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Abstract

Background and Aims: Gluten sensitivity is widespread among humans. For example, in celiac disease patients, an
inflammatory response to dietary gluten leads to enteropathy, malabsorption, circulating antibodies against gluten and
transglutaminase 2, and clinical symptoms such as diarrhea. There is a growing need in fundamental and translational
research for animal models that exhibit aspects of human gluten sensitivity.

Methods: Using ELISA-based antibody assays, we screened a population of captive rhesus macaques with chronic diarrhea
of non-infectious origin to estimate the incidence of gluten sensitivity. A selected animal with elevated anti-gliadin
antibodies and a matched control were extensively studied through alternating periods of gluten-free diet and gluten
challenge. Blinded clinical and histological evaluations were conducted to seek evidence for gluten sensitivity.

Results: When fed with a gluten-containing diet, gluten-sensitive macaques showed signs and symptoms of celiac disease
including chronic diarrhea, malabsorptive steatorrhea, intestinal lesions and anti-gliadin antibodies. A gluten-free diet
reversed these clinical, histological and serological features, while reintroduction of dietary gluten caused rapid relapse.

Conclusions: Gluten-sensitive rhesus macaques may be an attractive resource for investigating both the pathogenesis and
the treatment of celiac disease.
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Introduction

Celiac disease is an inheritable enteropathy caused by dietary

gluten from wheat, barley, and rye [1]. Its clinical manifestations

are variable, but commonly include persistent diarrhea, abdominal

discomfort, bloating, and fatigue. In some celiac patients, a

pruritic, vesicular skin rash called dermatitis herpetiformis

accompanies gastrointestinal damage [2,3]. The deleterious

immune response underlying these symptoms is mediated by

intestinal lymphoid tissue in response to proteolytically resistant

gluten peptides bound to human leukocyte antigen (HLA) DQ2, a

class II major histocompatibility complex (MHC) molecule

associated with over 90% of diagnosed celiac patients [4,5].

Gluten elicits both a T cell and a B cell response in patients with

untreated celiac disease [6]. A biopsy of the intestinal lesion

showing characteristic villus blunting, crypt hyperplasia, and

intraepithelial lymphocytosis remains the gold standard for

diagnosis [7], though circulating antibodies against gliadin (the

alcohol-soluble fraction of gluten) [8], endomysium and/or

endogenous transglutaminase 2 (TG2) [9] are now widely used

as specific indicators of disease. Such serological tests have

established the prevalence of celiac disease to be as high as

1:100 in certain populations, although the condition remains

under-diagnosed [10,11]. Untreated celiac disease is associated

with increased morbidity and mortality, while strict dietary

exclusion of gluten constitutes an effective treatment [12].

Clinical, immunological, genetic, and biochemical studies have

greatly expanded our understanding of the progression of celiac

disease [6], but the elucidation of several critical inquiries

remaining in celiac disease research would be greatly facilitated

by a suitable animal model of gluten sensitivity. For instance, it is

not known how gluten peptides are transported intact across the

mucosal epithelium for presentation to the underlying lymphoid

tissue, or how disease state affects this phenomenon. In fact, the

detection of transepithelial transport of a chemically-defined

gluten peptide in vivo has not been reported, though it is presumed

such an event is prerequisite to disease. The study of whether there

is a primary defect in gut permeability in human celiac patients is

hampered by the difficulty of ensuring adherence to a gluten-free

diet in the midst of ubiquitous gluten-containing human foodstuffs.

However, such studies could be conducted in an animal model in

which dietary consumption of gluten could be strictly controlled.
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The challenge celiac patients face in maintaining a gluten-free diet

also significantly impacts their quality of life, necessitating the

development of alternative (or adjunct) non-dietary therapies [13].

A particularly promising route is the use of oral glutenases [14,15],

proteases capable of detoxifying ingested gluten, but here again an

animal model of gluten sensitivity is needed to make a preclinical

determination on the efficacy of such therapeutic interventions.

Thus, animal models of gluten sensitivity would enable the study of

both fundamental and practical questions related to celiac disease.

Here, we identify juvenile rhesus macaques (Macaca mulatta) as a

model exhibiting clinical, serological, and histological signs and

symptoms of gluten sensitivity. In an accompanying report, we

describe additional studies demonstrating the potential of this

model for studying gluten peptide transport and therapeutic

intervention in celiac disease [16].

