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Abstract: Postprandial hyperglycaemia is associated with increased risk of cardiovascular disease.
Recent studies highlight the role of the gut microbiome in influencing postprandial glycaemic (PPG)
and lipidaemic (PPL) responses. The authors of this review sought to address the question: “To
what extent does individual gut microbiome diversity and composition contribute to PPG and
PPL responses?”. CINAHL Plus, PubMed, Web of Science, and the Cochrane Central Register of
Controlled Trials (CENTRAL) databases were searched from January 2010 to June 2020. Following
screening, 22 studies were eligible to be included in the current review. All trials reported analysis of
gut microbiome diversity and composition and PPG and/or PPL. Results were reported according
to the ‘Preferred Reporting Items for Systematic Reviews and Meta-Analysis’ (PRISMA) statement.
Individual microbiota structure was found to play a key role in determining postprandial metabolic
responses in adults and is attributed to a complex interplay of diet, microbiota composition, and
metagenomic activity, which may be predicted by metagenomic analysis. Alterations of gut micro-
biota, namely relative abundance of bacterial phylum Actinobacteria and Proteobacteria, along with
Enterobacteriaceae, were associated with individual variation in postprandial glycaemic response in
adults. The findings of the current review present new evidence to support a personalised approach
to nutritional recommendations and guidance for optimal health, management, and treatment of
common metabolic disorders. In conclusion, personalised nutrition approaches based on individual
microbial composition may improve postprandial regulation of glucose and lipids, providing a
potential strategy to ameliorate cardiometabolic health outcomes.

Keywords: microbiota; gastrointestinal microbiome; postprandial period; dyslipidaemias; lipopro-
teins; lipid metabolism; lipids; glycaemic control; blood glucose; humans; animals

1. Introduction

Cardiovascular disease remains the leading cause of morbidity and mortality globally [1].
Characterised by hyperglycaemic spikes inducing inflammation, oxidative stress, and

endothelial dysfunction, PPG is associated with the development of insulin resistance,
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type-2 diabetes mellitus (T2DM), and cardiovascular disease (CVD), and is considered
an independent predictor of cardiovascular events [1,2]. Similarly, multiple studies have
recognised PPL, which is defined as an increase in circulating plasma/serum triglyceride
levels in the postprandial state, as an aetiological factor for the development of cardiovascu-
lar and chronic disease [3–5]. Consequently, identification of risk factors of chronic diseases
is a pressing research need, with a view to improving health outcomes and alleviating the
burden of disease worldwide. In previous years, traditional dietary strategies have sought
to improve public health and reduce CVD prevalence globally [6]. Whilst established
recommendations aim to provide guidance to much of the population, it has been argued
that current guidance does not consider dietary responses on an individual level and
therefore may be less effective for optimal health [7]. A growing body of evidence by recent
studies suggests the role of individual characteristics in influencing metabolic responses to
dietary and lifestyle factors [8,9]. A relatively new concept, personalised nutrition, refers
to the tailoring of nutritional approaches to meet the needs of the individual, incorporating
multiple disciplines such as genetics, epigenetics, metabolomics, and microbiology among
others to determine an individual’s personal response to diet [10].

More recently, several studies have highlighted the role of metabolomics, and specifi-
cally the gut microbiome, in determining glycaemic and lipid responses, and the wider
impact this may have both on health and the use of ‘omics’ technology as a viable tool
to predict individual metabolic responses and personalise dietary recommendations as a
result [11,12]. A complex ecosystem lives within the human gut; the microbiome is a mul-
tifunctional microbial community involved in various physiological processes including
nutrient absorption, fat distribution, intestinal barrier homeostasis, and modulation of gut
motility [13]. The intestinal microbiome also plays an important role in the regulation of
metabolic functions, particularly maintenance of glucose and lipid homeostasis, and has
been linked to various metabolic conditions including type-2 diabetes and obesity [14,15].
The extent to which the microbiota determines dietary responses is not yet fully understood;
however, it is largely agreed that the gut–brain axis regulates metabolic functions through
crosstalk via neural, immune, humoral, and endocrine signaling, resulting in activation of
host receptors [16–18].

Although personalised nutrition remains a field of study in its infancy, the emergence
of research within the last decade supports the concept of biological interindividual vari-
ability with studies demonstrating the variability of predictive models in determining
postprandial glycaemic responses using metabolomic technology [19–21]. However, it
is important to note that while the majority of current studies in this area analysed the
effect of gut microbiota diversity on glycaemia and lipidaemia through use of animal
models [22–24], the utilisation of human study models has increased considerably over
the last decade, with studies such as Zeevi et al. (2015) [19], Berry et al. (2020) [20] and
Mendes-Soares et al. (2019) [21,25] examining the extent to which individual microbiome
composition affects postprandial glycaemic and lipidaemic response following consump-
tion of standardised test meals. In addition, several studies have highlighted the role of
medical intervention in modulating gut microbiota, subsequently contributing to changes
in individual postprandial responses to diet (Brønden et al. (2018) [26], Mikkelsen et al.
(2015) [27], and Tong et al. (2018) [28]. As such, it is of the upmost importance to provide a
comprehensive overview as to the effect the microbiome has on a populational level, from
both the healthy and those with pre-existing conditions.

Therefore, the aim of the current systematic review is to determine the extent to which
individual gut microbiome diversity and composition contributes to inter-variability of
postprandial glucose and lipid responses in human subjects based on available randomised
controlled (RCTs), clinical trials, and acute experimental studies. This research also aims
to elucidate the role of individual gut microbiota in predicting postprandial metabolic
responses for prevention and management of glycaemia and dyslipidaemia and contribute
to the discussion about whether current nutritional guidelines should be reconsidered and
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updated to support the current evidence. The review protocol is listed in the International
Prospective Register of Systematic Reviews (PROSPERO) (CRD 42021248843).

2. Results

The literature search identified 22 studies (total sample size, n = 3851) that investigated
the effect of host gut microbiota on postprandial glycaemia and/or lipidaemia either as a
primary or secondary outcome. The 22 studies are summarised in Table 1.

2.1. Literature Search and Study Selection Process

The study selection process that followed the literature search is summarised in
Figure 1. A total of 294 citations were identified through database searches (n = 154)
and screening of references (n = 140). After initial screening and removal of duplicates,
265 records remained, of which 155 were screened by abstract and excluded. Following the
initial screening, 110 full-text articles were retrieved for detailed review and were assessed
against the established selection criteria.
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Figure 1. PRISMA flowchart illustrating the screening and selection process.

Eighty-seven full-text records did not fulfil the set inclusion criteria and after their
removal, 22 studies remained eligible to be included in the current review. The reasons
for exclusion of the 88 full-text articles are outlined in the methods section (Figure 1);
40 trials did not include analysis of the gut microbiome; 35 trials did not include plasma
analysis in the postprandial state; 7 trials were excluded as full-text access was unavailable
(abstract/protocol only); and 6 studies were not included due to lack of control, report-
ing on baseline results only, observational study design, and further duplication in the
screening process.
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Table 1. Characteristics of included studies.

First Author,
Year, Country Study Design Age Range

(year)
Male
(%)

Background
Disease

Sample
Size
(n)

Study
Duration

Intervention
Type Summary of Key Findings

Bergeron et al.
(2016), USA [29] RCT ≥20 y 38.5

Healthy men and
post-menopausal
women with no
history of CVD or
other chronic diseases.

52 8 weeks

Diet: High and low total
CHO intake compared to
high vs. low resistant
starch intake.

• High RS intake significantly increased
circulating levels of trimethylamine n-oxide
(TMAO) (p < 0.0001).

