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Type 2 diabetes (DM2) increases the risk of cardiovascular disease. Aldosterone,

which has pro-oxidative and pro-inflammatory effects in the cardiovascular system,

is positively regulated in DM2. We assessed whether blockade of mineralocorticoid

receptors (MR) with spironolactone decreases reactive oxygen species (ROS)-associated

vascular dysfunction and improves vascular nitric oxide (NO) signaling in diabetes.

Leptin receptor knockout [LepRdb/LepRdb (db/db)] mice, a model of DM2, and their

counterpart controls [LepRdb/LepR+, (db/+) mice] received spironolactone (50mg/kg

body weight/day) or vehicle (ethanol 1%) via oral per gavage for 6 weeks. Spironolactone

treatment abolished endothelial dysfunction and increased endothelial nitric oxide

synthase (eNOS) phosphorylation (Ser1177) in arteries from db/db mice, determined by

acetylcholine-induced relaxation and Western Blot analysis, respectively. MR antagonist

therapy also abrogated augmented ROS-generation in aorta from diabetic mice,

determined by lucigenin luminescence assay. Spironolactone treatment increased

superoxide dismutase-1 and catalase expression, improved sodium nitroprusside

and BAY 41-2272-induced relaxation, and increased soluble guanylyl cyclase (sGC)

β subunit expression in arteries from db/db mice. Our results demonstrate that

spironolactone decreases diabetes-associated vascular oxidative stress and prevents

vascular dysfunction through processes involving increased expression of antioxidant

enzymes and sGC. These findings further elucidate redox-sensitive mechanisms

whereby spironolactone protects against vascular injury in diabetes.

Keywords: type 2 diabetes, aldosterone, mineralocorticoid receptor, vascular, oxidative stress

Introduction

In the past two decades, the number of people diagnosed with diabetes worldwide has dramatically
increased (Zimmet et al., 2001). Currently, type 2 diabetes mellitus (DM2), characterized by insulin
resistance and/or abnormal insulin secretion, either of which may predominate, affects 7.6 million
people in Brazil, 26 million in the United States and 347 million worldwide (Zimmet et al., 2001;
Manrique et al., 2014).
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DM2 is an important cause of cardiovascular and renal
mortality and morbidity. Oxidative stress, defined as increased
bioavailability of reactive oxygen species (ROS) (Danaei et al.,
2011), resulting from enhanced oxidative activity or decreased
antioxidant capacity, is typically described in DM2, and is
associated with vascular damage. We have recently shown that
db/db mice, a DM2 experimental model, present increased
expression/activity of nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (Nox) isoforms leading to
inflammation and, consequently, to vascular dysfunction
(Bruder-Nascimento et al., 2015). On the other hand, reduced
antioxidant enzymes expression/activity has also been reported
in DM2 (Bruder-Nascimento et al., 2014).

One of the many mechanisms associated with oxidative
stress-induced vascular dysfunction is a decrease in nitric oxide
(NO) bioavailability. Increased ROS production impairs NO
effects (Förstermann and Münzel, 2006; Fels et al., 2010; Stasch
et al., 2011; Velmurugan et al., 2013), especially NO-induced
activation of soluble guanylyl cyclase (sGC), cyclic guanosine
monophosphate (cGMP) production, and smooth muscle cells
relaxation (Förstermann and Münzel, 2006; Fels et al., 2010;
Stasch et al., 2011). In genetic and high-fat diet-induced DM2
experimental models, increased generation of superoxide anion
(O−

2 ), a ROS that avidly reacts with vascular NO to form
peroxynitrite (ONOO−), has been consistently reported (Hink
et al., 2001; Förstermann and Münzel, 2006; Bruder-Nascimento
et al., 2014). Molecular mechanisms and factors that contribute
to DM2-associated vascular dysfunction are not yet completely
understood.

Preclinical and clinical studies have shown that aldosterone
is positively regulated in DM2 (Pieper, 1997; Heitzer et al.,
2000; Bruder-Nascimento et al., 2014). Aldosterone, a steroid
hormone from the mineralocorticoid family, is critically involved
in electrolyte balance and blood pressure control. Aldosterone
actions aremediatedmainly throughmineralocorticoid receptors
(MR) via well-characterized genomic mechanisms. In addition
to long-term transcriptional effects, aldosterone has important
acute or non-genomic actions in the cardiovascular system,
influencing vascular reactivity and remodeling, endothelial
function, inflammatory, and redox processes (Hollenberg et al.,
2004; Touyz, 2004; Callera et al., 2011; Briones et al., 2012;
Bruder-Nascimento et al., 2014).