Methods

Rhesus macaques
Retrovirus-free (simian immunodeficiency virus, simian retro-

virus, and simian T-cell leukemia virus) rhesus macaques (Macaca

mulatta) of all ages, and both sexes were used in initial

epidemiological pre-screening of diarrhea as the cause of

morbidity in Tulane National Primate Research Center (TNPRC)

breeding colony macaques (n = 2,820). A subset of these animals

(n = 83) with clinical symptoms of non-infectious, chronic diarrhea

of idiopathic origin was identified and tested for the presence of

anti-gliadin antibodies (AGA). An AGA+ juvenile macaque (FH09)

with chronic diarrhea, dehydration, and stomach distention was

selected for treatment with a gluten-free diet. In addition, a

clinically healthy, age-matched juvenile macaque (FR26) under-

went identical dietary treatment. Animals undergoing dietary

treatment were housed for 10 months under biosafety level two

conditions in accordance with the standards of the Association for

Assessment and Accreditation of Laboratory Animal Care.

Investigators adhered to the Guide for the Care and Use of

Laboratory Animals prepared by the National Research Council.

Gluten-containing and gluten-free diets
Four different types of diets were formulated and used in this

study in collaboration with Purina, Inc. Diet #1 corresponded to a

commercially available monkey chow (5K63) that is routinely used

to feed captive rhesus macaques and that fulfills all nutritional

requirements, as specified by its manufacturer (PMI Nutrition Int.,

LLC.). This diet contained 20% (by weight) of crude protein

including oats and gluten sources such as ground wheat, 5% of fat,

and 10% of crude fiber. Diet #2 (reduced gluten diet) contained

all the nutrients at levels identical with diet #1, except proteins

from wheat gluten sources were omitted. Diet #3 (gluten-free diet,

5A7Q) contained all nutrients at levels identical with diet #1,

except proteins from all gluten sources were omitted. Diet #4

(high fat gluten-free diet with inclusion of 1.055% (w/w) sucrose

polybehenate (P&G, 5B3W)) contained all nutrients at levels

identical with diet #3, except it contained 21.1% fat and the non-

absorbable, lipophilic marker, sucrose polybehenate, for evalua-

tion of steatorrhea as described in detail elsewhere [17]. Animals

would typically consume 4% of their body weight daily (e.g. 160 g

of food for a 4 kg animal).

Clinical evaluation of gluten sensitivity
Clinical data were recorded daily for the duration of the 8–

10 month dietary treatment periods. Average weekly values were

calculated as means6standard deviation of 7-day intervals. Stool

samples obtained from each macaque at the time of study

assignment were tested according to our protocols [18] to confirm

that no infectious pathogens were contributing to clinical symptoms

of illness. Criteria that were used in blinded clinical scoring (1–6

scale) of gluten sensitivity were scaled relative to ‘‘clinically normal’’,

age-matched controls, i.e. score of 1. Score 2 corresponded to

beginning of diarrhea, i.e. pasty stools. Score 3 corresponded to

semi-liquid stools and decreased activity. Score 4 corresponded to

liquid stools, decreased activity, moderate dehydration and ‘‘bal-

loon’’ stomach. Score 5 corresponded to liquid stools, depression,

severe dehydration and balloon stomach. Score 6 would correspond

to a moribund animal where prompt euthanasia is recommended.

Such a severe score was never reached.

Veterinary procedures: peripheral blood and small
intestinal biopsy sample collections

Peripheral blood samples (1 ml) were collected from the femoral

vein, and plasma was harvested. Collected samples were stored at

280uC until analyzed for anti-gliadin and anti-TG2 antibodies.

Blood samples were obtained from A) FH09 and FR26 macaques

in bi-weekly intervals during the entire study period, and B) from

colony macaques during annual inventories.

Endoscope-guided pinch biopsies were collected by a TNPRC

veterinary surgeon from the distal duodenum of gluten-sensitive

FH09 and of control FR26 at 0, 27 and 37 weeks after the first diet

switch (diet # 1 to diet # 2). Ten pieces (each ,3 mm3) were

obtained from each animal and fixed in formalin for routine

histology and colocalization of immunological markers. In

addition, 5 grams of stool samples were collected from FH09

and FR26 at weeks 27 and 37 after feeding them diet #4 for 4

consecutive days. As approved by our IACUC protocol and

confirmed by past experiments, macaques tolerate intestinal pinch

biopsies with no adverse effects. Plasma and biopsy collections

were performed with sedated and anesthetized animals.