• Higher-CHO diets increased plasma TG and
large VLDL-C particle concentrations and
promoted a shift in LDL-C particle distribution
towards increased medium and small LDL-C
independent of starch digestibility.

• High RS test meals significantly lowered PPGR
and insulin responses in comparison to low RS
meals (p < 0.0001 and p = 0.007 respectively).

• Lachnospiraceae and Clostridiales inversely
correlated with TMAO change.

• Conclusion: High RS meals, not diets, produced
significantly lower postprandial insulin
and glucose responses.

Berry et al. (2020),
UK [20]

Series of acute
experimental studies 18–65 y 27.8

Healthy subjects
with no history of
chronic diseases.

1002 2 weeks

Diet: Standardised meal
testing to measure and
predict individual
metabolic responses.

• Heterogeneity across all postprandial time
points (during fasting for 6 h) varied greatly for
triglyceride (p = 3.931 × 10–11), glucose
(p = 2.91 × 10–194), and insulin
(p = 2.45 × 10–17) concentrations.

• High inter-individual variability was observed
in PPL, PPG, and insulin following consumption
of standardised meals.

• Gut microbiome composition (independent
contribution) explained 7.5% of PPL (6 h) and
6.4% of PPGR (IAUC 0–2 h).

• Conclusion: Gut microbiome composition had a
greater influence than macronutrient content of
meals for PPL but not PPG.
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Table 1. Cont.

First Author,
Year, Country Study Design Age Range

(year)
Male
(%)

Background
Disease

Sample
Size
(n)

Study
Duration

Intervention
Type Summary of Key Findings

Brønden et al. (2018),
Denmark [26] RCT 35–80 y 70

Healthy subjects and
patients with T2D for
at least > 3 months.

30 7 days
Drug:
Treatment of 1600 mg of
sevelamer or placebo.

• PPG excursions significantly reduced in
sevelamer treatment group.

• Trend for increased basal and postprandial
plasma cholecystokinin following treatment of
sevelamer in comparison to placebo.

• No significant changes in gut microbiota species
richness or overall composition in comparison
to placebo.

• Conclusion: Treatment with sevelamer reduces
PPG concentrations in individuals with T2D.

Clemente-Postigo
et al. (2013),
Spain [30]

RCT 45–50 y 100
Healthy subjects
with no history of
chronic diseases.

5 12 days

Diet: 4-arm crossover
intervention:
50 g fat overload,
red wine/fat overload,
dealcoholised red
wine/fat overload, and
100 mL gin/fat overload.

• Changes in TG concentrations (calculated as the
difference between postprandial and baseline
values) were not significantly different
between treatments.

• Concentrations of postprandial LPS did not
differ between treatment groups.

• Consumption of a high-fat meal resulted in
higher postprandial LPS concentrations.

• Conclusion: chronic red wine consumption
modifies gut microbiota by increasing different
bacterial phyla such as Firmicutes, Bacteroidetes,
Proteobacteria, and Actinobacteria, resulting in
lower LPS concentrations in comparison to acute
intake of red wine only.

Hansen et al. (2018),
Denmark [31] RCT 18–65 y 42.6 Obesity/Risk

of MetS. 60 16 weeks
Diet: Low or high-gluten
diet in comparison to
habitual intake.

• An 8-week low-gluten diet intervention induced
changes in the gut microbiome and fermentation
of complex CHO in healthy adults.

• No effects on glucose or lipid metabolism were
noted for either intervention groups.

• Conclusion: Consumption of a low-gluten diet
induced microbial changes in the gut but did not
significantly improve glucose or lipid
metabolism in obese individuals at risk of MetS.
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Table 1. Cont.

First Author,
Year, Country Study Design Age Range

(year)
Male
(%)

Background
Disease

Sample
Size
(n)

Study
Duration

Intervention
Type Summary of Key Findings

Korem et al. (2017),
Israel [32]

Randomised
crossover trial 18–70 y 55

Healthy subjects
with no history of
chronic diseases.

20 2 weeks

Diet:
Consumption of
sourdough bread
compared to industrially
made white bread.

• No significant difference in glycaemic control
between treatment groups.

• Significant increase in relative abundances of
Eubacterium ventriosum species and Anaerostipes
genus following white bread consumption
compared to sourdough.

• No significant differences reported for
α-diversity or functional properties of
gut microbiome.

• Bread consumption regardless of type
significantly decreased total cholesterol and
LDL-C but not HDL-C levels.

• Significantly higher variance in PPGR noted
both for individuals on standardised meals and
combined diets.

• Conclusion: individuals exhibit significant
alterations in gut microbiota and personalized
PPGRs to bread regardless of type.

Kovatcheva-
Datchary et al.
(2015), Sweden [33]

Randomised
crossover trial 50–70 y 15.4

Healthy subjects
with no history of
chronic diseases.

39 3 weeks

Diet: Consumption of
barley kernel-based
bread (BKB) or white
wheat flour
bread (WWB).

• Mean PPG and insulin responses after a
standardised breakfast were improved following
BKB compared with WWB in the total group
(p < 0.01 at 30- and 45-min timepoints).

• Bacteroidetes abundance increased following BKB
consumption in the ‘responder’ group but not
the non-responders.

• Repetition of the study 12 months later observed
improved PPGR after BKB intervention in
‘responding’ subjects, indicating stability of the
microbiota over time.

• Conclusion: BKB-induced increases of Prevotella
are associated with improvements in glucose
tolerance in responsive subjects.
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Table 1. Cont.

First Author,
Year, Country Study Design Age Range

(year)
Male
(%)

Background
Disease

Sample
Size
(n)

Study
Duration

Intervention
Type Summary of Key Findings

Martínez et al.
(2013), USA [34]

Randomised
crossover trial 18–65 y 39.3

Healthy subjects
with no history of
chronic diseases.

28 17 weeks

Diet:
Consumption of 60 g of
whole-grain barley,
brown rice, or an equal
mixture of the two.

• Microbial diversity increased across
all treatments.

• Consumption of 60 g whole-grain barley
enriched the genera Roseburia, Bifidobacterium,
and Dialister, and the species Eubacterium rectale,
Roseburia faecis, and Roseburia intestinalis.

• Whole-grain barley and combination treatment
reduced plasma IL-6 and peak PPGR.

• Changes in abundance of Eubacterium rectale
were associated with changes in the glucose and
insulin postprandial response.

• Conclusion: short term intake of whole grains
induced alterations of the gut microbiota that
coincide with improvements in measures related
to metabolic dysfunctions in humans.

Mendes-Soares et al.
(2019), USA [25]

Series of acute
experimental studies ≥18 y 23

Healthy subjects
with no history of
chronic diseases.

297 6 days

Diet: Standardised meal
testing to measure and
predict individual
metabolic responses.

• Significant variation in dietary CHO intake was
indicative of the complexity of predicting
glycaemic responses due to individual
variability within the sample.

• Relative abundances of Actinobacteria,
Eubacterium eligens, Alistipes putredinis, and
Subdoligranulum showed mostly a direct relation
to PPGR, agreeing with the findings of
Zeevi et al. (2015)52.

• Replicating the methodology of Zeevi et al.
(2015)52, the study found that the model used to
predict individual PPGR could be modified for
use in other populations (Midwestern
US cohort).

• Conclusion: A predictive model to anticipate
personalised metabolic responses to dietary
intake outperforms previous common
approaches used to inform dietary interventions
to regulate glycaemic control.
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Table 1. Cont.

First Author,
Year, Country Study Design Age Range

(year)
Male
(%)

Background
Disease

Sample
Size
(n)

Study
Duration

Intervention
Type Summary of Key Findings

Mendes-Soares et al.
(2019), USA [21]

Series of acute
experimental studies ≥18 y 22

Healthy subjects
with no history of
chronic diseases.