A recent study showed that diabetic individuals treated
with a MR antagonist have improved coronary microvascular
function, raising the possibility that MR blockade is beneficial
and may prevent cardiovascular disease in patients with DM2
(Toda et al., 2013). This important finding supports the notion
that dysregulated aldosterone production contributes to the
development and progression of cardiovascular disease in DM2.
Mechanisms involved in these beneficial effects of MR blockade
remain unclear.

Considering that aldosterone has pro-oxidative, pro-growth
and pro-inflammatory effects, which promote vascular damage
(Callera et al., 2011; Nguyen Dinh Cat and Jaisser, 2012; Ronconi
et al., 2012; Toda et al., 2013), and that aldosterone levels
are increased in DM2 (Hollenberg et al., 2004; Briones et al.,
2012), we assessed whether spironolactone, a MR antagonist,

decreases ROS-associated vascular dysfunction and improves
vascular NO signaling in db/db mice. We tested the hypothesis
that spironolactone augments NO/cGMP-mediated vascular
responses in DM2, through redox-sensitive processes.

Materials and Methods

Animals and Spironolactone Treatment
All experimental procedures were approved by the Ethics
Committee on Animal Research of the Ribeirao Preto Medical
School, University of Sao Paulo (protocol n◦ 062/2012) and are
in accordance with the Guidelines of the Brazilian College of
Animal Experimentation (COBEA).

Fourteen male, 12–14 weeks-old, [B6.BKS(D)-Lepr<db>/J]
mice (db/db), an experimental model of DM2, and 14 age-
matched heterozygous nondiabetic mice [(db/+), from The
Jackson Laboratory, Maine, USA were used in the study. db/+
and db/db mice were divided into four groups (7 mice per
group): db/+ spironolactone and db/db spironolactone, which
were treated for 6 weeks with the MR antagonist spironolactone
(50mg/kg body weight/day), and db/+ vehicle and db/db vehicle,
which were treated with ethanol 1% via oral per gavage (0.1ml
per 10 g of the total body weight). The oral gavage procedure was
performed once a day and always at the same time of the day (6:30
to 7:00 p.m.). Twelve hours after the last dose, mice were used for
the experimental protocols. The animals were anesthetized (2%
isoflurane vaporized with oxygen), killed by cervical dislocation
and tissues of interest were collected.

Mice were kept in the animal facility of the Department of
Pharmacology, Ribeirao Preto Medical School, University of Sao
Paulo, under controlled temperature (22–24◦C) and humidity,
12-h light/dark cycles, fed with standard diet and water ad
libitum.

Metabolic Profile
Serum sodium (Na+) and potassium (K+) were determined
using ion selective electrodes by potentiometry in an automatic
biochemistry analyzer (BT 3000 plus, Wiener Lab, Rosario,
Argentina). Serum aldosterone and insulin was determined by
enzyme immunoassay (Aldosterone Rodent ELISA Kit, Abnova,
Taipei, Taiwan/Rat-Mouse Insulin ELISA, Millipore, Darmstadt,
Germany). Blood glucose levels were measured with a portable
glucose meter (Accu-Chek Active R©, Roche Diagnostics), before
treatment was started (week 0), at the third week (week 3),
and at the end of treatment (week 6), after 12-h fasting, in all
experimental groups.

Systolic Blood Pressure Measurement
Systolic blood pressure (SBP) was assessed by a tail-cuff
pletysmography (CODA™ High Throughput - Kent Scientific
Corporation) before treatment was started (week 0) and at the
end of the spironolactone/vehicle treatment (week 6).

Vascular Function
Mesenteric vascular beds were isolated from db/db and db/+
mice treated with vehicle or spironolactone. Second-order
branches of superior mesenteric artery were dissected and
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mounted on a wire myograph (DMT, Danish Myo Technology,
Aarhus, Denmark). Vessel segments (2mm in length) were
mounted on 25µm wires in a vessel bath chamber for isometric
tension recording and equilibrated for 30min in Krebs–
Henseleit-modified physiological salt solution (120mmol/L
NaCl, 25mmol/L NaHCO3, 4.7mmol/L KCl, 1.18mmol/L
KH2PO4, 1.18mmol/LMgSO4, 2.5mmol/L CaCl2, 0.026mmol/L
EDTA, and 5.5mmol/L glucose), at 37◦C, continuously bubbled
with 95% O2 and 5% CO2, pH 7.4. At the beginning of
each experiment, arteries were contracted with 10µmol/L
noradrenaline (NE) to test for functional integrity. In some
experiments, the endothelium was removed by gently rubbing
the luminal side of the vascular segments. The integrity of the
endothelium or its removal was assessed by the presence or
absence of relaxation, respectively, of NE pre-contracted arteries
in response to 1µmol/L acetylcholine (Ach).

