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Abstract
Gross rates of nitrogen (N) turnover inform about the total N release and consumption. We investigated how plant diversity 
affects gross N mineralization, microbial ammonium  (NH4

+) consumption and gross inorganic N immobilization in grasslands 
via isotopic pool dilution. The field experiment included 74 plots with 1–16 plant species and 1–4 plant functional groups 
(legumes, grasses, tall herbs, small herbs). We determined soil pH, shoot height, root, shoot and microbial biomass, and C and 
N concentrations in soil, microbial biomass, roots and shoots. Structural equation modeling (SEM) showed that increasing 
plant species richness significantly decreased gross N mineralization and microbial  NH4

+ consumption rates via increased 
root C:N ratios. Root C:N ratios increased because of the replacement of legumes (low C:N ratios) by small herbs (high C:N 
ratios) and an increasing shoot height, which was positively related with root C:N ratios, with increasing species richness. 
However, in our SEM remained an unexplained direct negative path from species richness to both N turnover rates. The 
presence of legumes increased gross N mineralization, microbial  NH4

+ consumption and gross inorganic N immobilization 
rates likely because of improved N supply by  N2 fixation. The positive effect of small herbs on microbial  NH4

+ consumption 
and gross inorganic N immobilization could be attributed to their increased rhizodeposition, stimulating microbial growth. 
Our results demonstrate that increasing root C:N ratios with increasing species richness slow down the N cycle but also 
that there must be additional, still unidentified processes behind the species richness effect potentially including changed 
microbial community composition.
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Introduction

Biodiversity loss has raised concern over the consequences 
for ecosystem functioning (Isbell et al. 2011; Cardinale et al. 
2012; Meyer et al. 2016; Weisser et al. 2017). Plant diversity 
is essential for maintaining a variety of ecosystem functions 
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(Hector et al. 1999; Loreau et al. 2001; Tilman et al. 2001; 
Roscher et al. 2005; Cardinale et al. 2012), including nitro-
gen (N) cycling (Spehn et al. 2005; Fornara and Tilman 
2009; Oelmann et al. 2011; Reich et al. 2012; Rosenkranz 
et al. 2012). Biodiversity experiments have mainly reported 
increased community productivity with increasing plant 
diversity (Tilman et al. 2001; Spehn et al. 2005; Marquard 
et al. 2009). A potential reason for the positive species rich-
ness–biomass production relationship might be complemen-
tarity effects in species-rich mixtures (Hooper and Vitousek 
1998; Fargione et al. 2007; Reich et al. 2012). Complemen-
tarity effects occur when more-diverse communities increase 
their performance above the expected performance of mono-
cultures through acquiring more nutrients and using availa-
ble light and space more exhaustively (Hooper and Vitousek 
1997; Naeem 2002). Complementarity also includes the 
process of facilitation, for example by legumes, which 
increase the nutrient availability for neighboring plants via 
 N2 fixation (Fargione et al. 2007). However, in about 1/3 
of the reported experiments, complementarity effects did 
not increase productivity likely because of the selection for 
more competitive but less productive species at higher diver-
sity (Cardinale et al. 2011). Furthermore, sampling effects 
can arise in biodiversity experiments, if the probability of 
sampling dominant species increases in high diversity levels 
(Huston 1997; Loreau et al. 2001). To prevent such sampling 
effects and to be able to detect other mechanisms behind 
biodiversity–ecosystem functioning relationships, biodi-
versity experiments need to be carefully designed (Loreau 
et al. 2001; Roscher et al. 2004). Increasing plant diversity 
modifies resource availability for soil microbial communi-
ties (Zak et al. 2003), which mineralize organic matter and 
enhance nutrient release by litter decomposition. Plant spe-
cies differ in their biochemical composition providing an 
incentive for microbes to derive different resources from 
different litter types (Gartner and Cardon 2004). This might 
result in altering overall decomposition rates of mixtures 
relative to the cumulative composition of individual litter 
species (Gessner et al. 2010). Jewell et al. (2015) reported a 
faster decomposition rate of monospecific litter in its envi-
ronment of origin but not of mixed litter. Although it has 
been reported that complementarity can result in high plant 
productivity and N uptake, it is uncertain if the changes in 
plant diversity affect microbial N dynamics.

Plants play a vital role in ecosystem N cycling, because 
plants assimilate this essential nutrient to produce biomass, 
which is returned as aboveground and belowground litter to 
soil, where it is decomposed, thereby releasing the N back 
into the soil solution (Knops et al. 2002; Vitousek et al. 
2002). Individual plant species can positively affect the N 
cycle in soil by the activity of plant roots (e.g., fine root 
turnover, root exudation; Clarholm 1985; Cadisch and Giller 
1997) and by regulating the quality of plant litter (measured 

as C:N ratios, Aerts et al. 1992; Van Vuuren et al. 1993; 
Abbas et al. 2013; Guiz et al. 2015). Plant species that host 
 N2-fixing bacteria can change N cycling by improving the 
N availability to other co-occurring species (Mulder et al. 
2002; Spehn et al. 2005). Another way in which plant spe-
cies may affect rates of N cycling is through their association 
with mycorrhizal fungi, which enhance the ability of plants 
to acquire nutrients (Hobbie 1992).

Because of the importance of N in all ecosystems and 
the marked impact of human activities on the N cycle, N 
and its transformations have received a great deal of atten-
tion. The supply rate of N to the plant and microbe com-
munity depends largely on gross N mineralization, which 
is described as the total N transformed from organic N to 
mineral N forms  (NH4

+,  NO3
−) by microorganisms in soil 

over a period of time that can be readily taken up by plants 
and microbes. Microbial ammonium consumption refers to 
the microbial assimilation of  NH4

+ plus the gross nitrifica-
tion. Gross inorganic N immobilization is the process of 
converting inorganic forms of N by microbes and other soil 
heterotrophs to organic N forms. Net N mineralization refers 
to the gross mineralized N minus the quickly microbially 
consumed N. Net ammonification is the difference between 
gross N mineralization and microbial  NH4

+ consumption, 
and net nitrification is that between gross nitrification and 
 NO3

− immobilization.
Hobbie (1992) reported that the strong relationship 

between litter quality and gross N mineralization rates might 
indicate that gross N mineralization rates are determined 
by the quality of litter input. This was corroborated by the 
results of Van der Krift et al. (2001) who reported that the 
quantity and quality of plant litter determine N release in 
soil. Because the quantity and quality of soil organic mat-
ter results from decomposition of aboveground and below-
ground biomass and rhizodeposition, there is also a link 
between soil organic matter quantity and quality and N 
supply via net N mineralization (Benbi and Richter 2002; 
Hobbie 2015). Soil microbes release nutrients by mineraliza-
tion of soil organic matter and decomposition of fresh litter. 
Resource availability for soil microorganisms or microbial 
uptake is also regulated by litter decomposition (Smith and 
Paul 1990). Plant litter varies in chemical composition; 
therefore, changes in plant communities could alter the pro-
duction and types of organic compounds in soil, thereby con-
trolling the composition and function of microbial communi-
ties (Zak et al. 2003). Moreover, environmental conditions, 
such as soil pH, soil moisture, soil temperature, and soil 
texture influence gross N mineralization by changing micro-
bial biomass or activity associated with substrate availability 
(Booth et al. 2005; Wang et al. 2016; Zhang et al. 2016).