327 6 days

Diet: Consumption of
two different
standardised test meals
(plain bagel with cream
cheese and cereal with or
without milk) to measure
and predict individual
metabolic responses.

• Utilised the modelling framework used by
Zeevi et al. (2015) [35].

• Postprandial glucose response varied
substantially across participants with glycaemic
excursions ranging from 6–94 mg/dL or
(0.3–5.2 mmol/L) above baseline following
consumption (0–150 min).

• The study noted significant intraindividual
reproducibility of glycaemic responses to the
standardised meal.

• In comparison to a subset of non-diabetic
participants from the Israeli cohort (Zeevi et al.
2015) [35], α-diversity was significantly lower in
the Midwest cohort.

• Microbiome analysis observed decreased
abundance of Actinobacteria and
Prevotella/Bacteroides ratio, and increased
Firmicutes/Bacteroidetes ratio observed in the
Midwestern cohort in comparison to
the Israeli subset.

• Conclusion: A model for predicting personalised
responses to dietary intake can predict
individual glycaemic responses to a range of
diverse foods.

Mikkelsen et al.
(2015), Denmark [27] Clinical trial 18–40 y 100

Healthy subjects
with no history of
chronic diseases.

12 180 days

Drug: 4-day treatment of
antibiotics (500 mg
vancomycin, 40 mg
gentamycin, and 500 mg
of meropenem) daily.

• Results of mixed meal testing found no
significant changes in postprandial glucose
tolerance or secretion of gut-derived incretin
hormones following treatment.

• Abundance of specific gut bacteria was
dramatically reduced following short-term
course of antibiotics.

• Conclusion: 4-day course of a cocktail containing
3 antibiotic drugs resulted in acute reversible
increase in postprandial levels of PYY but did
not significantly alter glucose metabolism.
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Table 1. Cont.

First Author,
Year, Country Study Design Age Range

(year)
Male
(%)

Background
Disease

Sample
Size
(n)

Study
Duration

Intervention
Type Summary of Key Findings

Park et al. (2020),
Korea [36] RCT >20 y 34.3

Subjects with healthy
and slightly elevated
fasting TG levels
(<200 mg/dL).

62 14 weeks

Diet: supplementation of
probiotic Lactobacillus
plantarum Q180 (LPQ180)
or placebo daily.

• LPQ180 ingestion improved PPL metabolism by
reducing lipid levels, although the exact
mechanism behind this is unknown.

• Baseline microbiota abundance negatively
correlated with lipid marker change.

• Conclusion: Treatment with LPQ180
significantly decreased LDL-C levels and
decreased postprandial maximum
concentrations and areas under the curve of TG
and chylomicron TG.

Reijnders
et al. (2016),
Netherlands [37]

RCT 35–70 y 100

Obesity and
impaired fasting
glucose and/or
impaired
glucose tolerance

57 7 days

Drug: Comparison of
treatment with 1500 mg
amoxicillin, 1500 mg
vancomycin, or placebo.

• Treatment with vancomycin significantly
decreased relative abundance of bacteria and
diversity in insulin-resistant subjects.

• Short-term antibiotic treatment had no effect on
postprandial forearm substrate metabolism
compared to placebo.

• Non-significant changes in PPGR, PPL, or free
fatty acid (FFA) concentrations in either
treatment group despite vancomycin-induced
changes in gut microbiota.
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Table 1. Cont.

First Author,
Year, Country Study Design Age Range

(year)
Male
(%)

Background
Disease

Sample
Size
(n)

Study
Duration

Intervention
Type Summary of Key Findings

Ross et al. (2011),
Switzerland [38]

Randomised
crossover trial 20–50 y 35.3

Healthy subjects
with no history of
chronic diseases.

17 2 weeks

Diet:
Whole grain rich foods
(WG) vs. refined
grains (RG).

• Trend towards decrease in TC and LDL-C in
whole grain group in comparison to a refined
grain diet after 2 weeks but no difference in
fasting TG.

• No significant differences in plasma HDL-C,
glucose, CRP or homocysteine were found
between groups.

• No differences found in PPL or PPGR between
the two meal challenges.

• Large inter-subject variability was noted for total
bacteria and specific species analysed.

• Conclusion: no significant results were reported
for either group for PPGR or PPL; however, a
trend suggesting a beneficial effect of a diet rich
in whole grains on total plasma total cholesterol
was noted.

Schutte et al. (2018),
Netherlands [39]

Randomised
parallel trial 45–70 y 62

Subjects with
increased risk of
CVD; overweight
males and
postmenopausal
females with mildly
elevated levels of
plasma total
cholesterol
(>5 mmol/L).

50 12 weeks

Diet:
Whole grain wheat diet
(WGW) vs. refined
wheat (RW) diet.

• Gut microbiota diversity decreased in the
refined wheat group compared to the whole
grain wheat group.

• PPL (4 h) increased significantly in the WGW
group (p = 0.004), resulting in a significant
change in overall PPL response between the
groups (p = 0.020).

• IHTG levels increased by 49.1% following the
12-wk RW intervention in comparison to the
WGW group (p = 0.033).

• Conclusion: A 12-week refined wheat
intervention increased IHTG whilst
consumption of WGW increased PPL but may
prevent substantial accumulation of liver fat via
improved hepatic lipid efflux.
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Table 1. Cont.

First Author,
Year, Country Study Design Age Range

(year)
Male
(%)

Background
Disease

Sample
Size
(n)

Study
Duration

Intervention
Type Summary of Key Findings

Tily et al. (2019),
USA [40]

Series of acute
experimental studies ≥18 y ~34

Healthy subjects
with no history of
chronic diseases.

550 2 weeks

Diet:
Standardised meal
testing to measure
individual
glycaemic responses.

• Metatranscriptomic activity of the gut
microbiome is correlated with glycaemic
response among adults.

• Glycaemic response is driven by the properties
of an individual and the macronutrient content
of foods when measured with multiple diet
types and within a multi-ethnic population.

• Conclusion: Gut microbiome contributes to
individual variation in glycaemic
response in adults.

Tong et al. (2018),
China [28] RCT 30–65 y 50

Untreated subjects
that meet diagnostic
criteria for T2D with
an elevated
waist circumference.)

100 12 weeks

Drug:
Comparison of treatment
with Chinese herbal
formula (AMC) or
metformin as a
positive control.

• Metformin (positive control) and AMC
significantly improved 2-h postprandial blood
glucose after 12 weeks (p < 0.0001).

• A significant improvement in fasting TG levels
was seen in the AMC group in comparison to
metformin (p < 0.01).

• Treatment with metformin significantly
increased microbiota diversity whereas AMC
resulted in a significant decrease in diversity
(p < 0.05)

• Conclusion: Treatment with both metformin and
AMC significantly improved 2-h postprandial
blood glucose and altered gut
microbiota structure.

Vetrani et al. (2020),
Italy [41]

Randomised
parallel trial 40–70 y 42.3

Otherwise healthy
subjects at risk
of MetS

78 8 weeks

Diet: 4-arm intervention
comparing diets of
varying levels of long
chain n-3
polyunsaturated fatty
acids (LCn3) and/or
polyphenols (PP) in
subjects with MetS
risk factors.

• Increases in diversity of bacteria was observed
after PP rich diets but decreased after
consumption of diets low in LCn3 and PP and
high in LCn3.

• Strong positive correlation found between
changes in Atopobium cluster and postprandial
TG and large VLDL-C (AUC at 6 h) (p = 0.026
and p = 0.009 respectively).