Concentration–response curves to Ach (10−10–10−5 M) were
performed in endothelium-intact arteries to assess endothelium-
dependent relaxation. Concentration-response curves to sodium
nitroprusside (SNP, 10−10–10−5 M), BAY 41-2272 (10−10–
10−5 M) and 8-Br-cGMP (10−8–10−4 M) were performed in
endothelium-denuded arteries. In some protocols, arteries were
pre-incubated with Nitro- L -argininemethyl ester hydrochloride
[(L-NAME) 10−4 M] or tempol (10−4 M), 30min prior to the
concentration-response curves.

Lucigenin-enhanced Chemiluminescence
Vascular ROS generation was measured by a luminescence
assay using lucigenin as the electron acceptor and NADPH as
the substrate. Aortic rings from db/db and db/+ mice treated
with vehicle or spironolactone were homogenized in assay
buffer (50mmol/L KH2PO4, 1mmol/L EGTA and 150mmol/L
sucrose, pH 7.4) with a glass-to-glass homogenizer. The assay
was performed with 100µL of sample, 1.25µL of lucigenin
(5µmol/l), 25µL of NADPH (0.1mmol/l) and assay buffer to
a total volume of 250µL. Luminescence was measured for 30
cycles of 18 s each by a luminometer (Lumistar Galaxy, BMG
Labtechnologies, Ortenberg, Germany). Basal readings were
obtained prior to the addition of NADPH and the reaction was
started by the addition of the substrate. Basal and buffer blank
values were subtracted from the NADPH-derived luminescence.
Superoxide production was expressed as relative luminescence
unit (RLU)/µg of protein.

Western Blotting
Total protein was extracted from mesentery beds. Frozen
tissues were homogenized in 50mmol/L Tris/HCl (pH 7.4) lysis
buffer (containing 1% Nonidet P-40, 0.5% sodium deoxycholate,
150mmol/L NaCl, 1mmol/L EDTA, 0.1% SDS, 2mmol/L
Na3VO4, 1mmol/L PMSF, 1µg/mL pepstatin A, 1µg/mL
leupeptin, and 1µg/mL aprotinin). Total protein extracts were
cleared by centrifugation at 12,000 g for 10min and the pellet
was discarded. Proteins from homogenates of vascular tissues
(50µg) were separated by electrophoresis on a polyacrylamide
gel (10%) and transferred on to a nitrocellulose membrane.
Non-specific binding sites were blocked with 5% skim milk
or 1% BSA in Tris-buffered saline solution with Tween 1% at

24◦C. Membranes were then incubated with specific antibodies
overnight at 4◦C. Antibodies were as follows: Ser1177- endothelial
Nitric Oxide Synthase (eNOS) and total eNOS (Cell Signaling,
1:500), soluble guanylyl cyclase (sGC) α and β subunits (Abcam,
1:500), Superoxide Dismutase 1 (SOD1), SOD2 and Catalase.
Antibody to β-actin (Sigma) was used as internal housekeeping
control. After incubation with secondary antibodies, signals were
revealed with chemiluminescence, visualized by autoradiography
and quantified densitometrically.

Data and Statistical Analyses
Mice were divided into 7 animals per group. Relaxation responses
to Ach, SNP, BAY 41-2272 and 8-Br-cGMP are expressed as
a percentage of contraction in response to NE. The individual
concentration–response curves were fitted into a curve by
non-linear regression analysis. pD2 (defined as the negative
logarithm of the EC50 values) and maximal response (Emax)
values were analyzed. Lucigenin and western blot results were
analyzed on the raw data and presented as percentage of
the db/+ group, which was represented as 100%. Data are
represented as mean ± Standard Error of the Mean (SEM)
with a probability of P < 0.05 used for significance. All
parameters and calculations were analyzed using Two-Way
analysis of variance (ANOVA) followed by the Bonferroni′s
post-hoc test. The Prism software, version 5.0 (GraphPad
Software Inc., San Diego, CA, USA) was used to analyze the
results.

