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Abstract

Background: Models of biochemical systems are typically complex, which may complicate the discovery of
cardinal biochemical principles. It is therefore important to single out the parts of a model that are essential for the
function of the system, so that the remaining non-essential parts can be eliminated. However, each component of
a mechanistic model has a clear biochemical interpretation, and it is desirable to conserve as much of this
interpretability as possible in the reduction process. Furthermore, it is of great advantage if we can translate
predictions from the reduced model to the original model.

Results: In this paper we present a novel method for model reduction that generates reduced models with a clear
biochemical interpretation. Unlike conventional methods for model reduction our method enables the mapping of
predictions by the reduced model to the corresponding detailed predictions by the original model. The method is
based on proper lumping of state variables interacting on short time scales and on the computation of fraction
parameters, which serve as the link between the reduced model and the original model. We illustrate the
advantages of the proposed method by applying it to two biochemical models. The first model is of modest size
and is commonly occurring as a part of larger models. The second model describes glucose transport across the
cell membrane in baker’s yeast. Both models can be significantly reduced with the proposed method, at the same
time as the interpretability is conserved.

Conclusions: We introduce a novel method for reduction of biochemical models that is compatible with the
concept of zooming. Zooming allows the modeler to work on different levels of model granularity, and enables a
direct interpretation of how modifications to the model on one level affect the model on other levels in the
hierarchy. The method extends the applicability of the method that was previously developed for zooming of
linear biochemical models to nonlinear models.

Background
One of the main reasons for the rapid growth of the
field of systems biology is that it makes extensive use of
mathematical modeling [1-3]. This allows for a better
handling of high complexity, which is an inherent prop-
erty of all living systems. Using modeling, complex
hypotheses can be formulated and tested in a more sys-
tematic manner than is possible using only biochemical
reasoning [4-6]. However, even if one can obtain a
detailed model of the system with a high predictive
power, the model in itself does not automatically lead to
a full understanding of the underlying biochemistry.

One should for instance analyze the model to single out
its essence, i.e., to identify those parts of the model that
can be eliminated, while still preserving the model’s cru-
cial behavior. This latter task is referred to as model
reduction, and it is the topic of this paper. There is an
extensive literature available on the topic of model
reduction. However, most of these studies have been
done outside the field of systems biology, and since sys-
tems biology brings about new types of challenges,
reduction of biochemical models is still in its early
stages. Traditional engineering approaches like balanced
truncation have focused on preserving the input-output
profile in an optimal manner, both for linear [7-10], and
for nonlinear [11] systems. However, these methods are
not suitable for systems biology, because the reduced
model has no natural interpretation in itself
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(nevertheless, some special cases where this problem can
be circumvented have been identified [12,13]). This lack
of interpretation is a problem because systems biology
models are usually developed to help characterizing the
dominating parts and structure of the system, and not
only to obtain a black-box predictor. Methods have
therefore been developed with traditional chemical
approaches that are more centered on reducing the
internal dynamics of the system. These methods are
typically based on a sensitivity analysis [14-17], on time-
scale separation [18-21], or on the lumping of state vari-
ables [22-26] (see [20] for a general review on model
reduction). The perhaps most widely used method is
lumping. Two of the main reasons for this are that an
effective lumping scheme can be identified from basic
properties of the model (e.g., the stoichiometry), and
that lumped state variables are formed as easily interpre-
table pools of state variables in the original model. How-
ever, lumping does normally not come with the
possibility of back-translation from the lumped state
variables in the reduced model to the original state vari-
ables. In [27] we provided such relations. This means
that we can take the result from a simulation of a
reduced model, and without performing a new simula-
tion, directly compute the corresponding trajectories of
the desired original state variables. Because of this back-
translation possibility, we refer to the resulting two
models as two degrees of zooming of the same model.
Nevertheless, like in other recent model reduction
papers in systems biology [28-32], the results in [27]
were mainly developed with linear systems in mind. Lin-
ear systems virtually only appear in the cases of mono-
molecular reaction networks and for models describing
the probabilistic evolution of a single protein complex
[27,33]. However, already in [27] we proposed that
zooming may in principle also be applicable to nonlinear
models, but we did not derive formulae for back-transla-
tion. Note that a majority of the currently available sys-
tems biology models are in fact nonlinear.
With the method introduced in this paper, we provide

the extension of the previously proposed method in [27]
to nonlinear models. We show that new challenges arise
due to the nonlinearities, but also how these challenges
can be overcome, for instance with a wise choice of
state variables in the reduced model. The method is
demonstrated by application to two closed models of
metabolic systems.