• Conclusion: Diets rich in polyphenols or LCn3
influenced gut microbiota composition in
otherwise healthy subjects at high risk of MetS.
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Table 1. Cont.

First Author,
Year, Country Study Design Age Range

(year)
Male
(%)

Background
Disease

Sample
Size
(n)

Study
Duration

Intervention
Type Summary of Key Findings

Vors et al. (2020),
France [42] RCT <75 y 0

Overweight
postmenopausal
women.

58 4 weeks

Diet:
Comparison of milk
polar lipid consumption
(0, 3 or 5 g-PL/day)
or control.

• Consumption of milk polar lipids reduced both
fasting and postprandial concentrations of TC
and TG (p < 0.05).

• Milk polar lipids did not alter SCFA profile or
bacterial composition of gut microbiota in
post-menopausal subjects.

• Conclusion: supplementation with milk polar
lipids decreased postprandial lipid markers of
cardiometabolic risk in overweight,
postmenopausal women.

Vrieze et al. (2014),
Netherlands [43] RCT ≥18 y 100

Obese subjects that
meet diagnostic
criteria for MetS.

20 7 days

Drug:
Comparison of treatment
with 1500 mg amoxicillin
or 1500 mg vancomycin.

• Vancomycin reduced faecal microbial diversity
by decreasing gram-positive bacteria
e.g., Firmicutes (p < 0.01).

• Administration of vancomycin decreased
peripheral insulin sensitivity in comparison to
the amoxicillin group (p < 0.05).

• Conclusion: treatment with vancomycin
significantly decreased gut microbial diversity in
comparison to amoxicillin; PPG, TG and FFA
concentrations did not change significantly.

Xu et al. (2015),
China [44] RCT 30–65 y 61.5 Newly diagnosed

but untreated T2D. 187 12 weeks

Drug:
Comparison of high,
moderate, or low dose
treatment of herbal
formula GQD,
or placebo.

• 12-week treatment of GQD significantly
improved glycaemic control in subjects with
T2D (p < 0.001)

• A non-significant decrease in the mean change
of PPG from baseline was observed in the
treated groups in comparison to placebo.

• Results of real-time PCR found that GQD
significantly enriched Faecalibacterium prausnitzii,
which negatively correlated with both
postprandial and fasting blood glucose and
HbA1c levels.

• Conclusion: Structural changes of gut microbiota
are induced by Chinese herbal formula GQD.
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Table 1. Cont.

First Author,
Year, Country Study Design Age Range

(year)
Male
(%)

Background
Disease

Sample
Size
(n)

Study
Duration

Intervention
Type Summary of Key Findings

Zeevi et al. (2015),
Israel [19]

Series of acute
experimental studies 18–70 y 40

Healthy subjects
with no previous
history of
chronic disease.

800 7 days

Diet:
Standardised meal
testing to measure and
predict individual
metabolic responses.

• High interpersonal variability in post-meal
glucose responses.

• Prediction of glycaemic response using a
personalised model framework was found to be
superior to common methods used in an
independent Israeli cohort.

• Short-term personalised dietary interventions
successfully lowered PPGR.

• Proteobacteria, Enterobacteriaceae, and KEGG
pathways of bacterial chemotaxis, flagellar
assembly, and ABC transporters are associated
with PPGRs of several standardised meals.

• Conclusion: Intra-individual variability in
PPGRs can be accurately predicted through
analysis of individual characteristics and
microbiome features. Short-term personalised
dietary interventions successfully lower
post-meal glucose responses.

Abbreviations: BKB, barley kernel-based bread; CHO, carbohydrate; CRP, C-reactive protein; CVD, cardiovascular disease; FFA, free fatty acid; GQD, Gegen Qinlian Decoction; HDL-C, high-density
lipoprotein cholesterol; IL-6, interleukin 6; IHTG. intrahepatic triglyceride; LPQ180, Lactobacillus plantarum Q180; LDL-C, low-density lipoprotein cholesterol; LCn3, long chain n-3 polyunsaturated fatty
acids; LPS, lipopolysaccharides; MetS, metabolic syndrome; PCR, polymerase chain reaction; PP, polyphenols; PPG, postprandial glucose; PPGR, postprandial glucose response; PPL, postprandial lipids;
PPLR, postprandial lipid response; PYY, peptide YY; RS, resistant starch; SCFA, short-chain fatty acids; T2D, type-2 diabetes; TC, total cholesterol; TG, triglycerides; TMAO, trimethylamine n-oxide; VLDL-C, very
low-density lipoprotein cholesterol; WWB, white wheat flour bread.
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2.2. Characteristics of the Included Studies

The characteristics of the included studies are summarised in Table 1. Published
between 2010 and 2020, included studies originated from 12 countries including United
States of America (five studies); China (three studies); Netherlands (three studies); Denmark
(three studies); Israel (two studies); and 1 study each from United Kingdom, Spain, Sweden,
Korea, Switzerland, Italy, and France. The number of participants included in the studies
ranged from 5 to 1002 [21,36]. Of the 22 studies included, the current review consisted of
randomised controlled trials (10), randomised trials (6) and non-randomised trials (6), of
which 5 were included a series of acute experimental trials.

With respect to the interventions that studied both diet (16 trials) and drug treatments
(6 trials) to assess the extent to which the gut microbiome may be affected, studies varied
from 6 days [21,25] to 17 weeks [34] in duration with participant age ranging from 18 to
80 years. Trials were conducted on both sexes, with the exception of studies by Clemente-
Postigo et al. (2013) [30], Mikkelsen et al. (2015) [27], Reijnders et al. (2016) [37], and
Vrieze et al. (2014) [43], which were performed only on male subjects, and Vors et al.
(2020) [42], which was performed only on women. With regards to time of publication,
more than 50% were published in 2018–2020. Several molecular biochemical techniques
were used to assess the characterisation of the gut microbiome including DNA extraction,
amplification by quantitative real-time polymerase chain reaction (PCR), Illumina [28]
and whole genome 16S rRNA shotgun sequencing [25,45]. Quantification of postprandial
glucose and lipid markers were assessed enzymatically or through use of a continuous
glucose monitor (CGM) provided to participants for home use [46,47].

2.3. Modulation of the Gut Microbiome Using Dietary Intervention

Several studies highlighted the effect of dietary components on both host metabolism
and gut microbial ecology [29–34,38,39,41,42]. Of the 10 trials retrieved, six studied re-
sponses to carbohydrate and protein consumption, specifically manipulation of dietary
components including starch, wholegrain and gluten, as a primary or secondary outcome.

A two-arm cross-over dietary intervention by Bergeron et al. (2016) [29] compared
the effects of both high and low carbohydrate diets, and high and low resistant starch
(RS) intake within each arm. Separated by a 2-week washout period, the trial reported
significant increases in plasma concentrations of gut microbiome-derived metabolites
carnitine (p = 0.007), betaine (p = 0.008), γ-butyrobetaine (p = 0.03), and trimethylamine
n-oxide (TMAO) (p = 0.005) after the high v. low-RS diet in the low-carbohydrate treat-
ment arm in comparison to a high carbohydrate diet. In contrast, despite neither RS diet
affecting fasting concentrations of insulin and plasma glucose, high-RS test meals were
found to produce significantly diminished postprandial insulin and glucose responses
in comparison to low-RS meals (p = 0.007 and p = 0.0001 respectively). However, no
significant changes in incremental area under the curve (IAUC) were observed for PPGR
following consumption of high or low-carbohydrate meals. In addition, microbial commu-
nity analysis reported only correlations between relative abundance of taxa and TMAO
values; therefore, it was not possible to determine the contribution of specific microbial
communities impacted as a result of diet-induced changes in TMAO concentrations. How-
ever, the study noted inverse correlations between TMAO changes and two specific taxa,
Lachnospiraceae and Clostridiales.