Results

Effects of Spironolactone Treatment on Systolic
Blood Pressure, Glucose Levels, and
Biochemistry Parameters
Db/db mice exhibited higher plasma glucose levels compared to
db/+ mice (p < 0.05). No differences in SBP were observed
among the groups. Spironolactone treatment did not change SBP
or glucose levels, either in control or db/db mice (Table 1).

Db/db mice displayed increased aldosterone and
insulin levels compared to non-diabetic db/+ mice.

TABLE 1 | Fasting blood glucose and systolic blood pressure in db/db and

db/+ mice during treatment with spironolactone or vehicle for 6 weeks.

Parameters and groups Week 0 Week 3 Week 6

FASTING GLUCOSE LEVELS (mmol/L)

db/+ vehicle 5.71 ± 0.14 5.91 ± 0.42 6.15 ± 0.16

db/+ spironolactone 5.85 ± 0.23 6.09 ± 0.35 5.74 ± 0.43

db/db vehicle 14.89 ± 2.63* 14.58 ± 2.60* 14.20 ± 1.47*

db/db spironolactone 13.81 ± 2.40* 13.87 ± 1.40* 13.60 ± 0.91*

SYSTOLIC BLOOD PRESSURE (mmHg)

db/+ vehicle 135.64 ± 3.88 – 131.86 ± 2.73

db/+ spironolactone 133.55 ± 2.15 – 130.30 ± 2.52

db/db vehicle 139.74 ± 5.40 – 132.94 ± 3.16

db/db spironolactone 142.74 ± 6.91 – 130.10 ± 4.08

Data are expressed as mean ± SEM. *P < 0.05 vs. respective db/+ group; n = 6–7.
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Spironolactone treatment increased plasma K+ levels in
both db/+ and db/db mice. In addition, the treatment
reduced insulin levels in diabetic mice. No differences
were observed in Na+ levels among the groups
(Figure 1).

Effect of Spironolactone on
Endothelium-dependent Relaxation in Arteries
from db/+ and db/db Mice
Figure 2 shows the effects of spironolactone on vascular
function of db/+ and db/db mice. Relaxation responses to
Ach were significantly reduced in arteries from db/db mice,
but not in arteries from db/db mice treated with the MR
antagonist. The non-selective Nitric Oxide Synthase (NOS)
inhibitor L-NAME attenuated Ach-induced vasorelaxation in
all groups, but with minimal or no effects in arteries
from db/db mice. L-NAME almost fully abolished Ach-
induced relaxation in arteries from db/db mice treated with
spironolactone.

Tempol did not modify Ach responses in any group,
including arteries from db/db mice, suggesting that −O2 does
not contribute to the impaired Ach-induced relaxation in arteries
from diabetic mice.

Effect of Spironolactone on
Endothelium-independent Relaxation in Arteries
from db/+ and db/db Mice
Figure 3A illustrates the effects of spironolactone on
endothelium-independent relaxation in mesenteric arteries
from db/+ and db/db mice. Endothelium-denuded arteries
from diabetic mice presented impaired relaxant responses
to SNP, characterized by a right-shift in the concentration-
response curves, vs. arteries from non-diabetic mice.
Spironolactone treatment abrogated this dysfunction.
Unlike its lack of effects on Ach-induced relaxation, tempol
restored relaxation responses to SNP in arteries from db/db
mice and no differences were observed among the groups
(Figure 3B).

To assess changes in sGC/cGMP signaling, we performed
concentration-response curves to BAY 41-2272, a soluble sGC
stimulator, and to the cGMP analog, 8-Br-cGMP. Endothelium-
denuded arteries from db/db mice exhibited impaired relaxation
to BAY 41-2272, represented by a right-shift in BAY 41-
2272 responses. Spironolactone abrogated this abnormality
in arteries from db/db mice (Figure 4A). No differences in
cGMP-induced vasodilation were observed among the groups
(Figure 4B).

FIGURE 1 | Serum levels of aldosterone (A), insulin (B), sodium (C) and potassium (D) in db/db and db/+ mice treated with vehicle or spironolactone

for 6 weeks. Data are expressed as mean ± SEM. *P < 0.05 vs. respective db/+ group, #P < 0.05 vs. respective vehicle-treated group; n = 6–7.
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FIGURE 2 | Ach-induced vascular relaxation in mesenteric arteries from db/db and db/+ mice treated with spironolactone or vehicle for 6 weeks. (A)

Ach; (B) Ach + L-NAME 10−4 M; and (C) Ach + tempol 10−4 M. Arteries were incubated with L-NAME or tempol 30min before performing Ach

concentration-response curves. Data are expressed as mean ± SEM. *P < 0.05 db/db vehicle vs. all other groups; n = 6.