In particular, root C:N ratios explained high amounts of 
variance in gross N mineralization rates in soil (Fornara 
et al. 2011). Litter with high C:N ratios is considered as low 
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quality, whereas litter with low C:N ratios is considered as 
high quality. Previous studies showed that high root C:N 
ratios have a strong negative effect on gross N mineraliza-
tion (Silver and Miya 2001; Fornara et al. 2011). There is 
increasing evidence that root decomposition may be more 
important than aboveground plant biomass decomposition 
for organic matter formation and the associated N stocks in 
soil (Rasse et al. 2005; Kramer et al. 2010). The work of 
Ruppenthal et al. (2015) has even suggested that root litter 
is the dominant source of soil organic matter. Fornara et al. 
(2011) reported that gross N mineralization rates are mainly 
driven by changes in C and N concentrations of soil organic 
matter. Consequently, root decomposition could be the major 
source of N released by mineralization in soil. This is fur-
ther supported by Abbadie et al. (1992), who found indirect 
evidence that the most assimilated N originated from root 
decay in African grasslands.

Plant diversity influences several N-transformation pro-
cesses in soil via plant uptake of N and modifications of 
ecosystem properties like microbial community or biomass 
production (Hooper and Vitousek 1998; Spehn et al. 2005; 
Weisser et al. 2017). Previous biodiversity studies in grass-
lands have mainly reported positive relationships between 
plant species richness and both gross and net N mineraliza-
tion rates (e.g., West et al. 2006; Rosenkranz et al. 2012; 
Mueller et al. 2013) and net nitrification rates in the pres-
ence of legumes (Scherer-Lorenzen et al. 2003). Rosenkranz 
et al. (2012) found that the increasing topsoil water content 
with increasing plant species richness was the main factor 
underlying positive effects of plant species richness on net 
N mineralization rates in the Jena Experiment, the same 
experimental site as in this study. Another plant diversity 
experiment showed that positive effects of plant diversity 
on net N mineralization rates were driven by increased N 
concentrations in roots (Mueller et al. 2013). In an isotope 
dilution experiment in the laboratory using soil samples 
from the BioCON experiment in the North American prai-
rie, gross N mineralization rates increased with increasing 
plant species richness because of greater microbial activity 
(West et al. 2006). In addition, net N mineralization rates 
decreased and N immobilization rates increased at higher 
species diversity (West et al. 2006). However, the incuba-
tion experiment was conducted inside a laboratory, which 
could not necessarily be directly comparable to field condi-
tions (e.g., because of cold storage of the samples before lab 
incubation, controlled incubation temperature, and optimum 
nutrient supply; Arnold et al. 2008). To our knowledge, no 
study has been reported that investigated plant diversity 
effects on microbial  NH4

+ consumption and on gross inor-
ganic N immobilization rates in situ.

Besides plant species richness, the presence or absence of 
specific plant functional groups can affect N cycling in grass-
land ecosystems (Scherer-Lorenzen et al. 2003; Oelmann 

et al. 2007; Dybzinski et al. 2008; Fornara and Tilman 2009; 
Fornara et al. 2011; Leimer et al. 2015). Legumes constitute 
a distinct functional group in grasslands because of their 
ability to fix atmospheric N via symbiotic root microorgan-
isms (Spehn et al. 2002; Marquard et al. 2009). Mulder et al. 
(2002) reported that non-leguminous plants depend on  N2 
fixed by legumes to counter-balance the declining soil N 
availability in unfertilized (near-) natural ecosystems. There-
fore, many studies concluded that with an increased legume 
biomass, there is a larger plant-available N pool in the soil 
(Spehn et al. 2002; Booth et al. 2005; Scherer-Lorenzen 
2008). This larger plant-available N pool can originate from 
increased gross N mineralization of N-rich legume litter. 
Besides legumes, grasses were also found to influence gross 
N mineralization. Oelmann et al. (2007) reported that the 
presence of grasses decreased mineral N pools in soil com-
pared to plant communities without grass species because 
of their dense and extensive rooting system. This extensive 
rooting system is efficient in taking up soil N and thus can 
reduce mineral N pools in soil (Oelmann et al. 2007).

The objectives of our study were (i) to investigate if plant 
species richness, functional group richness or the presence/
absence of individual functional groups (together termed 
plant diversity) affect gross N mineralization, microbial 
 NH4

+ consumption and gross inorganic N immobilization 
rates and (ii) to determine the underlying controls respon-
sible for the potential relationships. We hypothesized that 
there was a positive effect of plant species richness on gross 
N mineralization rates because of the known positive rela-
tionship between plant species richness and microbial activ-
ity in the Jena Experiment (Strecker et al. 2016). Second, 
we expected an increasing microbial  NH4

+ consumption 
and gross inorganic N immobilization with increasing plant 
species richness because of the higher N demand and the 
tighter N cycling in species-rich than in species–poor plant 
mixtures. Thirdly, we hypothesized that the presence of 
legumes increased gross N mineralization, microbial  NH4

+ 
consumption and gross inorganic N immobilization because 
of the smaller C:N ratio of litter in plant mixtures containing 
legumes compared to plant mixtures without legumes (Chen 
et al. 2017). Although our focus was on gross N turnover 
rates, we additionally calculated the rates of net mineraliza-
tion and its components net ammonification and net nitrifi-
cation and analyzed their relationship with plant diversity.

Materials and methods

Study site

Our study was part of the Jena Experiment (www.the-jena-
exper iment .de), a long-term grassland diversity experiment 
established in 2002 (Roscher et al. 2004; Weisser et al. 

http://www.the-jena-experiment.de
http://www.the-jena-experiment.de
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2017). The site had been used as arable land for at least 
40 years before the establishment of the Jena Experiment. 
The experimental site is located on the floodplain of the 
river Saale in Jena, Germany (50°55′ N, 11°35′ E; 130 m 
above sea level). Mean annual air temperature is 9.9 °C, and 
mean annual precipitation amounts to 610 mm (1980–2010, 
Hoffmann et al. 2014). The soil at the site is classified as 
Eutric Fluvisol developed from 2-m thick loamy fluvial 
sediments (IUSS Working Group WRB 2014). The soil 
texture ranges from sandy loam close to the river to silty 
loam with increasing distance from the river. The mean bulk 
density of the topsoil (0–5 cm) of the experimental plots is 
1.18 ± 0.1 g cm−3; varying little from 1.21 ± 0.1 g cm−3 in 
Block I with the lowest clay content to 1.17 ± 0.1 g cm−3 in 
Block IV with the highest clay content. The experimental 
site is mown twice and weeded three times a year to main-
tain the designed diversity levels. The biomass was removed 
after mowing/weeding. This management mimics a typical 
use of semi-natural species-rich mesophilic grassland as 
hay meadow (Roscher et al. 2004). A major aim of the Jena 
Experiment is to explore the effect of biodiversity on nutri-
ent cycling and trophic interactions.

A detailed description of the experimental design is pro-
vided in Roscher et al. (2004). The main experiment consists 
of 82 plots (20 m × 20 m) in four blocks to account for the 
systematic change in soil texture perpendicular to the river 
with a factorial design (as far as possible) of different levels 
of plant species richness (1, 2, 4, 8, 16, and 60) and 1–4 
functional groups (grasses, legumes, small herbs, and tall 
herbs). The mixtures were randomly drawn from a pool of 
60 species representing typical Central European mesophilic 
grasslands. All the 16 species of grasses are perennial except 
Bromus hordeaceus L. Each level of species richness was 
replicated on 16 plots except for the 16 and 60 species rich-
ness levels, which were only replicated on 14 and 4 plots, 
respectively. Since there were only four replicates of the 
60-plant species mixture, we excluded them from our data 
analyses (which reduced the number of considered plots to 
78). Of these 78 plots, we lost two because of errors dur-
ing the laboratory analyses. Those two plots (B2A08 and 
B4A02) were sown with a species richness level of 2 and 
16 and functional group richness of 2 and 3, respectively. 
Another two plots (B1A09 and B4A03), both monocul-
tures, were abandoned due to their poor performance (i.e., 
extremely low target species cover). Therefore, our final 
analyses were based on 74 plots.