With respect to gluten intake, a cross-over trial by Hansen et al. (2018) [31] studied the
effects of low vs. high gluten diets on changes in the gut microbiome in healthy individuals.
The study, which consisted of two 8-week diet interventions separated by a 6-week washout
period, reported alterations in relative abundance of 14 species as a result of the low-gluten
diet intervention in comparison to the high-gluten diet. Specifically, both absolute and
relative abundance of Bifidobacterium ssp were diminished during the low-gluten interven-
tion along with several molecular pathways associated with carbohydrate metabolism:
arabinose degradation, pentose phosphate pathway, phosphate acetyltransferase-acetate
kinase pathway, and fructose-6-phosphate shunt. However, whilst dietary-induced modu-
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lation of the gut microbiome was observed, the study reported no significant differences in
postprandial measures of glucose and lipid metabolism across interventions.

Regarding wholegrains, an earlier study by Ross et al. (2011) [38] reported no signif-
icant difference in PPL and PPG following consumption of a standardised meal despite
earlier trends suggesting a decrease in fasting TC and LDL-C, but not TG, in participants
consuming a wholegrain diet for 2 weeks in comparison to refined grains. In agreement,
Korem et al. (2017) [32] also found no significant differences between treatments for
glycaemic control andalpha or beta diversity of metagenomic species between interven-
tion and non-intervention weeks, disproving the findings of Hansen et al. (2018) [31].
Nevertheless, Korem et al. [32] noted positive significance for relative abundance of both
Eubacterium ventriosum species and the Anaerostipes genus following consumption of white
bread in comparison to the sourdough intervention (p < 0.01). Notably, the study con-
cluded that glycaemic response could be predicted independently using microbiome data
and demonstrated highly significant interpersonal variation of glycaemic responses to
both interventions (p < 0.05), reinforcing previous findings that metabolic responses to
food are interpersonal and vary significantly between individuals [19]. In contrast, fol-
lowing a 4-week cross-over trial investigating the effect of consumption of whole-grain
barley (WGB), brown rice (BR), and a combination of the two (WGB+BR), Martínez et al.
(2013) [34] observed increased microbial diversity, Firmicutes/Bacteroidetes ratio, and fae-
cal abundance of the genus Blautia following all three diet interventions. Regarding glucose
and lipid metabolism, the study reported improvements in both fasting and postprandial
peak glucose levels, the latter of which reached significance in overweight subjects during
the combined WGB and BR period (p < 0.05); a significant reduction in both TC and LDL-C
concentrations was also observed (p < 0.05 for both).

Upon further analysis of sequence data, Martínez et al. (2013) [34] found that con-
sumption of WGB enriched the genera Roseburia, Bifidobacterium, and Dialister along with
species Eubacterium rectale (E. rectale), Roseburia faecis, and Roseburia intestinalis. In ad-
dition, following treatment with WGB and BR, both peak postprandial glucose plasma
and interleukin-6 (IL-6) decreased; conversely, Coriobacteriaceae abundance significantly
decreased and proportions of Dialister increased in subjects with the highest improve-
ment in IL-6. Moreover, proportions of Bacteroidetes, Bacteroidaceae, and Bacteroides were
positively correlated to plasma HDL-C values (R = 0.54–0.56, all p < 0.05). The study
concluded that diet-induced increases in the abundance of E. rectale was associated with
improvements in postprandial glucose and insulin response in normal and overweight
subjects. In contrast, Schutte et al. (2018) [39] investigated the benefits of whole-grain
wheat (WGW) in comparison to refined wheat (RW) consumption in overweight subjects.
Discordant with the earlier findings of Ross et al. (2011) [38], the trial reported significant
differences in PPL concentration between intervention groups (p = 0.020), with postpran-
dial TG levels peaking significantly at the 4 h timepoint in the WGW group (p = 0.004).
Moreover, significant alterations in intestinal microbial diversity were noted between the
WGW and RW group (p = 0.035); however, specific changes in species abundance were
not observed between groups. Similarly, Kovatcheva-Datchary et al. (2015) [33] examined
the effect of barley kernel-based bread (BKB) and white wheat flour bread (WWB) on gut
microbiota and glucose metabolism in healthy participants. Following administration of a
standardised test meal, mean PPG and serum insulin responses improved following 4-day
consumption of the BKB in comparison to WWB (iAUC 0–150 min). On a microbial level,
Prevotella/Bacteroides ratio increased after BKB consumption in responding individuals
with further analysis indicating enriched abundance of Prevotella copri, though this change
was only noted in individuals considered more responsive to the intervention.

Considered a modulator of the gastric microenvironment, alcohol use is associated
with the breakdown of the gastric barrier, impaired insulin secretion, and increased circu-
lating plasma triglycerides [48,49]. A study by Clemente-Postigo et al. [30] analysed the
effect of chronic and acute alcohol consumption and high fat intake on plasma lipopolysac-
charides (LPS) concentrations in middle-aged men. Following the consumption of red
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wine, dealcoholized wine, or gin, combined with a dietary fat overload, the study found no
significant changes in postprandial TG or postprandial chylomicron LPS concentrations be-
tween treatments, which are calculated as the difference between postprandial and baseline
values. In contrast, a positive correlation was identified for postprandial chylomicron LPS
concentrations and changes in TG (R = 0.517, p = 0.028). Conversely, increased abundance
of Firmicutes, Bacteroidetes, and Proteobacteria phyla were also observed following red
wine consumption. However, it is important to note that small sample size (n = 10) was
identified as a limitation to the postprandial study and may have limited the significance
of findings.

Finally, two studies investigated the impact of dietary fat consumption on postprandial
metabolic response and intestinal microbial diversity. Vetrani et al. (2020) [41] evaluated
the effects of diets rich in polyphenols (PP) and/or long-chain n-3 polyunsaturated fatty
acids (LCn3) on intestinal microbiota composition in subjects with high cardiovascular
risk. The study found that diets rich in PP increased bacterial diversity, whilst diversity
diminished following consumption of both diets low in LCn3 and PP, and diets high in
LCn3 respectively. In addition, a significant correlation was observed between changes in
the Atopobium cluster and large VLDL triglycerides (R = 0.313, p = 0.009), cholesterol in large
VLDL (R = 0.319, p = 0.008), and postprandial triglycerides in plasma (R = 0.266, p = 0.026).
In comparison, a similar study by Vors et al. (2020) [42] examined the effect of milk
polar lipid (PL) consumption on lipid metabolism, absorption, microbiota, and known
markers of cardiometabolic health in a population of postmenopausal women. Following
4-week consumption of 0, 3, or 5 g PL/day, the study reported significant reductions in
both fasting and postprandial concentrations of serum cholesterol with analysis showing
significant alterations between groups for measures of TC, TG, apolipoprotein B (ApoB),
and apolipoprotein A1 (ApoA1) (p posthoc < 0.05 vs. control). Conversely, it is important to
note that a non-significant decrease in postprandial TG was only observed in the group
consuming 5 g-PL/day. Subsequently, Vors et al. [42] concluded that daily consumption of
milk polar lipids did not result in significant modulation of either phylogenetic groups or
bacterial species of gut microbiota.