Expression of sGC and eNOS Isoform in Arteries
from db/+ and db/db Mice
To determine whether impaired BAY 41-2272-induced
relaxation in arteries from db/db mice was associated with
downregulation of sGC, vascular sGC protein content was
determined. Figures 5A,B show that mesenteric arteries from
db/db and non-diabetic mice present similar expression of sGC
α subunit. However, decreased sGC β subunit protein expression
was observed in arteries from db/db mice compared to db/+
mice. Spironolactone treatment increased sGC α subunit and
restored sGC β subunit expression in arteries from db/db mice.

Arteries from db/db mice treated with vehicle or
spironolactone exhibited increased eNOS phosphorylation
at Ser1177 compared to arteries from their respective vehicle- and
spironolactone-treated control db/+ groups (Figures 5C,D).

Redox Status in Arteries from db/+ and db/db
Mice
The antioxidant potential of the MR antagonist was evaluated
in the vasculature of db/db and db/+ mice. NADPH-
dependent superoxide anion generation was measured in aortic
homogenates from db/+ and db/db mice. Figure 6 shows
that lucigenin-derived luminescence was significantly increased
in arteries from db/db mice compared to db/+ arteries.
Spironolactone reduced superoxide anion generation in db/db
mice. Although expression of the antioxidant enzymes SOD1,
SOD2, and catalase were similar in mesenteric arteries from

db/db and db/+ mice, spironolactone treatment enhanced
vascular SOD1 and catalase expression in db/db mice (Figure 7).

Discussion

The present study demonstrates that vascular dysfunction
in db/db mice is attenuated by MR antagonism through
processes associated with reduced vascular oxidative stress
and improvement of NO/sGC-mediated responses. Our data
provide additional information on mechanisms whereby MR
antagonists, such as spironolactone, protect against diabetes-
associated vasculopathy and further support the idea that MR
antagonists have beneficial vascular effects in diabetes-associated
conditions.

Obesity and DM2 are closely related with high aldosterone
levels, and MR antagonist therapy has shown positive effects
on cardiovascular complications associated with these diseases
(Briones et al., 2012; Silva et al., 2015). Spironolactone treatment
produces beneficial cardiovascular effects independently of a
reduction of aldosterone levels (Mejía-Vilet et al., 2007; Resch
et al., 2011). In line with these findings we found that
MR antagonist therapy did not change aldosterone levels in
the experimental groups, including diabetic mice, which still
presented higher levels of aldosterone. Aldosterone plays a
positive role to enhance insulin levels, as well as to induce insulin
resistance (Patel and Mehta, 2012; Bruder-Nascimento et al.,
2014). Rats treated with aldosterone present insulin resistance, by
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FIGURE 3 | SNP-induced vascular relaxation in mesenteric arteries from db/db and db/+ mice treated with spironolactone or vehicle for 6 weeks. (A)

SNP; (B) SNP + tempol 10−4 M. Arteries were incubated with tempol 30min before performing SNP concentration-response curves. Data are expressed as mean ±

SEM. *P < 0.05 db/db vehicle vs. all other groups; n = 6.

FIGURE 4 | Vascular relaxation induced by BAY 41-2272 (A) and 8-Br-cGMP (B) in mesenteric arteries from db/db and db/+ mice treated with

spironolactone or vehicle for 6 weeks. Data are expressed as mean ± SEM. *P < 0.05 db/db vehicle vs. all other groups; n = 6.

mechanisms that involve MR receptor activation and oxidative
stress (Patel and Mehta, 2012; Sherajee et al., 2012). We have
recently shown that db/db mice treated with the MR antagonist
spironolactone have improved metabolic and cardiovascular
profile (Silva et al., 2015). In the present study, spironolactone
treatment reduced, but not normalized insulin levels in db/db
mice, which exhibit increased plasma insulin levels. Although
db/db mice are obese and diabetic, they do not develop high
blood pressure. Spironolactone treatment did not influence blood
pressure, in line with previous reports (Briones et al., 2012;
Bruder-Nascimento et al., 2015; Silva et al., 2015).