Isotope pool‑dilution experiment

We used the isotope pool-dilution method in a field incuba-
tion experiment to determine the rates of gross N mineraliza-
tion in soil (Davidson et al. 1991). We labeled the soil  NH4

+ 
pool with 98 at% 15N as  NH4Cl. While unlabeled N from the 

organic pool is mineralized to  NH4
+ by microorganisms, 

the 15N enrichment of the  NH4
+ pool is diluted. The method 

of Davidson et al. (1991) is based on several assumptions 
which are valid for short incubation periods of up to 24 h. 
According to these assumptions, (1) there is no or only neg-
ligible isotope discrimination by microorganisms during the 
incubation period, so that the consumption of  NH4

+ alters 
the pool size, but not the isotope ratio of the pool, (2) the 
turnover rates are constant, and (3) no N re-mineralization 
occurs, so that the assimilated 15N is not returned to the 
labeled pool.

A disturbed soil sample was taken to determine the 
natural 15N abundance and 1 M KCl-extractable mineral N 
 (NH4

+-N and  NO3
− -N) concentrations on each plot before 

starting the experiment. We performed the field experiment 
and collected soil samples in April 2011. Two pairs of stain-
less steel cores (Ø = 56 mm, h = 41 mm, V = 100 cm3) were 
taken from within the 0–5 cm layer of the soil of each plot 
(one pair for each time step, t1 and t2), closed at the bottom 
side with a polyethylene lid to prevent leaching losses and 
immediately reinserted. We averaged the two cores for each 
time step for 15N isotopic analysis to improve plot repre-
sentativity. The soil samples in the cores were labeled with 
a  NH4Cl solution (5 mg  L−1 N, 98 at% 15N) using a high-
precision, digital dispenser (Brand, Wertheim, Germany) 
coupled to a side-port needle, which injected the solution 
horizontally to ensure a homogeneous distribution of the 
5-mL label within the cores. For every core, the injections 
were uniformly distributed at five points, each point receiv-
ing 1 mL of the tracer solution. In total, 25 µg N (98 at% 
15N) were added as label to each core, which corresponds to 
less than 2 percent of the  NH4-N concentration in the soil at 
the time of the experiment.

To account for abiotic  NH4
+ fixation, ensure the 15N 

enrichment and calculate tracer recoveries, one pair of the 
soil cores was removed from the soil after 15 min (t1) and 
the remaining soil cores after 24 h (t2) to calculate the 15N 
pool dilution after the field incubation. Soil samples from 
shortly before the pool dilution experiment and from t1 and 
t2 of the experiment were shaken with 1 M KCl solution for 
one hour shortly (< 2 h) after sampling next to the field site 
to extract  NH4

+ and  NO3
− and then filtered through ash-

free paper filters (no. 595, Schleicher & Schuell, Dassel, 
Germany, pore size 4–7 μm). The extracts were immediately 
frozen at – 20 °C and transported in frozen state to the labo-
ratory for further chemical analyses.

The concentrations of  NH4-N and  NO3-N in the 1 M 
KCl extracts were measured by high-resolution colori-
metric detection using a continuous flow analyzer (CFA 
Autoanalyzer 3 h, Seal Analytical GmbH, Norderstedt, 
Germany). We used the micro-diffusion method (Stark and 
Hart 1996) to determine the 15N/14N isotope ratios of  NH4

+ 
in the soil extracts. In the micro-diffusion method,  NH4

+ is 
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volatilized as  NH3 by increasing the pH to > 9.5 with MgO. 
The released  NH3 was then collected on an acidified (2.5 M 
 NaHSO4) filter disk enclosed in a polytetrafluoroethylene 
(PTFE) envelope, where it reacted back to  NH4

+. The N iso-
tope ratios were determined with an Elemental Analyzer (EA 
1110, Carlo Erba Instruments, Milan, Italy) coupled to an 
isotope-ratio mass spectrometer (MAT Delta Plus, Thermo 
Finnigan, Bremen, Germany) at the Stable Isotope Center, 
University of Göttingen. Ten replicate measurements of in-
house standard reference material  [15N-(NH4)2SO4] resulted, 
on average, in 98.4 ± 1.6% of the true value, indicating a 
high accuracy of our measurements. The error of ± 1.6% is 
the average deviation from the true value. Precision of the 
15N measurements was ± 0.002 at% (n = 10).

Plant community and soil properties

Aboveground (shoot) biomass was harvested in May 
2011 prior to mowing. Plants were clipped at 3 cm above 
ground level within the harvesting area of two replicate 
20 cm × 50 cm subplots per plot. Plant material was sorted 
into sown species, weeds, and dead aboveground biomass. 
Biomass of each sown species was determined after drying 
at 70 °C for at least 48 h (Weigelt et al. 2010). For shoot 
C:N ratio analysis, all the plant material from one plot was 
pooled together to obtain a representative value for the plant 
community of the respective plot. A small subsample of this 
material was milled to fine powder using a ball mill (MM 
400, Retsch GmbH, Haan, Germany) and up to 5 mg from 
each plot was used for C and N analysis (Flash EA 112, 
Thermo Fisher, Milan, Italy). Shoot height (regenerative 
shoot height, i.e., soil surface to highest flower) was meas-
ured on five individual plants (without stretching the plants) 
every meter along a 5-m transect in the central area of the 
plots (61 m2) using a ruler.

For the analysis of the root C:N ratio, community roots 
were collected in September 2013 per plot. The root C:N 
data were not available for 2011, so we used the data of the 
nearest possible date. Root biomass was sampled originally 
for a root decomposition experiment, where the C:N ratio 
was used as explanatory variable for litter quality (Chen 
et al. 2017). To minimize disturbance of the experimental 
plots, we limited larger soil cores (40 × 15 × 20 cm) to plots 
with low standing root biomass and took smaller soil cores 
(20 × 10 × 20 cm), where standing root biomass was suffi-
ciently high to provide enough fine root material. Sampling 
depth was always 20 cm covering the main rooting horizon, 
where on average 90% of community standing root biomass 
in the Jena Experiment plots can be found (Chen et al. 2017). 
Roots were collected, cleaned and sorted to fine (< 2 mm) 
and coarse roots after washing. Fine roots were oven-dried at 
65 °C and ground with a ball mill (MM 400, Retsch GmbH, 
Germany) and analyzed for total C and N concentrations 

using an elemental analyzer (Flash 2000, ThermoFisher 
Scientific Inc, Waltham, MA, USA). Studies have found 
that fine roots are more active and decompose faster than 
coarse roots in forest ecosystems (Brunner and Godbold 
2007; Lukac 2012; Zhang and Wang 2015). Therefore, we 
expected similar differences between fine and coarse roots 
in grasslands. Additionally, although variable among com-
munities, root biomass data at the Jena Experiment showed 
that fine roots made up on average 84% of the total standing 
root biomass (0–30 cm).

To determine the concentrations of organic C and total 
N in soil, five soil samples per plot (0–5 cm) were taken in 
2011. All replicates were combined and homogenized. Soil 
samples were dried at 40 °C and sieved (< 2 mm). The dried 
samples were ground using a ball mill. An aliquot of these 
samples was analyzed for total C and N concentrations by 
an elemental analyzer (vario Max CN, Elementar Analysen-
systeme GmbH, Langenselbold, Germany). Inorganic C 
concentrations were determined by elemental analysis after 
burning the organic carbon at 450 °C in a muffle furnace. 
Organic C concentrations were calculated by subtracting 
inorganic C concentrations from total C concentrations.

