
altered expression of miRNAs inside the tumor-infiltrating cells, including macrophages and cancer
initiation and progression. Further identification of new miRNAs and their functional characterization
might uncover new avenues to design miRNA-based therapeutics. Altered expression of miRNAs
may regulate TAMs function, thus could impact the cancer development process. Since TAMs have
lower mutation rates and heterogeneity than cancer cells, depletion or re-polarization of TAMs via
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modulating the expression of a specific set of miRNAs present a beneficial approach in cancer therapy.
Thus, restoring the normal levels of miRNAs could be a possible strategy to improve patient outcomes.
Delivering miRNAs mimics or antagonists by nanoparticles or antibody-linked nanoparticles bear
significant potential as a therapeutic strategy.
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A2AR Adenosine A2A receptor
ANG2 Angiopoietin-2
BAK1 BCL2 antagonist/Killer 1
CCL2 C-C motif chemokine ligand 2
CRC Colorectal cancer
CSF-1 Colony-stimulating factor-1
EGCG Epigallocatechin gallate
EGF Epidermal growth Factor
Egr2 Early growth response protein 2
EMT Epithelial to mesenchymal transition
EOC Epithelial ovarian cancer
EVs Extracellular vesicles
GATA-3 GATA binding protein-3
GMP Granulocyte–monocyte progenitor
GSK3β Glycogen synthase kinase 3 beta
HCC Hepatocellular carcinoma
HIF-2α Hypoxia-inducible factor-2 alpha
ILs Interleukins
MDSCs Myeloid-derived suppressor cells
MERTK MER proto-oncogene, tyrosine kinase
NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells
NSCLC Non-small-cell lung carcinoma
OSCC Oral squamous cells carcinoma
PDAC Pancreatic ductal adenocarcinoma
PD-L-1 Programmed death-ligand-1
PI3K Phosphatidylinositol 3-kinase
PPARδ Peroxisome proliferator-activated receptor δ
SOCS3 Suppressor of cytokine signaling 3
STAT-3 Signal transducer and activator of transcription-3
TGCTs Testicular germ cell tumors
TGFBR3 Transforming Growth Factor Beta Receptor 3
TLR Toll like receptor
TNF-α Tumor-necrosis factor-α
TWIST1 Twist-related protein 1
uPA Urokinase-type plasminogen activator
VEGF Vascular endothelial growth factor
WNT5B Wnt family member 5B
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