Methods
In this paper we present a more general version of the
method that was introduced in [27], which is applicable
to nonlinear models. We start with some basic definitions
and key observations that are illustrated on a small exam-
ple model, before we turn to the details of the method.

Basic Definitions and Assumptions
The method is developed for models of biochemical
reaction systems on state space form that are based on
nonlinear ordinary differential equations (ODEs)

ẋ = f (x, p, u, t), (1)

y = h(x, p, u, t), (2)

where t denotes time; the dot over x in Eq. (1) denotes
derivative w.r.t. to time; the state vector x Î ℝn; the
parameters p Î ℝp; the inputs u Î ℝm; the outputs y Î
ℝl; and f and h are in general nonlinear functions. The
state vector, whose individual elements are referred to
as state variables, typically represents amounts or con-
centrations of chemical species, and the parameters
commonly represent kinetic constants, initial conditions,
or scaling factors. In this paper we are primarily inter-
ested in a comparison of the state variables between
models (the original model and the reduced model),
which means that the form of the nonlinear function in
Eq. (2) is irrelevant for the application of our method.
The right-hand side of Eq. (1) can be expressed as the
stoichiometric matrix S Î ℝn×q times a vector of reac-
tion rates r = r(x, p, u, t); r Î ℝq

ẋ = Sr (x, p, u, t).

The existence of separate time-scales are commonly
utilized for reduction of biochemical models (e.g., by
reduction of mass action kinetics to Michaelis-Menten
kinetics). The typical approach is to investigate if subsets
of the state variables are in steady state or in quasi-
steady state (QSS). If state variable xi is in steady-state
for t ≥ 0 it holds by definition that

ẋi(t) = 0, (3)

which implies that

xi(t) = xi(0),

which efficiently removes the state variable from the
model, since it can be substituted for constant. If on the
other hand the state variable xi is in QSS, there are
terms on the right-hand side of the ODE that are much
larger than the negligible term on the left-hand side.
The approximation

fi(x, p, u, t) ≈ 0. (4)

is then commonly used to reduce the model. We refer
to a state as fast in the time interval ≤ T0 ≤ t <T1 if Eq.
(4) is valid in this time interval, and holds for the class
of all considered inputs to the system. Note that T1 = ∞
in the case that the systems remains in QSS, which may
for example not be the case for models with switches
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(where, e.g., the values of a subset of the state variables
may change when a certain condition is fulfilled) [34,35].
Note that Eq. (3) (steady state) necessitates that Eq.

(4) (quasi-steady state) is fulfilled, but not vice versa.
Although QSS implies that (some of) the terms of the
right-hand side of the ODE are large and leaves the left-
hand side (derivative term) negligible, the derivative
term may still be large enough for the state variable in
QSS to change considerably during the time-span of a
simulation; the key is that these changes mainly occur
on a slow manifold.

Zooming of Linear Models
The concept of zooming was introduced in [27], and a
method was presented that is applicable to linear time-
invariant (LTI) models, which on state space form reads:

Mo :
{

ẋ = Ax + Bu
y = Cx + Du,

where A Î ℝn × n, B Î ℝn × m, C Î ℝl × n, and D Î ℝl

× m. The method is based on the existence of at least
one subset of state variables in Mo for which the inter-
nal dynamics is very fast with respect to the current
time-scale of interest. An algorithm for automatic
reduction of linear models that is based on the detection
of such subsets, which are referred to as fast clusters, is
presented in [27]. If the w state variables of a fast cluster

are replaced by a single state variable x′
lL =

∑w
i=1 xli , we

obtain a reduced version of the original model

Mr :
{

ẋr = Arxr + Bru
y = Crxr + Du,

where xr Î ℝ(n - w + 1), Ar Î ℝ(n - w + 1) × (n - w + 1), Br

Î ℝ(n - w + 1) × m, and Cr Î ℝl × (n - w + 1).
The fraction parameters, which are typically computed

from QSS assumptions and mass conservation relations,
take the form

ηli (p) =
xli

x′
lL

, (5)

The fraction parameters are used for back-translation
of the lumped state variable to the original state vari-
ables. Note that the fraction parameters are functions of
the model parameters only, and therefore time-invariant;
as we will see, these fraction parameter properties do in
general not hold for nonlinear models. By comparing
the reactions of the original and reduced models, we see
that

k′
jL =

w∑
i=1

kjiηi, (6)

where k′
jL is the rate parameter in the reaction from

state variable x′
lL to state variable xj in the reduced

model, and kji is the rate parameter in the reaction from
state variable xi to state variable xj in the original model.
Finally, note that Eqs. (5) and (6) provide a link

between Mo and Mr , which constitute two different
levels of granularity. It is this link between the models
that make us consider them as two different degrees of
zooming, and the primary goal of this paper is to estab-
lish such a link also for nonlinear models.