Archived post-mortem biopsies from 40 necropsy macaques

were collected and fixed immediately following death. No autolytic

tissues were included.

Indirect ELISA for AGA and anti-TG2 antibodies
Relative plasma levels of anti-gliadin and anti-TG2 antibodies

were determined by indirect ELISA. For anti-gliadin antibody

tests, 20 mg/ml gliadin (Sigma) was digested in 0.01 M HCl for

60 min at 37uC with 0.6 mg/ml pepsin (American Laboratories).

The reaction was then adjusted to pH 6.0 with Na2HPO4 and

0.375 mg/ml trypsin (Sigma) was added to further digest the

gliadin for 120 min at 37uC. The reaction was quenched by

boiling 10 min and frozen at 220uC until use. Pepsin-trypsin

digested gliadin was diluted to 20 mg/ml in coating solution

(50 mM sodium carbonate/bicarbonate buffer, pH 9.6, 0.02%

NaN3) and 200 ml/well was incubated overnight at 4uC in 96-well

microtiter plates (Nunc Maxisorp). For anti-TG2 antibody tests, 2–

20 mg/ml recombinant human TG2, expressed and purified as

previously described [19], was used to coat the plates instead of

pepsin-trypsin digested gliadin. Antigen-coated plates were washed

three times with 16PBS, pH 7.4, 0.05% Tween-20 prior to

blocking and between all subsequent steps. Plates were blocked

with 200 ml blocking buffer (1xPBS, pH 7.4, 0.05% Tween-20,

3% BSA) for 1 h at room temperature. Plasma samples were

diluted 1:1000 in blocking buffer and 200 ml/well was incubated

overnight at 4uC. Secondary antibody-alkaline phosphatase

conjugates (rabbit anti-monkey IgG (Sigma) or goat anti-monkey

IgA (RDI Fitzgerald)) were diluted 1:250 in blocking buffer and

200 ml/well was incubated 3 h at room temperature. Freshly

prepared substrate solution (5 mg/ml pNPP, 50 mM sodium

carbonate/bicarbonate buffer, pH 9.8, 1 mM MgCl2, 0.02%
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NaN3) was added (200 ml/well) and the absorbance at 405 nm was

measured every 6 seconds for 5 minutes. The initial rate (mA405/

min) in each well was determined from 20 data points. All samples

were analyzed in triplicate. Thresholds for identifying samples as

positive for anti-gliadin IgG (20.5 mA405/min) and IgA

(2.10 mA405/min) were determined by optimizing for sensitivity

and specificity through receiver-operator characteristic (ROC)

analysis. The areas under the anti-gliadin IgG and IgA ROC

curves were 0.627 and 0.874, respectively.

Histopathological examination and morphometric
evaluation of villus blunting

Distal duodenum tissue samples collected from gluten-sensitive

FH09 and control FR26 macaques were processed as described in

detail previously [18]. Briefly, five 3 mm3 tissue pieces were fixed

in 10% neutral buffered formalin, sectioned at 6 mm, stained with

hematoxylin and eosin (H&E), and viewed under regular light

microscopy at 100–2006. The villus height/crypt depth (V:C)

ratios were obtained from linear measurements of 5 villus heights,

divided by the corresponding crypt depths. The linear measure-

ment of the villus height was made from the top of the villi to the

mouth of the crypt of Lieberkuhn. The crypt depth was measured

as the distance from the mouth of the crypt of Lieberkuhn to the

upper border of intestinal lamina muscularis. Typical lesions that

we expected to find in cases of enteropathy included duodenal

villus blunting, reduced V:C ratio, crypt hyperplasia and

dilatation, and increased number of IELs. None of these changes

were expected in a normal, control animal. Archived samples from

necropsy animals were evaluated similarly. For this purpose, we

analyzed historical samples of hematoxylin/eosin-stained distal

duodenum and proximal jejunum tissues from 40 TNPRC rhesus

macaques with chronic diarrhea. Evaluations were performed

blinded to the sample source.