We used mean microbial biomass C data from the 4 years 
prior to our experiment (2007–2010, i.e., Phase 2 in Strecker 
et al. 2016). Microbial biomass C showed a strong temporal 
variation in the Jena Experiment depending on the micro-
climatic conditions, which resulted from weather conditions 
and related plant growth and thus was aggregated to dif-
ferent phases by Strecker et al. (2016). We used Phase 2 
data, because we expected it to best represent the microbial 
biomass conditions that prevailed during our in-situ experi-
ment. For the measurement of soil microbial biomass, soil 
samples were taken with a steel corer (5 cores per plot, depth 
5 cm, diameter 5 cm) and sieved. Microbial biomass C of 
approximately 5 g soil (fresh weight) was measured using 
an  O2-microcompensation apparatus (Scheu 1992). Sub-
strate-induced respiration was calculated from the respira-
tory response to D-glucose for 10 h at 22 °C (Anderson and 
Domsch 1978). Glucose was added according to preliminary 
studies to saturate the catabolic enzymes of microorganisms 
(4 mg g−1 dry weight solved in 400 µL deionized water). 
The mean of the lowest three readings of  O2-consumption 
values within the first 10 h was taken as maximum initial 
respiratory response (MIRR; [µL  O2  g−1 dry soil  h−1]) and 
microbial biomass (µg C  g−1 dry soil) was calculated as 
38 × MIRR (maximum initial respiratory response Eisen-
hauer et al. 2010).

The microbial C:N ratio of 38 plots (Blocks 1 and 2 only) 
was determined from the data of microbial biomass C and 
N, which was measured using chloroform fumigation extrac-
tion. Two samples of 7 g soil were taken from each plot, one 
was fumigated with chloroform vapor for 24 h and the other 
was not fumigated. Both, the fumigated and non-fumigated 



736 Oecologia (2020) 193:731–748

1 3

samples were extracted with 40 mL 0.5 M  K2SO4 by shaking 
for 30 min. Total C and N concentrations in the extracts were 
analyzed by dry combustion in a DIMA-TOC 100 Analyzer 
(Dimatec, Essen, Germany). Microbial biomass C was cal-
culated as (total C in fumigated soil – total C in non-fumi-
gated soil)/0.45 (Wu et al. 1990). Likewise, microbial bio-
mass N was calculated as (total N in fumigated soil – total N 
in non-fumigated soil)/0.54 (Brookes and Landman 1985).

Calculations and statistical analyses

Rates of gross N mineralization, microbial  NH4
+ consump-

tion, gross inorganic N immobilization, net N mineralization 
and its components net ammonification and net nitrification 
were calculated using Eqs. 1–6, respectively. Equations 1–4 
and 6 are from Hart et al. (1994) and Eq. 5 is from Rosen-
kranz et al. 2012:

where m = gross N mineralization rate [μg N (g dry 
soil)−1 day−1].

c = microbial  NH4
+ consumption rate [μg N (g dry 

soil)−1 day−1].
i = gross inorganic N immobilization rate [μg N (g dry 

soil)−1 day−1].
nm = net N mineralization rate [μg N (g dry soil)−1 day−1].
na = net ammonification rate ([μg N (g dry soil)−1 day−1].
nn = net nitrification [μg N (g dry soil)−1 day−1].
[NH4

+]t1 = NH4
+ concentration at t1 [μg N (g dry soil)−1].

[NH4
+]t2 = NH4

+ concentration at t2 [μg N (g dry soil)−1].
APEt1 = at% 15N excess of  NH4

+ pool at t1.
APEt2 = at% 15N excess of  NH4

+ pool at t2.
t = time difference between t1 and t2 [day].
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Microbial  NH4
+ consumption includes microbial  NH4

+ 
immobilization and gross nitrification. Since gross nitri-
fication was not determined in our study, which would 
have required labeling with 15NO3

−, we could not calcu-
late microbial  NH4

+ immobilization. Instead, we calculated 
gross inorganic N immobilization rates using Eq. 3. In our 
calculations of gross inorganic N immobilization, net min-
eralization and net nitrification rates we neglected possible 
denitrification. Moreover, we assumed that our addition of 
15NH4

+ did not change the size of the  NH4
+ and  NO3

− pools 
in soil substantially.

We used a hierarchical ANOVA (type I sum of squares) 
to test for effects of plant species richness and functional 
group composition on gross N mineralization rates, micro-
bial  NH4

+ consumption, gross inorganic N immobilization, 
net N mineralization, net ammonification and net nitrifi-
cation rates. Gross N mineralization and microbial  NH4

+ 
consumption rates were square root-transformed; and net 
nitrification rates were box–cox power transformed ( � = 1.1 ) 
after removing the outliers to approximate normal distribu-
tion (checked with Lilliefors normality test and histograms). 
The residuals vs. fitted and Q–Q plots were used to check 
the assumption of homoscedasticity and normality of the 
residuals. For net N mineralization and net nitrification data, 
extreme outliers were removed if they deviated by more than 
two standard deviations from the mean (6 outliers removed 
from each net rates). The ANOVA was performed with 
block, plant species richness, and the presence/absence of 
each functional group as explanatory variables. All the inter-
actions between plant species richness and presence/absence 
of functional groups were non-significant and thus, are not 
displayed in the results. The functional groups were fitted 
in the following sequence: legumes, grasses, tall herbs, and 
small herbs. The reason for fitting legumes first among the 
functional groups is because legumes frequently have shown 
the strongest effect on the N cycle. Grasses have also often 
shown an effect on N transformations. To avoid the collin-
earity between functional group richness and each functional 
group, a separate model was set up for functional group 
richness, fitted after block to test the effect of functional 
group richness on gross N mineralization, microbial  NH4

+ 
consumption, gross inorganic N immobilization, net N min-
eralization, net ammonification and net nitrification rates. 
Correlations between the selected variables were analyzed 
using Pearson’s correlations test. All the statistical analyses 
were carried out in R Studio (R Studio, Version 1.1.456, 
R Studio Inc., Boston, MA USA) with the free statistical 
software R 3.5.1 (R Core Team 2018).

To explain the species richness and functional groups 
effects that were detected in the ANOVAs, we first ran 
Pearson correlations between all potential explaining vari-
ables and the three considered gross N turnover rates gross 
N mineralization, microbial  NH4

+ consumption and gross 
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inorganic N immobilization (Table S1) and then applied 
Structural Equation Modeling (SEM). As the goal of the 
SEM approach was to identify the potential mechanisms 
behind the significant species richness and functional group 
effects on gross N turnover rates according to the ANO-
VAs, plant species richness, legumes and small herbs were 
included as the exogenous variables in the SEM and the 
SEM was focused on gross N mineralization and microbial 
 NH4

+ consumption, because gross inorganic N immobiliza-
tion was not significantly related with species or functional 
group richness. Including all the potential variables (total 
organic carbon, aboveground and belowground community 
biomass, soil moisture, root C:N, microbial biomass) into 
one SEM did not result in an adequate model fit (Fig. S1, 
Table S2). This was even true after removing the non-sig-
nificant pathways (Fig. S2, Table S3). Therefore, accord-
ing to the literature knowledge and the results of Pearson’s 
correlations (Table S1), the potentially mediating variables 
in the SEMs were chosen. We included root C:N ratio and 
microbial biomass C as potential mediators of the effect 
of plant species richness and functional groups (legumes, 
small herbs) on gross N mineralization and microbial  NH4

+ 
consumption rates. Root litter quality is also considered an 
important source for organic matter input after root turno-
ver. We did not include microbial C:N ratio data, because 
microbial C:N ratio data were only available for two blocks. 
According to McCune and Grace (2002), the sample size 
for SEMs should be at least 50. Therefore, the sample size 
of microbial C:N data is too small for the application of 
SEM. Furthermore, we included a path between gross N 
mineralization and microbial  NH4

+ consumption rates to 
determine if microbial  NH4

+ processing depends on the 
amount of  NH4

+ produced. Based on the p values, the non-
significant paths in the SEMs were removed from the final 
model. Unstandardized path coefficients for the respective 
SEMs are shown in Fig. S3. We used the χ2 test (> 0.05), p 
value (> 0.05), goodness of fit index (GFI > 0.9), compara-
tive fit index (CFI > 0.9) and normed fit index (NFI > 0.9) to 

evaluate the model fit (Tables S2–S4). SEM was conducted 
using the R package “lavaan” (Rosseel 2012).