2.4. Individual Intervariability of Metabolic Responses and Microbial Diversity Using a
Standardised Approach

Five studies investigated the extent to which individual gut microbiome composition
contributes to metabolic responses through analysis of a series of acute experimental tri-
als, of which all noted high interpersonal variability in postprandial response following
consumption of standardised test meals (Table 1) [19–21,25,40]. Adopting a similar method-
ological framework to that of Zeevi et al. (2015) [19], a number of trials concluded substan-
tial variations in glucose responses following consumption of identical meals, with one
study reporting glycaemic excursions ranged from 6–94 mg/dL (0.3–5.2 mmol/L) above
baseline following consumption of a standardised meal (0–150 min) [21]. Two studies by
Mendez-Soares et al. (2019) [21,25] analysed the extent to which individual postprandial
responses could be reproduced in a Midwestern USA cohort, building on the previous
model created by Zeevi et al. (2015) [19]. Utilising stochastic gradient boosting regression
to predict PPGRs, both studies found that, despite differences in population characteristics,
the framework model of Zeevi et al. [19] accurately predicts PPGRs when tested on a
Midwestern cohort consuming a Western diet, outperforming traditional methods used
to inform dietary interventions to better regulate glycaemic control in a cohort of 327
and 297 healthy, non-diabetic individuals, respectively.

Most notably, both studies observed significant variability and interindividual repro-
ducibility of individual glycaemic responses to dietary carbohydrate and related sensitivity.
As predicted, carbohydrate amount was positively associated with PPGRs with the subse-
quent study reporting 93.5% of participants in the cohort exhibited a positive correlation
between the amount of carbohydrates consumed in a single meal and PPGR in compar-
ison to 98% of participants in the Israeli cohort observed by Zeevi et al. (2015) [19,25].
In addition, the second study noted significant variability in the above correlation with
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participants showing both high and low carbohydrate sensitivity in response to identical
meals, supporting the previous findings of the earlier study by Zeevi et al. (2015) [19],
highlighting the extent to which inter-individual characteristics contribute to variability
across individuals. The latter study also compared species richness and diversity between
cohorts, noting a significantly lower microbiome diversity in the Midwestern cohort than
the Israeli cohort, which is attributable to population characteristics between cohorts such
as fibre intake. Additional correlations were identified including lower microbial diversity
in overweight and obese subjects (p < 0.05) in comparison to individuals of a normal weight.
In relation to microbiome-related outcomes, Mendez-Soares et al. (2019) [21] reported an
inverse relationship between Eubacterium rectale and PPGR values, and a significant de-
creased abundance of Prevotella/Bacteroides ratio was also observed in the Midwestern USA
cohort (p < 0.05), consistent with reduced fibre consumption associated with a standard
Midwestern diet.

The previous findings are in agreement with a 2020 validated cohort study by Berry
et al. [20], which reported considerable heterogeneity across all postprandial time points
for glucose, insulin, and triglyceride concentrations, following a standardised meal test.
The findings of which thereby strengthen the earlier conclusions of Tily et al. (2019) [40],
reiterating the widely accepted hypothesis that glycaemic response is driven by both
individual characteristics and the macronutrient content of foods when measured using
multiple diet types and populations.

2.5. Interaction between Drugs and the Gut Microbiome

We found seven trials in the past decade (Table 1) that investigated the effect of drug
administration, medicinal or probiotic supplementation on postprandial responses and
microbiota profile [26–28,36,37,43,44]. All seven studies compared results with baseline
measurements prior to undertaking the intervention. Three trials studied the effects
of antibiotic use [27,37,43], another one the use of sevelamer [26], one with the use of
probiotics [36], and two measured the effects of supplementation with traditional Chinese
herbal formulas, one of which also included analysis of an antidiabetic medication [28,44].

For studies assessing the effects of gut microbiota manipulation by antibiotics on host
metabolism, two trials compared treatment of amoxicillin, vancomycin, and placebo for a
duration of 7 days in overweight or obese male subjects with metabolic syndrome (MetS)
or impaired glucose tolerance (IGT) (Table 1) [37,43]. Reijnders et al. (2016) [37] reported
significantly decreased relative abundance of bacteria primarily of the Firmicutes phylum
(p = < 0.001) and increases in gram-negative Proteobacteria, certain species of Clostridium
cluster IX, and Bacilli including Lactobacillus plantarum and Enterococcus following treatment
of 500 mg vancomycin three times daily in comparison to groups treated with amoxicillin
or placebo at the same dose. Similarly, Vrieze et al. (2014) [43] concluded treatment with
vancomycin significantly decreased gut microbial diversity in comparison to amoxicillin
(p < 0.01), citing Firmicutes phylum, specifically Clostridium cluster IV and XIVa, Lacto-
bacillus plantarum, Faecalibacterium prausnitzii, and Eubacterium hallii as species affected by
vancomycin, although a non-statistically significant trend indicative of increased microbial
diversity was identified in the amoxicillin group. Comparably, both studies reported
non-significant results for postprandial plasma glucose, TG, or FFA concentrations in either
treatment group despite aberrant vancomycin-induced changes in gut microbiota.

Moreover, a 2015 study by Mikkelsen et al. [27] reported a decrease in total anaerobic
bacterial count, markedly species of Enterococci, coliforms, and Bifidobacterium, after 4 days of
treatment of an oral antibiotic cocktail comprised of 500 mg vancomycin, 40 mg gentamycin,
and 500 mg of meropenem once daily in lean, glucose-tolerant males. However, despite
substantial growth and colonisation of both aerobic and facultative anaerobic bacteria, no
change in glucose tolerance, measured by the total area under the curve (tAUCglucose), was
observed between baseline, immediately post-intervention, or during follow-up testing
(42 days). In contrast, Brønden et al. (2018) [26] found that the use of sevelamer, a
phosphate-binding drug typically used to treat hyperphosphatemia in patients with chronic
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kidney disease, significantly improved postprandial glucose excursions and increased
β-cell function (HOMA-β) (p = 0.01 and p = 0.03 respectively). Interestingly, the study
reported no significant changes in gut microbiota species richness following treatment of
the drug when tested in subjects with T2DM.

An alternative approach using traditional Chinese medicine (TCM) to modulate gut
microbiota for the alleviation of T2DM has been investigated by two studies [28,44]. A
positive-control clinical trial by Tong et al. (2018) [28] compared the effects of AMC, a
traditional Chinese herbal formula, and metformin, an anti-hyperglycaemic drug used in
the treatment or prevention of diabetes and hyperlipidaemia. After 12 weeks of treatment,
both metformin and AMC significantly improved 2-h PPG (p < 0.0001) and altered the gut
microbiota structure of T2DM patients when analysed by principal-component analysis
(PCA) and principal-coordinate analysis (PCoA) based on Bray Curtis dissimilarity [35]. In
addition, treatment with AMC significantly improved TG levels but decreased microbiome
diversity as indicated by a significant reduction of Chao1 richness (p < 0.01 and p < 0.001
respectively); however, the status during which plasma lipid samples were collected is
unclear from the methods provided. Similarly, Xu et al. (2015) [44] examined the effects
of Chinese herbal formula GQD on short-term manipulation of gut microbial dysbiosis in
subjects with T2DM. The study, a 12-week randomised controlled trial, reported significant
improvements in glycaemic control and 2-h PPBG (p < 0.001), along with alterations of gut
microbiota structure after 4 weeks of treatment in comparison to baseline and placebo.

In contrast, a recent study by Park et al. (2020) [36] highlighted the effect of probiotic
supplementation in ameliorating LDL-C and postprandial lipid biomarkers following
12 weeks of probiotic treatment with Lactobacillus plantarum Q180. The area under the curve
(AUC) and maximum concentration (Cmax) of postprandial TG significantly improved
in those treated with LPQ180 in comparison to placebo (p = 0.049 at 6 h); maximum
concentration of chylomicron (CM) TG also decreased significantly (p = 0.020). Conversely,
Park et al. (2020) [36] reported no significant changes in intestinal flora diversity between
placebo and LPQ180 groups over the 12-week period. However, non-significant changes in
TC, TG, and phenol levels in the LPQ180 group were negatively correlated with baseline
abundance of Ruminococcus bromii. Likewise, positive changes in TC and LDL-C were
associated with increased baseline levels of bacterium Kineothrix alysoides in individuals in
the LPQ180 group.