Visualization of IELs in situ
The technique that was used with some modifications is

described in detail elsewhere [20,21]. Briefly, five pieces of pinch

(3 mm3) biopsies were sectioned at 6 mm thick and subjected to

immunohistochemistry. Sections were incubated with the primary,

cell-type specific antibody for 60 minutes (CD3, polyclonal, or

CD103, monoclonal, clone Ber-ACT8, both Dako) at room

temperature followed by biotinylated goat anti-rabbit or horse

anti-mouse (Vector Laboratories) secondary antibodies, respec-

tively. Finally, sections were incubated with avidin-biotin-complex

(ABC, Elite, Vector Laboratories), and the reaction was visualized

with 3,39-diaminobenzidine as the chromogen (Dako). As a

negative control, serial sections were processed identically using

equivalent concentrations of irrelevant primary antibodies of the

same isotype. Visualization was performed using a Leica DMLB

microscope with a SPOT insight digital camera (Digital Instru-

ments) interfaced to Image-Pro Plus image analysis software

(Media Cybernetics). The CD3+ T cells in epithelium (and

subepithelium) were visualized in brown color. This staining allows

automated color enhancement and identification of positive cells

in specified areas of interest.

Measurement of malabsorptive steatorrhea
At week 27, following treatment with a gluten-free diet for

,11 weeks, gluten-sensitive FH09 was placed for 4 days on diet

#4, which enabled measurement of fat content in 5 g stool

samples collected at 32, 48, 56 and 72 hours post diet #4

initiation. Fatty acid absorption, expressed as the percent of

ingested dietary fat, was calculated as described elsewhere [17].

Tabulated values are shown for 56 and 72 hours, since it took

.48 hours post diet #4 initiation for fat absorption levels to

stabilize. Measurement of fat content in stools was repeated in

gluten-sensitive FH09 and control FR26 macaques at week 37

when they were challenged with gluten-containing diet #1.

Statistical evaluation
Statistical differences between the level of AGA and between

V:C ratios in gluten-sensitive versus control macaques were

determined by the Kruskal-Wallis Test for non-parametric

comparisons using at least three independent measurements from

each animal. A p value of ,0.05 was considered significant.

Results

Prevalence of idiopathic diarrhea
To determine the prevalence of chronic diarrhea as a cause of

morbidity in captive rhesus macaques, we conducted a retrospec-

tive epidemiological survey of 2,820 breeding colony animals

housed at the Tulane National Primate Research Center

(TNPRC). These animals were retrovirus-free (simian immuno-

deficiency virus, simian retrovirus, and simian T cell leukemia

virus), of all ages, and of both sexes. The overall prevalence of

diarrhea in the population was 7.5/100 animals, with highest rates

observed among yearlings (16.1/100) and 2 to 4 year olds (10.5/

100) (Table 1). In these juvenile animals, diarrhea was in some

instances accompanied by bloating (balloon stomach) and skin

rash/blistering, clinical presentations that are characteristic of

classic human celiac disease and of the dermatologic manifestation

of celiac disease, dermatitis herpetiformis [2,3].

Histology
Based on these clinical symptoms, we hypothesized that

macaques suffering from chronic diarrhea may also exhibit

histological lesions that in human patients are indicative of celiac

disease. We therefore evaluated archived tissues from 40 available

necropsy macaques with histories of chronic enteropathy and

clinical diarrhea of non-infectious, idiopathic origin, searching

Table 1. Morbidity for rhesus macaques (Macaca mulatta) at
TNPRC

Age
Category Population Presenting Cause

Diarrhea Rate per
100 animals

Diarrhea Other

Infant 491 22 47 4.5

Yearling 471 76 23 16.1

2 to 4 737 77 99 10.5

4 to 6 505 17 109 3.4

6 to 8 279 12 88 4.3

8 to 10 88 1 25 1.1

10 to 12 75 0 23 0

12 to 14 57 3 6 5.3

14 to 16 55 3 10 5.5

16 to 18 19 1 5 5.3

18 to 20 13 0 1 0

20 & Up 32 0 6 0

Total 2820 212 442 7.5

doi:10.1371/journal.pone.0001614.t001
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specifically for the presence of partial or complete villus blunting,