Results

Effects of plant diversity on gross and net N 
mineralization, net ammonification and net 
nitrification

Table 1 summarizes the means and ranges of all determined 
N turnover rates. Block had a significant effect on gross N 
mineralization (Table 2), net N mineralization (Table S5) 
and a marginally significant effect on net ammonification 
(Table S6). Plant species richness showed a significant nega-
tive effect on gross N mineralization rates (Table 2, Fig. 1). 

Table 1  Maximum, minimum and mean values of gross and net nitro-
gen transformation rates

N transformation rates [µg N (g 
dry soil)−1 day−1]

Minimum Maximum Mean

Gross N mineralization 0.04 6.20 2.12
Microbial ammonium consumption − 1.81 7.24 2.43
Gross inorganic N immobilization − 3.27 8.51 2.28
Net N mineralization − 4.33 5.72 − 0.12
Net ammonification − 2.57 2.13 − 0.42
Net nitrification − 2.04 4.97 0.31

Table 2  Hierarchical ANOVA results showing the effects of plant 
species richness (SR) and presence ( +)/absence (−) of each func-
tional group on gross nitrogen mineralization rates

Bold letters show significance at p < 0.05. Arrows indicate positive 
(↑) or negative (↓) effects

Source df SS SS (%) F p

Block 3 1.45 10.89 3.15 0.031
SR 1 0.62 4.66 4.05 0.048 ↓
Legumes 1 0.71 5.33 4.65 0.035 ↑
Grasses 1 0.00 0.00 0.04 0.845
Tall herbs 1 0.26 1.95 1.68 0.199
Small herbs 1 0.31 2.33 2.05 0.157
Residuals 65 9.96

Fig. 1  Relationship between plant species richness with/without leg-
umes and gross nitrogen (N) mineralization. Open circles represent 
plots without legumes and closed circles represent plots with leg-
umes. The regression lines are shown for illustration purpose only
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The mean gross N mineralization rate in the monocultures 
was 2.25 μg N (g dry soil) −1 day−1 and in the sixteen plant 
species mixtures 1.63 μg N (g dry soil)−1 day−1, showing 
a decrease by 28%, which translates to a slope of a regres-
sion line of gross N mineralization rates on species number 
of − 0.05 μg N (g dry soil)−1 day−1 per additional species. 
Functional group richness had no significant effect on gross 
N mineralization rates (F = 0.13, p = 0.719). The presence 
of legumes increased gross N mineralization rates signifi-
cantly (Table 2). Plant species richness was unrelated with 
net N mineralization, net ammonification and net nitrifica-
tion (Tables S5–S7). Functional group richness was unre-
lated with net N mineralization (F = 2.64, p = 0.109) and net 
nitrification (F = 2.29, p = 0.135), but was marginally nega-
tively related with net ammonification (F = 3.32, p = 0.073). 
The presence of legumes decreased net ammonification 
significantly (Table S6). Expectedly, net nitrification cor-
related significantly positively with soil 1 M KCl-extractable 
 NO3

− concentrations from shortly before the experiment 
(r = 0.37, p = 0.014,  NO3

− data log-transformed and 6 outli-
ers removed).

Effects of plant diversity on microbial 
NH4

+ consumption and gross inorganic N 
immobilization

Increasing plant species richness decreased the microbial 
 NH4

+ consumption rates significantly (Table 3; Fig. 2). The 
microbial  NH4

+ consumption rates were on average 2.41 and 
1.87 μg N (g dry soil)−1 day−1 in the plots with one and six-
teen plant species, respectively, showing a decrease by 22% 
that translates into a slope of a regression line of microbial 
 NH4

+ consumption rates on species number of − 0.06 µg 
N (g dry soil)−1 day−1 per additional species. Plant species 
richness was unrelated with gross inorganic N immobiliza-
tion (Table 4). We did not find a significant effect of func-
tional group richness on microbial  NH4

+ consumption rates 
(F = 1.84, p = 0.179) and gross inorganic N immobilization 
(F = 2.02, p = 0.160). The presence of legumes and small 
herbs increased microbial  NH4

+ consumption and gross inor-
ganic N immobilization compared to their absence, although 
small herbs only had a marginally significant effect on gross 
inorganic N immobilization (Tables 3 and 4; Fig. 3).   

Table 3  Hierarchical ANOVA results showing the effects of plant 
species richness (SR) and presence ( +)/absence (−) of each func-
tional group on microbial ammonium consumption rates

Bold letters show significance at p < 0.05. Arrows indicate positive 
(↑) or negative (↓) effects

Source df SS SS (%) F p

Block 3 0.14 4.52 1.41 0.249
SR 1 0.15 4.84 4.81 0.032 ↓
Legumes 1 0.50 16.13 15.64  < 0.001 ↑
Grasses 1 0.00 0.00 0.002 0.963
Tall herbs 1 0.04 1.29 1.17 0.283
Small herbs 1 0.19 6.13 6.02 0.017 ↑
Residuals 65 2.08

Fig. 2  Relationship between 
(a) plant species richness with/
without legumes and (b) plant 
species richness with/without 
small herbs and microbial 
ammonium  (NH4

+) consump-
tion rates. Open circles rep-
resent plots without legumes/
small herbs and closed circles 
represent plots with legumes/
small herbs. The regression 
lines are shown for illustration 
purpose only

(a) (b)

Table 4  Hierarchical ANOVA results showing the effects of plant 
species richness (SR) and presence ( +)/absence (−) of each func-
tional group on gross inorganic N immobilization rates

Bold letters show significance at p < 0.05 and italics show signifi-
cance at p < 0.1. Arrows indicate positive (↑) effects

Source df SS SS (%) F p

Block 3 14.59 5.08 1.40 0.250
SR 1 1.64 0.56 0.47 0.494
Legumes 1 26.71 9.30 7.71 0.007 ↑
Grasses 1 0.13 0.05 0.04 0.845
Tall herbs 1 5.62 1.96 1.62 0.207
Small herbs 1 13.35 4.65 3.86 0.054 ↑
Residuals 65 225.07
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Effects of soil and plant community properties 
on gross N mineralization, microbial 
NH4

+ consumption and gross inorganic N 
immobilization rates

We tested several variables to assess the likelihood that they 
contributed to mechanisms by which species richness and 
functional group composition may have influenced gross N 
mineralization and microbial  NH4

+ consumption rates and 
to explore which soil and plant community properties drove 
gross inorganic N immobilization rates (Table S1). Soil pH 
showed a negative correlation with gross N mineralization 
rates (Fig. 4a), reflecting its influence on microbial activity. 
As expected, microbial biomass C had a positive relation-
ship with microbial  NH4

+ consumption (Fig. 5a) and gross 
inorganic N immobilization rates (Fig. 6a). The microbial 
C:N ratios were negatively correlated with gross N miner-
alization rates (Fig. 4b), gross inorganic N immobilization 
(Fig. 6b) and microbial  NH4

+ consumption rates, although 
in the latter case only marginally significantly (Fig. 5b). We 
expected that lower litter quality (higher plant and soil C:N 
ratios) would decrease gross N mineralization and microbial 
 NH4

+ consumption rates. Supporting this hypothesis, shoot 
C:N (Fig. 4c) and fine root C:N ratios (Fig. 4d) had negative 
relationships with gross N mineralization rates and shoot 
C:N (Fig. 5c) and soil C:N ratios (Fig. 5d) had negative 
relationships with microbial  NH4

+ consumption rates. Fur-
thermore, the total soil N concentrations (Fig. 6c) had sig-
nificant positive and soil organic C concentrations (Fig. 6d) 
had marginally positive relationships with gross inorganic 
N immobilization rates.