MR antagonists inhibit Na+ reabsorption in the distal tubule,
increasing the urinary excretion of Na+ while retaining K+

(Epstein and Calhoun, 2011). We found no differences in the
Na+ content among the groups, but spironolactone treatment

increased plasma K+ levels in both db/+ and db/db mice,
indicating that the treatment was effective.

Cardiovascular disease and nephropathy, due in large part
to vascular injury, are the main morbidities associated with
diabetes (Global Burden of Metabolic Risk Factors for Chronic
Diseases, 2014; Garg et al., 2015). Vascular dysfunction has been
consistently reported in diabetic patients and in experimental
models of type 1 and type 2 diabetes (Wenzel et al., 2008; Lau
et al., 2013; Chen et al., 2014; Bruder-Nascimento et al., 2015;
Garg et al., 2015). Although vascular dysfunction is a well-
defined phenomenon in diabetes, the mechanisms involved are
still unclear.

Vascular dysfunction in diabetic patients is ameliorated by
treatment with MR antagonists, indicating that MR blockade
may prevent or revert cardiovascular disease in patients with
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FIGURE 5 | Protein expression of sGC α (A), sGC β (B) and p-eNOS (C) protein in mesenteric arteries from db/db and db/+ mice treated with

spironolactone or vehicle for 6 weeks. Representative images are displayed in (D). β-actin and total eNOS expression were also determined and used as internal

controls. Data are expressed as mean ± SEM. *P < 0.05 vs. respective db/+ group, #P < 0.05 vs. db/db vehicle; V, vehicle; S, spironolactone, n = 5.

DM2 (Garg et al., 2015). In arterial hypertension and heart
failure, aldosterone has been shown to mediate maladaptive
changes in the cardiovascular system bymechanisms that involve
Nox activation, oxidative stress, reduced NO bioavailability and
ultimately, vascular dysfunction (Zannad, 1995; Virdis et al.,
2002; Callera et al., 2005; Calhoun, 2006). In these conditions,
MR blockade reduces cardiac inflammation, oxidative stress,
fibrosis, remodeling, hypertrophy, and improves cardiac and
vascular function (Virdis et al., 2002; Callera et al., 2005, 2011;
Brown, 2013; Velmurugan et al., 2013; Zhang et al., 2014).

Findings from our study demonstrate that treatment with
a MR antagonist abrogates vascular dysfunction and altered
NO/cGMP signaling in DM2 mice. Db/db mice presented
vascular dysfunction (reduced endothelium-dependent
and endothelium-independent vasodilation, represented by
decreased Ach- and SNP-induced relaxation, respectively),
oxidative stress, and reduced NO bioavailability, in line with the
literature (Liu et al., 2014).

Nitric oxide (NO), a major regulator of vascular tone
(Malinski et al., 1993; Hakim et al., 1996; Fels et al., 2010), is
synthesized mainly by eNOS in the vascular system. Upon its
synthesis in the endothelium,NOdiffuses to the adjacent vascular
smooth muscle cells (VSMC), where it activates soluble sGC,
which, via cGMP, decreases myosin light chain kinase activity and

increases Ca2+-ATPase activity, thereby inducing vasodilation
(Förstermann and Münzel, 2006; Fels et al., 2010).

Aldosterone influences NO bioavailability via both genomic
and non-genomic pathways (Fels et al., 2010; Callera et al., 2011;
Nguyen Dinh Cat and Jaisser, 2012; Bruder-Nascimento et al.,
2014). Short-term exposure to aldosterone seems to increase
NO bioavailability (Romagni et al., 2003; Schmidt et al., 2003;
Michea et al., 2005; Nietlispach et al., 2007) whereas long-term
exposure leads to impaired NO bioavailability and signaling.
In vitro, prolonged exposure to aldosterone decreases nitrite
concentration in the medium, cellular cGMP concentrations,
and attenuates ability of rat mesenteric arteries to contract
(Virdis et al., 2002; Nagata et al., 2006; Oberleithner et al.,
2009). Treatment with MR antagonists abolishes aldosterone-
effects, suggesting that MR mediate aldosterone-induced
decreased NO bioavailability. Although it is clear that chronic
aldosterone exposure leads to impairment of NOS activity, the
specific mechanisms underlying this effect are still unclear. Of
importance, our data show that MR blockade augmented NO-
dependent responses, reinforcing the notion that aldosterone
is an important regulator of NO bioavailability in the vascular
system (Fels et al., 2010).