crypt hyperplasia and inflammation. Villus flattening, crypt

hyperplasia and intraepithelial lymphocytosis are typically present

in human patients in advanced stages of celiac disease, while

patients in earlier stages of the disease exhibit only lymphocytosis,

with normal villus architecture or only partial villus atrophy

[3,22]. Villus blunting, crypt hyperplasia, and intraepithelial

lymphocytosis were identified in 12.5% (5/40) of these animals

(Figure 1). Morphometric evaluation of duodenal villus height:

crypt depth (V:C) ratios confirmed that V:C ratios were

significantly lower in lesioned animals (0.660.1) relative to

controls (1.760.2)(p,0.01, Mann-Whitney Test). This 2.8-fold

average decrease in V:C ratio is similar in magnitude to that

defined as partial villus atrophy in celiac disease [23]. The

histology in these macaques suffering from chronic diarrhea of

non-infectious origin therefore resembles that observed during

advanced stages of celiac disease.

Serology
A critical environmental trigger in celiac disease is dietary gluten

from wheat as well as related protein from barley and rye. The

primary pathogenic components of wheat gluten are gliadin

proteins, and serological tests for the presence of elevated IgG and

IgA anti-gliadin antibodies (AGA) are respectively 89% and 82%

sensitive and 66% and 90% specific for celiac disease in human

patients [24]. As captive rhesus macaques are fed a diet containing

gluten, a protein source that is not a staple in a wild macaque’s

diet, we conducted a serological survey to determine if dietary

gluten might contribute to the high prevalence of gastrointestinal

illness in these primates. A selection of 83 retrovirus-free rhesus

macaques exhibiting chronic diarrhea of non-infectious etiology

were tested for IgG and IgA AGA by indirect ELISA (Table 2).

Both juvenile (#4 years; n = 66) and adult (.4 years; n = 17)

subgroups exhibited elevated IgG and IgA AGA levels relative to

healthy controls (#4 years; n = 11), indicating that gluten in

commercial monkey chow (diet #1) elicits a humoral immune

response in some rhesus macaques. The proportion of symptom-

atic animals with elevated IgG was twice as high in juveniles (46/

66) than in adults (6/17), whereas nearly all symptomatic animals

exhibited elevated IgA against gliadin (63/66 juveniles and 17/17

adults). In healthy juveniles, the corresponding proportions were

3/11 IgG+ and 1/11 IgA+.

Figure 1. Histopathology of the small intestine. H&E-stained tissue sections of duodenum and proximal jejunum from rhesus macaques with
idiopathic diarrhea. (A) Normal control duodenum from an age-matched rhesus macaque illustrating characteristic morphology of the villi. 1006
magnification. (B) Enteropathy of duodenum. Diffuse enteritis characterized by shortening of villi, severe lymphocytic and plasmacytic infiltration of
the lamina propria, and vacuolar degeneration of the epithelium. 1006 magnification. (C) Normal control jejunum from an age-matched rhesus
macaque. 1006magnification. (D) Enteropathy of jejunum. The mucosa appears flat with marked blunting of villi and dense infiltration of lamina
propria by mononuclear cells. 1006magnification.
doi:10.1371/journal.pone.0001614.g001

Table 2. Anti-gliadin antibodies (AGA) in TNPRC rhesus
macaques with histories of clinical diarrhea

History of
diarrhea IgG AGA IgA AGA

Age Category Total + 2 + 2

Healthy juveniles (#4 years) 11 No 3 8 1 10

Symptomatic juveniles
(#4 years)

66 Yes 46 20 63 3

Symptomatic adults (.4 years) 17 Yes 6 11 17 0

Total (Symptomatic) 83 52 31 80 3

doi:10.1371/journal.pone.0001614.t002
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A subset of 15 AGA+ animals (including those with the highest

AGA levels) and all healthy controls were further tested for the

presence of anti-TG2 antibodies, which are known to be more

specific (97%) and sensitive (94%) indicators of celiac disease than

AGA [24]. Although three of these AGA+ individuals exhibited

elevated anti-TG2 antibodies relative to the controls, the increase

was small (,2-fold), and did not correlate with AGA levels (data

not shown).

Removal of dietary gluten improves clinical diarrhea,
histology, and serology

The presence of AGA in enteropathic rhesus macaques does not

necessarily identify dietary gluten as a causative agent in the disease.