Extension to Nonlinear Models - Initial Observations
We will now present some key observations that are
used in the derivation of the method for zooming of
nonlinear models.
First observe that the mass, which corresponds to a

weighted (w.r.t. the molecular weight) sum of the state
variables, of a closed (no exchange of matter with the
surroundings) nonlinear model is conserved. However,
the total number of molecules is in general not con-
served in such a model as it is for linear models. This is
for example due to the formation and dissociation of
complexes, which alters the total number of molecules
in the system. For instance, the binding of A to B
reduces the number of molecules, as the product AB
only counts as one molecule; binding reactions cannot
occur in linear models. A second, and related, observa-
tion is that another type of conservations appears in
nonlinear models; conserved moieties. A moiety is a
specific functional part of a molecule, and the weighted
sum of the number of molecules that contain this func-
tional part is constant in a closed system. The presence
of such a conserved moiety is equivalent to the exis-
tence of a row vector m Î Nn for which mS = 0, which
also implies that

mẋ = mSr (x, p) = 0. (7)

If we let the rank of S be denoted by nr, the number
of linearly independent vectors for which Eq. (7) holds
is equal to n - nr, which implies the existence of a
matrix M

M S = 0, (8)

where M ∈ Nn − nr × n .
Let us now make some remarks regarding fast state

variables in a nonlinear model. Let xf ∈ Rnf be the vec-
tor of all fast state variables in T0 ≤ t <T1. For simplifi-
cation we will assume that there are no inputs to the
system, although it would in principle be possible to
incorporate inputs in the following discussion. The
right-hand side of the ODEs for these fast state vari-
ables, if there are no inputs, can be separated into two
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parts. The first part contains reactions between fast state
variables that are significant for the fast dynamics; rf (xf,
p), and the second part contains all other reactions, rs(x,
p), i.e.,

ẋf = Ssrs(x, p) + Sf rf (xf , p), (9)

where Sf and Ss are the corresponding stoichiometric
matrices. Let us now consider the fast stoichiometric
matrix, Sf, and especially the conserved moieties that are
implied by Sf. Since these moieties are only (approxi-
mately) conserved on a fast enough time-scale, we refer
to such moiety conservations as apparent conservations.
Let Mf be a matrix with a linearly independent rows
such that

Mf Sf = 0, (10)

where Mf ∈ Na×nf . Each row of this matrix thus
implies an apparent conserved moiety in the system. Let
the sums of state variables that correspond to apparent
moiety conservations (i.e., lumps of state variables) be
denoted by l, so that

l = Mf xf . (11)

If we differentiate l with respect to time, we get

l̇ = Mf ẋf = Mf (Ssrs(x, p) + Sf rf (xf , p)) ≈
≈ Mf Ssrs(x, p),

(12)

where Eqs. (9) and (10) were used.
It is interesting to note that the matrix Mf is not unique,

but that in fact any matrix M̂ = NMf can be used for

lumping, where N Î ℝa×a is non-singular. This observa-
tion allows us to choose a matrix M̂ for which a maximal

number of rows in M̂ Ss vanish, which results in the great-
est possible reduction in the number of state variables.
Finally note that Eq. (4), in the absence of inputs, gives

ff (x, p, ut , t) = ff (x, p, 0, t) =

= Ssrs(x, p) + Sf rf (xf , p)

≈ Sf rf (xf , p) ≈ 0

(13)

since the term Sfrf (xf, p) dominates the term Ssrs(x, p).
Note that Eq. (4) and consequently Eq. (13) only hold in
T0 ≤ t <T1, since the state is only known to be fast in
this time span.
Eq. (12) defines the ODEs of the reduced model (the

lumped state variables), and Eqs. (11) and (13) can in
principle be used to calculate back-translation formulae,
as is demonstrated with the small example model in the
next section. However, as we shall see, this approach
requires the explicit algebraic solution to a system of

nonlinear equations, which is typically an infeasible task.
Furthermore, there is not a clear one-to-one mapping
between the state variables of the original and reduced
models as in the case of proper lumping [27].