In the SEM set up to find possible explanations of the 
plant species richness and functional group effects on gross 
N mineralization and microbial  NH4

+ consumption rates 
(Fig. 7), the effect of plant species richness was mediated by 
the root C:N ratio. The root C:N ratio was the only variable 
out of the wealth of available data from the Jena Experiment 
that contributed significantly to the negative relationship 
of plant species richness with gross N mineralization and 

microbial  NH4
+ consumption rates. This negative effect was 

composed of a significantly positive effect of plant species 
richness on the root C:N ratio and a further significantly neg-
ative effect of the root C:N ratio on gross N mineralization 
and microbial  NH4

+ consumption rates (Fig. 7). The gross 
N mineralization rates had a significantly positive influence 
on microbial  NH4

+ consumption rates. The positive effect of 
the legumes on gross N mineralization and microbial  NH4

+ 
consumption rates was significantly related with the root 
C:N ratio and microbial biomass C (Fig. 7). The presence 
of small herbs had a positive influence on microbial  NH4

+ 
consumption rates, which was driven by increased microbial 
biomass C and increased root C:N ratios. There was also 
a direct pathway, which described a positive link between 
plant species richness and gross N mineralization and micro-
bial  NH4

+ consumption rates via microbial biomass C. The 
direct path relating plant species richness with gross N min-
eralization and microbial  NH4

+ consumption rates remained 
significant besides the indirect effects.

Discussion

Plant species richness negatively affected gross N 
mineralization rates

The gross N mineralization rates observed in our study fall 
into the range of 0.32–7.09 μg N g−1 day−1 reported in the 
literature for comparable grasslands, i.e., natural/semi-nat-
ural grasslands with a low use intensity (Table 1; Davidson 
et al. 1991; Jamieson et al. 1999; Hatch et al. 2000; Wang 
et al. 2016). In their extensive review, Booth et al. (2005) 
compiled gross N mineralization rates of grasslands show-
ing a wider range from ~ 1 to ~ 70 μg N g−1 day−1 (estimated 
from a figure), because their data set comprised a wider 
spectrum of grassland use.

We showed that increasing plant species richness reduced 
gross N mineralization rates (Table 2; Fig. 1), which is in 
contrast to our first hypothesis and the findings of West 

Fig. 3  Effects of presence/
absence of (a) legumes and (b) 
small herbs on gross inorganic 
N immobilization rates. p 
value is given according to the 
ANOVA results

(a) (b)
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et al. (2006). Although we detected a significant negative 
effect of plant species richness on gross N mineralization 
rates, the effect was small, only explaining 5% of its vari-
ance (Table 2). Possible reasons for the contrasting results 
could include differences in soil type or soil pH in the study 
of West et al. (2006) compared to our study or to the nature 
of the experiment. The results of West et al. (2006) origi-
nate from a laboratory experiment, while our results were 
obtained from an in-situ field experiment. Cold storage of 
the samples before lab incubation, controlled temperature, 
changed nutrient supply and lack of active plant roots in lab 
experiments can lead to modifications of N cycling rates 
relative to field experiments (Arnold et al. 2008). Previous 
studies from the Jena Experiment have shown a significant 
positive effect of plant species richness on microbial activity 
calculated from substrate-induced respiration determined in 
the laboratory (Strecker et al. 2016), which also led to the 
expectation of enhanced gross N mineralization in species-
rich plant mixtures. Our finding of a negative relationship 
between plant species richness and gross N mineralization 
is in line with the fact that plant species richness negatively 
affected the root decomposition in the Jena Experiment 

(Chen et al. 2017) and thus likely the N release rate from 
root turnover.

According to the SEM, the unexpected negative relation-
ship of species richness with gross N mineralization was 
related with increasing root C:N ratios with higher species 
richness (Fig. 7). Several reasons might explain the increas-
ing root C:N ratios with increasing plant species richness. 
Guiz et al. (2015) found that N-rich legumes were increas-
ingly replaced by small herbs that have higher root C:N 
ratios than legumes with increasing species richness. This 
is in line with reports that legumes contributed increasingly 
less to total biomass with increasing plant species richness 
(Gubsch et al. 2011; Roscher et al. 2011). Guiz et al. (2015) 
further speculated that increasing shoot C:N ratios with 
increasing plant species richness might be attributable to 
the dilution of plant nutrient concentrations because of the 
higher biomass production in species-rich mixtures, which 
has frequently been reported for biodiversity experiments 
including the Jena Experiment (Marquard et al. 2009; For-
nara and Tilman 2009; Mueller et al. 2013; Ravenek et al. 
2014). In the Jena Experiment, the mean plant height of a 
plot increased with increasing species richness (Schmidtke 

Fig. 4  (a) pH, (b) microbial 
carbon to nitrogen (C:N) ratio, 
(c) shoot C:N ratio, and (d) 
fine root C:N ratio versus gross 
nitrogen mineralization rates. 
p and r values refer to results 
from the Pearson’s correlation 
test. The regression lines are 
shown for illustration purpose 
only

(a) (b)

(c) (d)
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et al. 2010), because plants in more species-rich communi-
ties have to invest more in shoot structure in response to 
competition for light resulting in higher C and lower N con-
centrations because of the higher C:N ratios of stems than 
of leaves (Abbas et al. 2013; Guiz et al. 2015). Figure 8 
illustrates that increasing mean shoot height translated into 
increasing fine root C:N ratios in the Jena Experiment. The 
negative impact of increasing root C:N ratios on gross N 
mineralization indicated by the SEM (Fig. 7) agrees well 
with the frequently reported finding that there is a negative 
relationship between the litter C:N ratio and N mineraliza-
tion rates (Silver and Miya 2001; Van der Krift et al. 2001; 
Chen et al. 2017), because a high C:N ratio of plant tissue 
reflects a low litter quality (Abera et al. 2014; Zhu et al. 
2014) . The fact that roots and root exudates play a vital 
role in regulating N mineralization (Oelmann et al. 2011) 
through their influence on microbial biomass and activity 
(Bais et al. 2006; Wang et al. 2018) further supports the 
important role of root properties in explaining the plant 
species richness effect on gross N mineralization rates. The 
SEM also showed another significant pathway which illus-
trated a positive relationship between plant species richness 

and gross N mineralization rates via microbial biomass 
C. Higher plant diversity increased microbial biomass C 
(Strecker et al. 2016), which further increased gross N min-
eralization rates (Booth et al. 2005). However, this path is 
marginally significant and obviously was overwhelmed by 
the path via the root C:N ratios.