Since gluten is highly resistant to gastrointestinal proteolysis [25],

damage to the macaque gut from other factors (e.g. bacterial or viral

infection) could increase the mucosal permeability toward luminal

gluten, leading to a humoral immune response against gluten absent

any direct pathogenic effect. In celiac disease, a definitive diagnosis

requires that histological lesions are present when the patient is on a

gluten-containing diet, and that unequivocal clinical and histological

improvement occurs upon adherence to a gluten-free diet [2,7]. To

determine if dietary gluten is a trigger of the clinical and serological

condition described above in rhesus macaques, we successively

administered 2 modified diets (reduced gluten and gluten-free) to

FH09, an AGA+ juvenile macaque with chronic diarrhea, as well as

to FR26, an age-matched AGA- control macaque that experienced

no gluten sensitivity. Clinical, histological, and serological markers of

enteropathy were monitored over time to assess recovery in FH09.

On a gluten-containing diet, FH09 presented with chronic

diarrhea, dehydration, distended stomach, and physical inactivity,

as well as elevated plasma levels of both IgG and IgA against

gliadin (Figure 2). Within 6 days of changing to a reduced gluten

diet (diet #2), clinical symptoms of diarrhea in FH09 improved

(Figure 2A), and by 4 weeks its AGA levels had reduced by half

(Figure 2B). However, over the subsequent 12 weeks on this diet,

FH09 still exhibited occasional diarrhea, distended stomach, and

mild dehydration, and thus did not improve to an asymptomatic

stage (clinical score of 1). Additionally, levels of AGA in FH09

remained significantly elevated above those observed in FR26.

Therefore, after 16 weeks on a reduced gluten diet, FH09 and

FR26 were reassigned to an entirely gluten-free diet (diet #3).

Within 8 weeks of this change, FH09 clinically recuperated, no

longer exhibiting symptoms of disease such as diarrhea, dehydra-

tion, or abdominal distention (Figure 2A), and its IgG and IgA

AGA further dropped to levels that were statistically indistinguish-

able from the healthy, age-matched juvenile macaque FR26

(Figure 2B). Moreover, dietary fat absorption in FH09 on a gluten-

free diet was $80%, which was comparable (p,0.05) to the level

of dietary fat absorption measured in FR26 (Table 3).

Histological analysis of duodenal biopsies revealed a similarly

beneficial effect of a gluten-free diet on mucosal architecture in

FH09. The duodenal V:C ratios measured in FH09 at week 27,

following 11 weeks on a gluten-free diet (diet #3), were

significantly higher than those measured at week 1, on a gluten-

containing diet (p,0.05), and were statistically equivalent to those

measured in FR26 (Figure 3A). In contrast to FH09, the V:C ratios

in FR26 did not change as a function of dietary changes (data not

shown). The total number of CD3+ and CD103+ cells in the

lamina propria and epithelium at week 27 was only ,2-fold lower

than it was at week 1 (data not shown). This suggests that many of

the inflammatory cells that were present in the duodenum of FH09

on a gluten-containing diet persisted in the epithelium after clinical

symptoms and plasma AGA levels were already normalized.

Gluten-induced relapse
Reintroduction of dietary gluten was sufficient to reverse the

effects of a gluten-free diet in FH09. At week 28, FH09 and FR26

were returned to the standard gluten-containing diet (Figure 2A).

The clinical health of FH09 deteriorated within 2 weeks of the diet

reversal, and by 6 weeks of gluten challenge FH09 was exhibiting

symptoms of diarrhea, stomach bloating, and dehydration that

were comparable in severity to those present prior to treatment

with the gluten-free diet (Figure 2A). After 10 weeks of gluten

challenge (week 37), dietary fat absorption in FH09 dropped to

,70%, while that in FR26 macaque remained level at .80%

(Table 3). Re-introduction of gluten-containing chow at week 28

was also associated with renewed and rapid seroconversion to

gliadin: Both IgA and IgG AGA were by week 37 significantly

elevated in FH09 above the AGA levels of FR26, despite identical

dietary treatment (p,0.0001) (Figure 2B). At this point, FH09

displayed marked villus blunting and crypt hyperplasia, as well as

increased intraepithelial lymphocyte (IEL) infiltration (Figure 3C

and E), when compared to the rich villus architecture and

relatively fewer IEL seen in the control, FR26 (Figure 3B and D).