Endothelium-dependent Ach-mediated relaxation in arteries
from db/dbmice was not sensitive to L-NAME effects as observed
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in the remaining groups. This suggests reduced involvement of
NO, and possibly a contribution from another endothelial factor
[e.g., a cyclooxygenase-derived or a non-NO and non-prostanoid

FIGURE 6 | Lucigenin chemiluminescence and production of ROS in

aortas of db/db mice and db/+ treated with spironolactone or vehicle

for 6 weeks. Values are expressed as % of fluorescence respectively to that in

arteries from vehicle-treated db/+ mice. Data are expressed as mean ± SEM.

*P < 0.05 vs. respective db/+ group, #P < 0.05 vs. db/db vehicle; RLU,

Relative Light Units; n = 6.

endothelial factor, such as prostacyclin or an endothelium-
dependent hyperpolarizing factor (EDHF)] to Ach responses
in arteries from diabetic mice. On the other hand, Ach-
induced vasodilation was almost completely abrogated by L-
NAME in arteries from db/db mice treated with spironolactone,
indicating that treatment with the MR antagonist increased
NO bioavailability. Accordingly, spironolactone treatment has
been shown to improve endothelial dysfunction and increase
NO bioavailability in patients with heart failure (Farquharson
and Struthers, 2000). Also, eplerenone increases the production
of NO as well as the activity of antioxidant enzymes, such as
MnSOD and CuZnSOD, in macrophages from patients with
heart failure (Labuzek et al., 2014).

It is well known that there is an up-regulation of EDHF-
mediated relaxation in resistance arteries in situations of
reduced endothelial NO availability (Waldron et al., 1999; Ding
et al., 2000). For example, in eNOS knockout mice, EDHF-
mediated responses play a compensatory role in the absence
of endothelial NO in agonist- and flow-induced endothelium-
dependent vasodilatation as well as in the basal regulation
of myogenic tone (Waldron et al., 1999; Brandes et al.,
2000; Ding et al., 2000; Huang et al., 2000; Scotland et al.,
2005). Experimental evidence indicates that increased EDHF
is an important compensatory mechanism for maintaining
endothelium-dependent relaxation in type 2 diabetes and

FIGURE 7 | Protein expression of SOD1 (A), SOD2 (B), and catalase (C) in mesenteric arteries from db/db and db/+ mice treated with spironolactone

or vehicle for 6 weeks. Representative images are displayed in (D). β-actin expression was also determined and used as an internal control. Data are expressed as

mean ± SEM. *P < 0.05 vs. all other groups; V, vehicle; S, spironolactone, n = 5.
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dyslipidemia, conditions where endothelium production of
NO and prostacyclin are compromised, particularly at early
disease stages (Krummen et al., 2005; Wölfle and de Wit,
2005; Beltowski et al., 2006; Pannirselvam et al., 2006).
Although we have not directly investigated the contribution
of prostanoids and/or EDHF to Ach responses, our data
indicate that: NO-mediated relaxation responses to Ach are
impaired/decreased in arteries from diabetic mice; another
endothelium-derived component mediates responses to Ach in
arteries from db/db mice; and spironolactone treatment in db/db
mice improves the NO-dependent component of Ach-induced
relaxation.

Aldosterone also increases ROS production via activation
of NADPH oxidase (Nox) isoforms. Whereas aldosterone
administration increases vascular oxidative status, therapy with
MR antagonists abrogates oxidative stress (Callera et al.,
2005; Zhang et al., 2014), suggesting that aldosterone-induced
ROS formation depends on MR receptor. We have recently
shown that aortae from db/db mice exhibit enhanced Nox
expression and activity (Bruder-Nascimento et al., 2015) and
that MR antagonist therapy reduces oxidative stress possibly via
modulation of Nox enzymes-dependent mechanisms (Silva et al.,
2015).

The present data show that treatment with the MR antagonist
spironolactone restored vascular ROS generation to normal
levels, reinforcing that MR intervenes on redox balance in
diabetic conditions, possibly increasing antioxidant enzymes, as
we observed in this study. Accordingly, redox imbalance may
be linked to reduced antioxidant enzymes activity/expression.
Spironolactone upregulated vascular expression of SOD1 and
catalase, indicating that improvement of vascular function is
associated with increased antioxidant capacity. Our findings
are partially in line with a previous study showing that
eplerenone treatment restores antioxidant enzymes in the kidney
from hypertensive rats (Onozato et al., 2007). Although we
have no mechanistic explanation for the differential effects of
spironolactone on SOD1 and catalase expression in control
and db/db mice, it is possible that MR blockade increases
antioxidant enzymes only in db/db mice to counterbalance ROS
overproduction, since the antioxidant enzymes content in the
vasculature from control mice was enough keep normal oxidant
status.