In the Jena Experiment, the C:N ratios of aboveground 
biomass increased with time between 2003 and 2011. This 
trend was increasingly pronounced with increasing species 
richness (Guiz et al. 2015). Because our root C:N ratios 
originated from a sampling campaign 2 years after our 15N 
tracer experiment, the C:N ratios of the roots at the time of 
our experiment might have been lower and less differentiated 
between the low and the high species-richness levels. While 
we cannot control for this effect lacking root data from the 
time of our experiment, we assume that it was small. The 
molar C:N ratio of aboveground biomass changed from 24 
to 35 (i.e., the mass-related ratio used here from 29 to 41) in 
8 years, translating into a change rate of 1.45 units  year−1. 
Provided that the root C:N ratios change in the same way 
as those of the aboveground biomass, a small change of 2.9 
units (< 10% of the aboveground C:N ratio in 2011) could be 

Fig. 5  (a) Microbial biomass C, 
(b) microbial carbon to nitrogen 
(C:N) ratio, (c) shoot C:N ratio, 
and (d) soil C:N ratio versus 
microbial ammonium  (NH4

+) 
consumption rates. p and r 
values refer to results from the 
Pearson’s correlation test. The 
regression lines are shown for 
illustration purpose only. Solid 
lines indicate significance at 
p < 0.05 and a dashed line indi-
cates significance at p < 0.1

(a) (b)

(c) (d)
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expected in the 2-year lag time between our experiment and 
the measurement time of the root C:N ratios. A change of the 
root C:N ratios by 2.9 units would translate into a change of 
0.09 μg N (g dry soil)−1 day−1 of the gross N mineralization 
rate (and of 0.1 μg N (g dry soil)−1 day−1 of the microbial 
 NH4

+ consumption rates).
We also considered the possibility that the increasing lit-

ter input with increasing species richness, which we infer 
from the positive plant species richness–biomass relation-
ship, (over-)compensated the decreasing litter quality with 
increasing species richness. Root biomass as proxy of 
belowground litter input indeed showed a significant posi-
tive correlation with species richness (r = 0.465, p < 0.001) 
and microbial biomass (r = 0.34,  p = 0.002). However, nei-
ther aboveground nor belowground biomass correlated with 
gross N mineralization (Table S1), suggesting that a higher 
N flux with increasing litter input did not overrule the effect 
of the decreasing C:N ratio of both aboveground and below-
ground biomass. Finally, the significant negative direct path 
relating species richness with gross N mineralization rates 
suggests, that there are unknown drivers underlying this 
species richness effect, which we were unable to identify 
in spite of the wealth of available soil and plant properties.

Plant species richness negatively affected microbial 
 NH4

+ consumption rates and had no effect on gross 
inorganic N immobilization rates

Microbial  NH4
+ consumption rates in our study fall in the 

range of 0.8–7.2 μg N (g dry soil)−1 day−1, earlier reported 
by various authors in the literature for comparable grass-
lands (Davidson et al. 1990; Hungate et al. 1997; Hatch 
et al. 2000). Again, Booth et al. (2005) reported a wider 
range from ~ 0.5 to ~ 80 μg N (g dry soil)−1 day−1 (estimated 
from a figure). We observed a negative relationship between 
plant species richness and microbial  NH4

+ consumption 
rates (Table 3), which is contrary to our second hypothesis. 
Accordingly, the expected higher N demand and tighter N 
cycling in species-rich than in species–poor plant mixtures 
did not lead to increased microbial  NH4

+ consumption with 
increasing species richness.

According to the SEM, the detected negative effect of 
species richness on microbial  NH4

+ consumption rates is 
partially mediated by the root C:N ratio and microbial bio-
mass C (Fig. 7). The SEM showed that microbial  NH4

+ con-
sumption rates were also affected by gross N mineralization 
rates. When less  NH4

+ was released, less  NH4
+ was available 

Fig. 6  (a) Microbial biomass C, 
(b) microbial carbon to nitro-
gen (C:N) ratio, (c) total soil 
nitrogen concentrations, and (d) 
soil organic carbon concentra-
tions versus gross inorganic N 
immobilization rates. p and r 
values refer to results from the 
Pearson’s correlation test. The 
regression lines are shown for 
illustration purpose only. Solid 
lines indicate significance at 
p < 0.05 and the dotted line indi-
cates significance at p < 0.1

(a) (b)

(c) (d)
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for microbial uptake. We assumed that the microbial C:N 
ratio might also play a role in mediating the effect of plant 
species richness on microbial  NH4

+ consumption because of 
its significant correlation with microbial  NH4

+ consumption 

(Fig. 5b). However, the microbial C:N ratio was only avail-
able for a subset of the study plots, which did not allow for 
including this potential mediator into the SEM. The direct 
path from species richness to microbial  NH4

+ consumption 
rates and the indirect one via root C:N ratios showed nega-
tive relationships. On the contrary, the indirect path between 
species richness and microbial  NH4

+ consumption rates via 
microbial biomass, which increased with species richness 
mainly because of increasing soil moisture (Lange et al. 
2014) showed a positive relationship (Fig. 7). An explana-
tion of the different signs of the three detected paths might 
be a positive correlation between plant species richness and 
microbial C:N ratio, which in turn would show a negative 
correlation with the microbial  NH4

+ consumption rates. 
However, we did not find any effect of plant species rich-
ness on the microbial C:N ratio in our restricted data set 
of two blocks (r = − 0.083, p = 0.619). Instead, we found 
a marginally significant negative relationship between the 
microbial C:N ratios and the microbial  NH4

+ consumption 
rates (Fig. 5b). Thus, we cannot support the assumption that 
the microbes were increasingly better supplied with N with 
increasing species richness and, therefore, reduced their 
 NH4

+ uptake.
Obviously, the direct and indirect (via root C:N ratios) 

negative effects of plant species richness on microbial  NH4
+ 

Fig. 7  Structural equation 
model (SEM) to illustrate the 
underlying paths via which 
plant species richness and 
functional groups influenced 
gross N mineralization and 
microbial ammonium  (NH4

+) 
consumption rates. Solid and 
dashed thick arrows represent 
positive and negative signifi-
cant relationships, respectively. 
Solid thin arrow shows a non-
significant pathway. Dashed thin 
arrows indicate non-significant 
pathways that were excluded 
from the final model. Numbers 
on the arrows give standard-
ized path coefficients with 
their significance indicated 
as ***p < 0.001, **p < 0.01, 
*p < 0.05, •p < 0.01. Numbers 
below the variables show the 
percentage variation explained 
by corresponding variables (R2). 
Fit indices of the model are 
shown in Table S4

47%
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Fig. 8  Relationship between mean regenerative shoot height (i.e., soil 
surface to highest flower) of the vegetation (of the year 2011) and 
mean fine root C:N ratios (of the year 2013)
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consumption again overruled its positive indirect effect (via 
microbial biomass). We can only speculate that the unex-
pected negative relationship between microbial C:N ratios 
and microbial  NH4

+ consumption rates in the Jena Experi-
ment is attributable to the changing soil microbial commu-
nity composition. In the Jena Experiment, the fungi:bacteria 
ratio increased with increasing species richness (Lange et al. 
2014; Eisenhauer et al. 2017). The reduced microbial  NH4

+ 
consumption rates in spite of the higher microbial C:N ratios 
could then be attributed to the lower N demand of the fungi 
relative to the bacteria (Zechmeister-Boltenstern et al. 2015). 
This assumption is corroborated by findings that plant com-
munities with high litter C:N ratios favor decomposition by 
fungi, whereas plant communities with low litter C:N ratios 
favor decomposition by bacteria (Wardle et al. 2004).

We tested the well-known controls of microbial  NH4
+ 

consumption rates to explain the observed negative effect 
of plant species richness. However, the species richness 
effect on microbial  NH4

+ consumption rates could only to a 
small degree be explained by our SEM (Fig. 7). We, there-
fore, conclude, that there must again be additional variables 
responsible for this negative relationship, which have not yet 
been studied in the Jena Experiment.