Remarkably, the difference between the V:C ratios from FH09

and FR26 at week 37 was significant at the p,0.05 level, as was

the difference between the V:C ratios measured from FH09 in

remission (week 27) and after relapse (week 37) (Figure 3A).

Although we were not able to continue collecting intestinal

biopsies from additional macaques in this study, the gluten-

dependency of clinical diarrhea and AGA observed in FH09 was

corroborated in an additional experiments with gluten-sensitive

and control animals [16].

The clinical, histological, and serological markers of disease in

gluten-sensitive macaques are thus induced by ingestion of dietary

gluten, and are abrogated by removal of gluten from the diet.

Accordingly, we designate this condition simian gluten sensitivity,

in analogy to that similar condition observed in human celiac

disease patients. While it would be premature to proffer gluten-

sensitive macaques as a bona fide animal model for celiac disease

absent evidence of MHC (Mamu) class II association and of TG2

involvement, the gluten-inducible nature of signs and symptoms in

these macaques provides an excellent in vivo system for studying

oral glutenase efficacy as well as intestinal permeability toward

gluten peptides under varied states of intestinal disrepair.

Discussion

Chronic diarrhea is the primary cause of morbidity in colonies of

captive non-human primates [18]. A number of infectious pathogens

have been identified that can induce this condition [18,26,27], but

the role of dietary antigens had not been previously investigated. We

hypothesized that captive rhesus macaques exhibiting clinical

diarrhea of non-infectious origin may be sensitive to gluten, a major

source of protein in their formulated diet. A subpopulation of these

animals presented with chronic diarrhea, stomach distention and

blistering skin rashes, clinical symptoms that are also observed in

classic human celiac disease, and in its dermatologic manifestation,

dermatitis herpetiformis. In this study we characterized the clinical,

histological, and serological characteristics of a small number of

gluten-sensitive macaques. We hope to continue with similar, more

extensive studies in the future.

Juvenile macaques appear to be especially prone to reacting

adversely to dietary gluten. The majority of animals with chronic

diarrhea of non-infectious origin had elevated levels of anti-gliadin

IgG and IgA in their plasma. A number of these seropositive

macaques exhibited marked villus blunting, crypt hyperplasia, and

intraepithelial lymphocytosis in duodenal biopsies. Their clinical,

Gluten Sensitivity in Macaques
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histological and serological markers resolved upon administration of a

gluten-free diet, and returned upon reintroduction of dietary gluten.

Previously proposed animal models for gluten sensitivity include

non-human primates, gluten-fed rabbits, Irish setter dogs, and

transgenic mice (Table 4). Prior documentation of celiac disease-

like enteropathy in non-human primates is limited to two case

reports, one in a single rhesus macaque necropsy [28], and

another in a single cynomolgus monkey which improved on a

gluten-free diet [29]. Elevated anti-gliadin IgG are observed in a

majority of laboratory rabbits fed gluten as part of their standard

diet [30] (MTB, unpublished results), but anti-gliadin IgA are not

present (MTB, unpublished results) and these rabbits are

apparently asymptomatic. Irish setter dogs with gluten-sensitive

enteropathy are the best-studied natural animal model for gluten

Figure 2. Gluten dependence of clinical symptoms and serology in gluten-sensitive rhesus macaque FH09. (A) Gastrointestinal
symptoms in gluten-sensitive FH09 improve with sequential administration of reduced gluten and gluten-free diets, but return upon reintroduction
of dietary gluten (diet changes indicated by vertical arrows). Criteria that were used in clinical scoring of gluten sensitivity in the juvenile macaque
FH09 were scaled relative to the healthy, age-matched control, FR26 (score 1, indicated by dotted line). Score 2 corresponded to beginning of
diarrhea, e.g. pasty stools. Score 3 corresponded to semi-liquid stools and decreased activity. Score 4 corresponded to liquid stools, decreased
activity, moderate dehydration and ‘‘balloon’’ stomach. Score 5 corresponded to liquid stools, depression, severe dehydration and balloon stomach.
Score 6 would correspond to a moribund animal where prompt euthanasia is recommended. Each datapoint represents the mean of 7 daily
measurements taken over the course of the indicated week. Standard deviations are indicated by error bars. (B) Anti-gliadin IgG (blue; open circles)
and IgA (red; open squares) return to baseline with dietary exclusion of gluten, but are elevated following reintroduction of dietary gluten. The level
of anti-gliadin IgG (blue; closed circle) and IgA (red; closed square) in control FR26 are shown for comparison. Each datapoint represents the mean of
triplicate measurements. Standard deviations are indicated by error bars.
doi:10.1371/journal.pone.0001614.g002
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sensitivity, exhibiting both gluten-dependent diarrhea and histo-