ROS directly interferes with NO production and signaling
by different mechanisms. Superoxide anion (O−

2 ) reacts
avidly with vascular NO to form ONOO−, thus accelerating
degradation of NO. This has been reported in different
cardiovascular and metabolic diseases, including DM2 (Touyz,
2004). Our data show increased eNOS activity, inferred
by eNOS phosphorylation in Ser1177, in the vasculature of
diabetic mice. Normal eNOS function requires dimerization
of the enzyme, the presence of the substrate L-arginine, and
the essential cofactor (6R)-5,6,7,8-tetrahydro-L-biopterin
(BH4). The cofactor BH4 is highly sensitive to oxidation by
ONOO−. Diminished levels of BH4 promote O−

2 production
by eNOS, a phenomenon known as eNOS uncoupling.
Although, we have not determined eNOS uncoupling or
ONOO− levels, we cannot exclude the possibility that

MR antagonist-associated vasoprotection occurs through
improvement of NO formation via a decrease in eNOS
uncoupling (Förstermann et al., 1994; Förstermann and Münzel,
2006).

NO induces vasodilation by stimulating sGC and increasing
cGMP in VSMC (Förstermann et al., 1994; Förstermann and
Münzel, 2006; Fels et al., 2010). Mesenteric arteries from
db/db mice also exhibited attenuated relaxation to SNP, a
NO-donor, and to the sGC stimulator, BAY 41-2272, which
indicate that vascular dysfunction observed in diabetic mice also
relies on altered sGC signaling. In addition, reduced protein
content of sGC β subunit was detected in the vasculature of
db/db mice. sGC is a ROS-sensitive protein, and increased
oxidative stress affects the heme-containing NO-binding site
of the enzyme by decreasing its expression and impairing
NO-induced activation, resulting in less effective responses
to NO donors (Stasch et al., 2011). Oxidation of the heme
group on sGC leading to its dissociation from the enzyme
and the generation of NO-insensitive sGC has been reported
in experimental models of hypertension and hyperlipidemia,
as well as in patients with cardiovascular diseases and DM2
(Gladwin, 2006; Stasch et al., 2006, 2011). Spironolactone
treatment restored endothelium-independent SNP-induced
vasorelaxation, an event associated with upregulation of sGC.
In addition, tempol, an antioxidant agent, abolished altered
responses to SNP, further strengthening the possibility of sGC
oxidation. Since 8-Br-cGMP-induced relaxation was not altered
in arteries from diabetic mice, it seems that the sensitivity
of VSMC to the effects of cGMP are preserved in diabetic
conditions.

It is interesting that tempol had no effects on endothelium-
dependent relaxation, but abrogated decreased endothelium-
independent relaxation in arteries from db/db mice. As
previously mentioned, sGC plays a crucial role to mediate NO-
induced relaxation, by increasing cGMP in VSMC. sGC can
be oxidized, which leads to impaired vascular relaxation. An
antioxidant agent, like tempol, might blunt sGC oxidation and
then revert its decreased activity. As Ach-induced relaxation
relies on a non-NO component in arteries from db/db mice,
it is possible that sGC was not involved in the relaxation
responses and, therefore, the effects of tempol were insignificant
at this condition. Spironolactone treatment increased NO
bioavailability and reduced ROS generation. In this condition
(of increased NO bioavailability and reduced ROS), sGC
might be functional again and able to respond to NO effects.
In addition, our findings with BAY 41-2272 indicate that
impaired vascular relaxation in diabetic mice is associated
with impaired sGC activation. Spironolactone restored BAY 41-
2272-induced relaxation, possibly by decreasing sGC oxidation
and/or increasing its protein expression. A limitation of our
study includes the absence of protocols investigating oxidation
of sCG in arteries from vehicle- and spironolactone-treated
diabetic mice.

In conclusion, our data demonstrate that spironolactone,
a MR antagonist, improves vascular function by reducing
oxidative stress, upregulating antioxidant systems and improving
NO/sGC signaling. These data imply a role for aldosterone
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in vascular dysfunction and suggest that spironolactone may
have vasoprotective effects in diabetes-associated cardiovascular
complications.
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