3. Discussion

To our knowledge, this is the first systematic review that compiles and provides effects
and associations of gut microbiota composition and postprandial glycaemia and lipidaemia
in human subjects. Despite heterogeneity across trials, the findings of the 22 included
studies, summarised in Table 1, indicate an association between gut microbial composition
and individual postprandial glycaemic and lipidaemic responses in both healthy adults
and individuals with pre-existing conditions including MetS, T2DM, and obesity, which
are key risk factors of cardiovascular disease [50].

The gut microbiota has been shown to play a critical role in human health, particularly
the development of metabolic diseases [51], and is considered a co-determinant of post-
prandial plasma glucose response [52]. Given that humans spend a significant proportion
of time in a postprandial state, it is of the upmost importance that underlying mechanisms
influencing metabolic responses post-consumption are studied in greater detail [53]. The
relationship between the gut microbiota and metabolism has gained prominence in the last
two decades with methods for analysis of microbial composition advancing rapidly within
the last 15 years [54,55]. However, the extent to which individual microbiota structure plays
a role in determining glycaemic and lipidaemic responses to dietary intake is lesser known,
with machine-learning models for predicting metabolic responses remaining an emerging
area of study [20]. Largely modulated by diet in humans, the genetic composition and
metabolic activity of intestinal microbiota has been shown to respond rapidly to changes
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in dietary intake, with inter-individual variations in microbial gene expression and the
diversity of human diet and lifestyle attributable to dietary factors [56].

Based on 17 included studies, our findings of interventional trials yielded discor-
dant results, largely due to methodological differences and contrasting clinical outcomes.
Findings from dietary interventions suggest the consumption of high resistant starch (RS)
and carbohydrate (CHO) diets upregulate circulating levels of trimethylamine n-oxide
(TMAO), a gut-derived metabolite associated with multiple inflammatory diseases in-
cluding atherosclerosis [25,57]. However, as expected, meals high in RS and wholegrains
improved PPGR in comparison to refined counterparts, thereby improving CVD risk
through improved carbohydrate metabolism. Notably, a 2016 study by Bergeron et al. [29]
found that consumption of meals providing 16–22 g of RS significantly attenuated both
postprandial insulin and PPGR in individuals. This is consistent with the findings of
a 2017 systematic review and meta-analysis by Marventano et al. (2017) [58], which at-
tributed improved postprandial glucose excursions with the fermentation of indigestible
polysaccharides by the microbiota, resulting in the production of short-chain fatty acids
(SCFA), improved glucose oxidation, and increased insulin sensitivity. In addition, dietary
consumption of whole grains is associated with compositional alterations of the gut mi-
crobiota, namely diet-induced increases of butyrate-producing Eubacterium rectale and the
genus Prevotella, a leading source of inter-individual microbiota variation [59], which has
been reported to improve glucose tolerance and influence glucose homeostasis via intesti-
nal gluconeogenesis [33,60,61]. However, several studies failed to report the significance
of either diet-induced modulation of metabolic responses, microbiome composition, or
metagenomic activity [26,36,42], which is likely attributable to limitations such as small
sample size and/or short study duration.

Conversely, our results of drug intervention trials suggest strong effects of antibiotic,
hyperphosphatemia, and hyperglycaemia medication on modulation of the gut microbiota,
consistent with existing literature in this field [62–64]. Nevertheless, positive alterations
of postprandial glucose or lipid metabolism were not observed following treatment of
antibiotics, despite significant changes in microbiota structure. Lack of clinically relevant
associations between significant changes in gut microbiota and metabolic parameters is
in contrast to the current dogma, which emphasises the role of gut microbiota as a key
component involved in metabolism regulation [27,65]. It is important to note that almost
half of the drug intervention studies had a relatively short duration of 7 days, which may
be one reason why they showed no significant effect on metabolic parameters [27,35,44].

In contrast, whilst the majority of studies reviewed sought to establish a cause-and-
effect relationship between alterations in gut microbiota and improved postprandial glu-
cose and lipid responses, population-based cohort studies indicate associations with gut
microbiota, and metabolic responses are largely specific to the individual [19–21,25,40].
Substantial intra-individual variability was observed across all cohort studies and has been
attributed to multiple features of the microbiome. Through analysis of microbiome profiling
and utilisation of predictive models, several associations were reported between functional
properties of microbiota and variability in postprandial glucose responses in humans. For
instance, in one of the earlier studies to identify major factors predictive of PPGRs, Zeevi
et al. (2015) [19] observed associations between taxa such as Actinobacteria, Proteobacteria,
and Enterobacteriaceae with dietary habits and various phenotypes related to obesity and
glycaemic control, along with identification of lesser-known functional pathways, believed
to be a result of variation of bacterial taxa amongst individuals [19,66]. Moreover, building
on the previous findings of Zeevi et al. (2015) [19], Berry et al. (2020) [20] further quantified
the extent to which the gut microbiome contributes to metabolic responses, elucidating that
microbiome composition accounted for 7.5% of postprandial triglyceride (6 h) and 6.4% of
postprandial glucose (IAUC, 0–2 h) independent of individual characteristics. Additional
meal-related factors including macronutrient composition and individual meal-specific
responses were also found to be more predictive of PPGR than previously thought with
genetic parameters found to be less influential in comparison to meal timing in determining
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lipidaemic response. In contrast to existing literature, the principal findings of Berry are
in disagreement with previous studies [40,67,68], which largely attributes metatranscrip-
tomic activity of the gut microbiome as the key determinant of individual postprandial
glycaemic response.

Upon analysis, further mechanisms associated with the gut microbiome, host metabolism,
and the ability to predict PPGRs include fucose metabolism, indoleacetate and glutamine
production pathways, and fructose and tyrosine metabolisers [40]. However, Tily et al.
(2019) [40] noted that more research is needed to establish the exact mechanisms connecting
the metabolism of gut sugars and increased PPGRs in individuals due to the complexity of
the mechanisms involved in microbial metabolic regulation.

Despite high levels of intra-individual variability in PPGR and PPL responses, which
are attributed to a complex interplay of diet, microbiota composition, and metagenomic
activity, the findings of the current review reinforce the hypothesis that once postprandial
responses to specific foods are established, metabolic response to other dietary compo-
nents may be accurately predicted. However, it is important to acknowledge that further
research is needed to better understand the role of individual microbiota and improve
homogeneity across studies, allowing for more in-depth analysis of data such as baseline
and endpoint PPGR and PPL response. Further analysis of the specific nutritional break-
down included in standardised test meals would also be beneficial in order to accurately
develop tailored nutritional approaches, paving the way for precise personalisation of diet
recommendations [23].

4. Materials and Methods
4.1. Literature Search Strategy

The current study sought to conduct a systematic review on the contribution of the
individual microbiome composition on postprandial glycaemia and dyslipidaemia in
humans, and the extent to which interpersonal variability of the microbiome contributes
to the predictability of glycaemic and lipidaemic control. We also gave attention to the
effectiveness of analytical models in predicting postprandial metabolic responses in human
subjects. This systematic review was performed and reported according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement [69]
and PICOS (Population, Intervention, Comparison, and Outcomes) [70] criteria used to
define the following research question: To what extent does the individual gut microbiome
diversity and composition contribute to the variability of postprandial glycaemia and
dyslipidaemia in human subjects? (Table 2).