logical lesions [31–33]. However, the absence of anti-gliadin and

anti-TG2 antibodies as well as the lack of MHC class II linkage

with disease in these animals precludes their use as a model for

celiac disease [34,35]. Finally, transgenic mouse models have been

engineered to mimic celiac disease, most notably the NOD Abu
DQ8+ mouse, which expresses human DQ8 in an endogenous

MHC class II-deficient (Abu), autoimmune-prone (NOD) back-

ground [36]. These mice develop skin rashes with subcutaneous

IgA deposits that are reminiscent of dermatitis herpetiformis, but

have no gastrointestinal lesions or GI-related symptoms. Thus,

rhesus macaques may represent a more complete model for

studying celiac disease pathology than prior animal models.

Table 3. Fat absorption in FH09 (gluten-sensitive) and FR26
(control) macaques

Behenate marker absorption (%)

Animal Experiment
56 hours on
diet #4

72 hours on
diet #4

FH09 week 27 (gluten-free) 80.2 6 6.9 78.4 6 4.9

FH09 week 37 (gluten challenge) 67.0 6 1.4 67.8 6 1.1

FR26 week 37 (gluten challenge) 92.2 6 1.1 89.1 6 0.1

doi:10.1371/journal.pone.0001614.t003

Figure 3. Gluten dependence of histological lesions in gluten-sensitive rhesus macaque FH09. (A) Morphometric analysis of villus
height:crypt depth ratios from at least 4 different areas of distal duodenum in gluten-sensitive FH09 and control FR26 following dietary changes.
Administration of a gluten-free diet increased the V:C ratio in FH09 at week 27 to a level that is statistically equivalent to that in FR26 (constant at all
time points). Reintroduction of dietary gluten resulted in a drop in V:C ratio in FH09 (week 37) relative to that in FH09 on a gluten-free diet (week 27)
and to that in FR26. *P,0.05. (B–C) H&E-stained duodenum at week 37 following 10 weeks of a gluten-containing diet. 1006 magnification. (B)
Control macaque FR26 exhibits normal villus architecture. (C) Gluten-sensitive macaque FH09 exhibits villus blunting. (D–E) Highlighted sections in
B–C were examined by immunohistochemistry. 4006 magnification. (D) Anti-CD3 staining in FR26 shows few CD3+ IELs (dark brown dots in
epithelium). (E) Anti-CD3 staining in FH09 shows intraepithelial lymphocytosis.
doi:10.1371/journal.pone.0001614.g003
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Two important issues must be addressed before the implications

of this animal model can be fully appreciated. First, a Mamu class

II association with simian gluten sensitivity must be identified, in

analogy to the strong association of MHC class II haplotypes

DQ2/DQ8 with human celiac disease. Testing for such a genetic

association is currently underway. Preliminary results show that

the two gluten-sensitive macaques studied extensively herein and

in the accompanying report [16], FH09 and FH45, are of

genotype DRB1*0303(12), DRB*1007 at the Mamu class II

DRB(1) locus. Second, a humoral immune response directed

against TG2 is enacted during active enteropathy in celiac disease

patients, but is not observed in gluten-sensitive macaques. This

may be because we used recombinant human TG2 as antigen in

our ELISA to capture plasma antibodies raised against rhesus

macaque TG2. Human and macaque TG2 share 95% protein

sequence identity, but may present different epitope binding

surfaces in three-dimensional space, attenuating antibody affinity

in our assay. Another reason for this discrepancy might be that in

macaques TG2-mediated deamidation of gluten epitopes is not

required for their presentation by gluten-binding Mamu class II

alleles. Finally, if the pathogenesis of macaque and human gluten-

sensitivity are substantially shared, it may reflect the possibility that

anti-TG2 antibodies do not have a significant pathogenic role in

celiac disease. Regardless of the answers to the above unresolved

issues, gluten-sensitive rhesus macaques are likely to be valuable

for studying the pathogenesis and treatment of human gluten

sensitivity.
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