Gross inorganic N immobilization rates in our study fall 
in the range of 0.4–10.3 μg N (g dry soil)−1 day−1, earlier 
reported by various authors in the literature for compara-
ble grasslands (Watson et al. 2000; Stockdale et al., 2002; 
Verchot et al. 2002; Mueller et al. 2004). The comprehen-
sive review of Booth et al. (2005) reported a wider range 
from ~ 0.1 to ~ 90 μg N g−1 day−1 (estimated from a figure 
by combining  NH4

+ and  NO3
− immobilization rates). Plant 

species richness correlated significantly positively with the 
1 M KCl-extractable soil  NH4

+ concentrations from shortly 
before our pool dilution experiment (r = 0.30, p = 0.008) and 
significantly negatively with the 1 M KCl-extractable soil 
 NO3

− concentrations from shortly before our pool dilution 
experiment (r = − 0.36, p = 0.002,  NO3

− data log-trans-
formed and 6 outliers removed). The different signs of the 
latter two correlations might explain that there was no rela-
tionship between plant species richness and gross inorganic 
N immobilization. The opposite relationships might have 
neutralized each other.

Plant functional group effects on gross N 
mineralization,  NH4

+ consumption and gross 
inorganic N immobilization rates

The presence of legumes had a positive effect on gross N 
mineralization, microbial  NH4

+ consumption and gross inor-
ganic N immobilization rates supporting our third hypothesis 
(Tables 2, 3 and 4).  N2 fixation by legumes may increase 
soil N availability for other species via the mineralization 
of N-rich legume litter (Peoples and Craswell 1992; Spehn 

et al. 2002), and also via rhizodeposition and mycorrhiza 
(Read 1996). The presence of legumes, therefore, increased 
gross N mineralization, microbial  NH4

+ consumption and 
gross inorganic N immobilization rates, because legumes 
provide high quality litter with a low C:N ratio favoring fast 
decomposition rates (Abera et al. 2014). Total aboveground 
biomass usually increases in the presence of legumes (Til-
man et al. 2001; Marquard et al. 2009), which is associated 
with an increased aboveground N storage in the presence of 
legumes (Spehn et al. 2005; Oelmann et al. 2011). Eisen-
hauer et al. (2010) also found increased microbial biomass 
C in the presence of legumes, which likely contributed to 
increased microbial  NH4

+ consumption and gross inorganic 
N immobilization rates. Furthermore, our result revealed a 
positive effect of small herbs on microbial  NH4

+ consump-
tion (Table 3) and gross inorganic N immobilization rates 
(Table 4). Strecker et al. (2015) reported increased basal 
respiration and microbial biomass C in the presence of small 
herbs (compared to mixtures without small herbs) which 
increased rhizodeposition, thereby possibly leading to higher 
microbial  NH4

+ consumption or inorganic N immobilization 
by microorganisms.

Using plant diversity variables, we were only able to 
explain 10% of the variance in gross N mineralization, 27% 
in microbial  NH4

+ consumption and 14% in gross inorganic 
N immobilization rates (Tables 2, 3 and 4). Moreover, the 
well-known controls of gross N mineralization and  NH4

+ 
consumption rates (microbial C:N ratio, root C:N ratio, soil 
C:N ratio, shoot C:N ratio, microbial biomass C, Booth 
et al. 2005) individually only explained a maximum of 13% 
of the variance of gross N mineralization, microbial  NH4

+ 
consumption, and gross inorganic N immobilization rates 
(Table S1). Consequently, there must be additional unidenti-
fied controlling factors for the unexpected negative effects of 
plant species richness on gross N mineralization, microbial 
 NH4

+ consumption, and gross inorganic N immobilization 
rates. We speculate that not only the chemical quality of the 
roots, but also that of rhizodeposits could influence gross 
N mineralization, microbial  NH4

+ consumption and gross 
inorganic N immobilization. In addition to that, the influ-
ence of particular species/groups of microorganisms on the 
N cycle might be more than mass-proportional.

Plant diversity effects on net N mineralization 
and its components net ammonification and net 
nitrification

Our finding of negative effects of functional group richness 
and presence of legumes on net ammonification (Table S6) 
contrasts the literature, which has up to now mainly reported 
positive plant diversity effects on net turnover rates (Rosen-
kranz et al. 2012; Mueller et al. 2013). The literature also 
suggested that the presence of legumes increased the net 
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N release (Scherer-Lorenzen et al. 2003). Rosenkranz et al. 
(2012) stated that in the year 2006 on the same sites as in our 
study (The Jena Experiment) the increasing net ammonifica-
tion rates with increasing species richness were related with 
increasing topsoil water contents. However, Fischer et al. 
(2019) showed that in the later course of The Jena Experi-
ment beginning in the year 2010 and particularly 2011, the 
year of our experiment, the water contents decreased with 
increasing species richness, which they attributed to the 
positive effect of species richness on soil aggregation and 
the subsequently increased water infiltration rates. Thus, the 
decreasing soil water contents with increasing species rich-
ness in the year 2011 might explain the negative effect of 
functional group richness on net ammonification. Our find-
ing that the presence of legumes decreased net ammonifica-
tion after the effects of block and species richness had been 
considered is unexpected (Table S6). We attribute this to the 
positive effect of legumes on microbial  NH4

+ consumption 
(Table 2) and gross inorganic N immobilization (Table 3), 
which resulted in a smaller leftover of  NH4

+ in mixtures 
with than without legumes.

Conclusions

Our results demonstrate that both, gross mineralization 
and microbial  NH4

+ consumption rates determined in the 
field unexpectedly decreased with increasing species rich-
ness, while gross inorganic N immobilization was unrelated 
with species richness so that we had to reject our first two 
hypotheses. Again unexpectedly, functional group richness 
had negative effects on net ammonification rates, which 
we attribute to the decreasing soil moisture in topsoil with 
increasing plant diversity in the year of our study (2011). 
The third hypothesis that the presence of legumes influ-
enced gross mineralization, microbial  NH4

+ consumption 
and gross inorganic N immobilization rates positively was, 
however, supported by our data. This positive effect likely 
explained the negative effect of the presence of legumes on 
net ammonification.

Among the wealth of data from the Jena Experiment, only 
the root C:N ratio was identified to significantly reduce two 
of the three studied gross N turnover rates, but explained a 
small portion of the total variance in our structural equation 
model. The root C:N ratio likely increased with increasing 
species richness because of a species replacement effect 
from legumes to forbs and because of increasing competition 
for light which resulted in a higher mean shoot height associ-
ated with a lower C:N ratio of the above- and belowground 
biomass. The negative root C:N ratio effect overwhelmed a 
positive effect of microbial biomass on gross N mineraliza-
tion and microbial N consumption. Our results illustrate that 
the nutrient composition of biomass mediates N turnover 

processes in the studied grassland ecosystem suggesting that 
connecting ecological stoichiometry with nutrient fluxes 
could be a promising avenue to better understanding the 
biodiversity–nutrient cycling relationship.

The significant direct effect of species richness on gross 
N mineralization and microbial  NH4

+ consumption rates, 
which remained in our structural equation model could not 
be explained based on the available data. We hypothesize 
that the latter is related with a changing microbial compo-
sition with increasing species richness, for which we lack 
data. Therefore, future experiments should be designed to 
elucidate the relationships between species richness, micro-
bial community composition and N turnover rates. Gener-
ally, relating soil nutrient fluxes with microbial community 
composition could additionally improve our understanding 
of the controls of nutrient turnover in soil.
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