Table 2. PICOS (Population, Intervention, Comparison, and Outcomes) table summarising
study rationale.

Parameter Inclusion/Exclusion Criteria

Participants Adults aged ≥ 18 years.

Interventions Diet, drug interventions.

Comparisons Placebo or control group, different diet/intake.

Outcomes Primary outcomes included presence of both metagenomic and postprandial
plasma analysis, namely plasma glucose, lipids, and lipoproteins.

Study design Randomised controlled or clinical trials with either parallel, crossover or a
series of acute experimental studies.

4.2. Search Methods

CINAHL Plus, PubMed, Cochrane Central, and Web of Science were searched for
relevant randomised trials published between January 2010 and June 2020 with no restric-
tion on language. Databases were searched individually with advanced search strategies
utilising various combinations of controlled phrases as either keywords or MeSH terms. To
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maximise search sensitivity, we combined multiple terms relating to both the gut micro-
biome and postprandial state in addition to glycaemia and lipidaemia to enhance precision
(Supplementary Material). The wild-card term “*” was included to increase sensitivity of
the search strategy.

Following the initial database search and screening, full-text articles were indepen-
dently reviewed by two of the authors to ensure all studies included were relevant and
met the inclusion criteria for the current study (W.W. and M.W.). Furthermore, to minimise
the effect of publication bias, a snowball method, characterised by manual checking of
references from retrieved articles, was applied to relevant studies that met the selection
criteria outlined below.

4.3. Selection Criteria

The current review included all clinical trials and non-randomised acute experimental
studies that evaluated the effect of the individual gut microbiome diversity on postprandial
glycaemia and lipidaemia. Eligible studies were screened to meet the following criteria:
(1) adult study population (aged 18+); (2) randomised controlled or clinical trials with
either parallel, crossover, or acute experimental studies (a series of non-controlled acute
studies that tested microbiome, glycaemic, and lipidaemic responses to various test meals
on different days in large cohort populations); (3) use of dietary or pharmacological
intervention; (4) presence of both metagenomic and postprandial plasma analysis; and
(5) presentation of sufficient information on primary objective/outcome at baseline and
endpoint or provision of net change values. Exclusion criteria was as follows: (1) non-
clinical studies; (2) animal and/or in vitro study models; (3) pregnancy/child studies;
(4) studies that did not provide baseline or endpoint values for outcomes of interest; and
(5) narrative reviews, opinion pieces, editorials, protocols, and/or studies that did not
include primary data were also excluded from the review.

4.4. Data Extraction and Critical Appraisal

Duplicate studies were removed, and remaining studies screened by title and abstract
initially before full-text articles were reviewed by two researchers independently (M.W.,
W.W.) to minimise risk of bias. Following the initial screening, studies were listed as either
included, excluded, or pending if the eligibility of the study to be included in the review
was unclear. Pending studies were temporarily included in the next stage of screening.
Once retrieved, full-text articles were independently reviewed, and inclusion/exclusion
criteria applied. Discrepancies in the selection process were resolved at a meeting between
reviewers prior to the retrieval of the final selection of papers. Based on the PRISMA
guidance, a flowchart was produced to enable transparency of the screening process
(Figure 1).

4.5. Quality Assessment

A systematic assessment of bias in the included studies was performed in accordance
with the criteria established by Cochrane [71]. Studies were assessed on the following:
adequacy of random sequence generation, blinding of participants, personnel and outcomes
assessment, selective outcome reporting, allocation concealment, and handling of dropouts
(incomplete outcome data). Discrepancies regarding the presence of bias were resolved by
discussion with a second and third author (M.M and I.G.D) to resolve inconsistencies and
reach a consensus.

4.6. Data Extraction and Management

Full-text studies that met the inclusion criteria were retrieved and screened to assess
eligibility by two reviewers (M.W., W.W.). Once methodological quality was determined,
the reviewer (M.W) extracted and transferred to a Microsoft Excel spreadsheet and briefly
summarised key concepts, findings, and results from each study. Summaries for each study
were discussed with a third reviewer (M.M.) and any inconsistencies resolved. Data was
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organised by first author, year of publication, country of origin, age range and gender
of participants, study design and duration, intervention type, presence of background
disease/conditions, and summary of key findings (Table 1).

4.7. Assessment of Risk of Bias

The quality and the risk of bias across all included studies were assessed using the
Cochrane Risk of Bias Tool [71] (Figure 2). Alternatively, studies containing a series of
acute experimental trials were assessed using the (ROBINS-I) tool [72]. Due to the nature
of several studies, randomisation and blinding of participants and/or outcome assessors
was not possible; however, as all outcome measures were objective, it was determined that
it was unlikely that this influenced the results of the studies. For studies that utilised a
series of acute experimental trials [21,28,41,46,51], risk of bias was assessed separately in
accordance with the recommended guidance provided by Cochrane regarding assessment
of bias risk in cohort studies [71]. Overall, no study included in the review received a
“high” risk of bias result in any assessed category.
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5. Strengths and Limitations of the Current Review

To our current knowledge, this is the first systematic review to comprehensively
address the impact of individual gut microbiota in influencing metabolic parameters at-
tributed to postprandial hyperglycaemia and lipidaemia in human subjects. The use of
multiple databases and manual searching of reference lists associated with key studies
was beneficial in maximising access to trials that encompassed a broad spectrum of pop-
ulation and methodological considerations whilst meeting strict inclusion and exclusion
criteria, allowing for effective identification of comparisons and contrasting aspects be-
tween studies. In addition, whilst the study allowed for a wide range of participants
including both healthy individuals and those with chronic disease, we acknowledge that
different baseline characteristics can influence microbiome diversity, and therefore cannot
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be considered comparable. Given the limited number of papers on individual postprandial
glycaemic/lipidaemic response and gut microbiome diversity, the inclusion criteria was
designed to include all available studies to provide a broad comprehensive review. The
presented study had several limitations; it is important to note that due to the presence of
considerable clinical, methodological, and statistical heterogeneity across studies, a statisti-
cal meta-analysis was not performed. This was determined as substantial methodological
heterogeneity; contrasting outcome measures and metrics were inconsistent throughout
the final included studies. In addition, sample size and study duration varied significantly
across studies, ranging from 5 to 1002 participants and 7 to 180 days respectively, a factor
which may have limited the statistical power of the included studies and potentially com-
promised research outcomes. Moreover, whilst all studies included postprandial plasma
and microbiome analysis, interventions varied across trials and included both dietary
and pharmacological interventions, which is important to note due to the complexity of
diet/drug interactions, how such interactions influence the microbiome, and consequent
contribution to alterations in PPGR and PLL responses.

6. Conclusions

The findings of the current review present new evidence to support a personalised
approach to nutritional recommendations and guidance for optimal health, management,
and treatment of common metabolic disorders. However, the mechanisms of microbial
metabolic regulation remain unclear due to the complexity of the microbiota. These findings
provide greater insight for future investigation of the complex interplay between diet, gut
microbiota, and postprandial metabolic responses that may support the development of
tailored nutritional approaches for preventing cardiometabolic disease in humans. In
conclusion, a personalised approach to nutrition based on individual microbial diversity
may improve postprandial regulation of plasma glucose and lipids. However, further
research is warranted to objectively measure the extent to which individual gut microbiome
diversity and composition contribute to the variability of postprandial glycaemia and
dyslipidaemia in humans, and further support the concept of personalised nutrition as an
effective alternative to traditional strategies for management and treatment of metabolic
disorders in individuals.
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