A Small Example Model
We will now present a small example model, with three
fast state variables, which is reduced with the approach
discussed above. An alternative approach is then
demonstrated with the advantage that it scales better to
larger models.
Consider the reversible formation of a complex C

from a substrate A and an enzyme B

consisting of the fast state variables xf = (A B C)T,
where the bullets (•) represent the slow state variables
surrounding the three fast state variables in the model.
The ODEs for the fast state variables take the form

ẋf =

⎛
⎝−1

−1
1

⎞
⎠ (k1AB − k−1C) + Ssrs(x, p). (14)

The three state variables in the model constitute a fast
cluster with two apparent conserved moieties, which
may be represented by the following relations

l =
(

L1

L2

)
=

(
1 0 1
0 1 1

)⎛
⎝A

B
C

⎞
⎠ = Mf xf , (15)

where the lumped state variables L1 and L2 are intro-
duced. Note that Eq. (12) defines the dynamics of the
lumped state variables.
The distribution of mass among the fast state variables

is given by Eq. (15) and by applying Eq. (13) to (14),
which results in an equation system with the three fast
state variables as unknowns

k1AB − k−1C ≈ 0, (16)

A + C = L1, (17)

B + C = L2. (18)

Analytic expressions for the fast state variables A, B,
and C are given by the non-negative solution to Eqs.
(16)-(18)

A ≈ 1
2

(L1 − L2 − K1 +
√

(L1 + L2 + K1)2 − 4L1L2),(19)
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B ≈ 1
2

(−L1 + L2 − K1 +
√

(L1 + L2 + K1)2 − 4L1L2), (20)

C ≈ 1
2

(L1 + L2 + K1 +
√

(L1 + L2 + K1)2 − 4L1L2), (21)

where K1 =
k−1

k1
.

We can now employ Eq. (12) to solve the ODEs for
the lumped state variables L1 and L2, and use Eqs. (19)-
(21) as back-translation formulae to compute the trajec-
tories of the original state variables A, B, and C. How-
ever, note that for even slightly larger clusters of fast
species than the one discussed here it would not be pos-
sible to calculate algebraic expressions of the original
state variables with this approach, since it builds on the
explicit solution of a system of nonlinear equations,
which quickly becomes infeasible with growing problem
size.
Alternatively, we can take an approach to the problem

that is inspired by the method for linear systems in [27].
The first step is to express Eqs. (16) and (17) as a linear
system w.r.t. the state variables A and C

(
k1B −k−1

1 1

) (
A
C

)
≈

(
0
L1

)
. (22)

The solution to Eq. (22) w.r.t. A and C is

A ≡ ηA(B, p)L1 ≈ K1

B + K1
L1, (23)

C ≡ ηC(B, p)L1 ≈ B

B + K1
L1, (24)

where K1 =
k−1

k1
, and the fraction parameters hA(B, p)

and hC (B, p) are defined in Eqs. (23) and (24), respec-
tively. The ODE for L1 is defined by Eq. (12), and the
ODE for B can be derived by differentiation of L2 in Eq.
(18), which gives that

dB
dt

≈ (1 +
K1L1

(B + K1)2
)−1

(
− B

B + K1
1

)⎛
⎜⎝

L1

dt
L2

dt

⎞
⎟⎠ =

= (1 +
K1L1

(B + K1)2
)−1

(
− B

B + K1
1

)
·

· Mf Ssrs(x, k),

(25)

The reduced model consists of the two state variables
L1 and B (note that L2 does not appear in the reduced
model), and the dynamics is described by Eqs. (12) and
(25), respectively. Note that the state variables A and C
can be back-translated from the reduced model with

Eqs. (23) and (24). This approach is a bit more intricate
than the first, but comes with the advantage that we do
not need to solve a system of nonlinear equations.

A Method for Zooming of Nonlinear Models
We will now step-by-step present a method that can
be used to construct zoomable nonlinear biochemical
models. This involves two sub-goals: i) to identify a
reduced model that shares important characteristics
with the original model, ii) to derive back-translation
formulae that can be used to compute the original
state variables and parameters from the reduced
model.
In an initialization step of the method for a model

Mo we first formulate mathematical equations for all
conservation relations Eq. (8), state variables in steady-
state Eq. (3), and quasi-steady state assumptions Eq. (4).
If additional properties of the system are known, we
also formulate the corresponding equations.

Step 1
The first step of the method is to identify the apparent
conservation relations in the model.
Definition 1: Let Sf be the stoichiometric matrix for

the reactions rf (xf, p) as defined in Eq. (9). Each subset
of state variables for which the corresponding rows of Sf
are linearly dependent constitutes an apparent conserva-
tion relation. Hence the apparent conservation relations
lie in the left null space of Sf and the dimension of this
space is n - rank(Sf).
Note that the apparent conservation relations are

defined in Eq. (11). It is trivial to identify the set of all
linearly dependent rows of Sf with a mathematical com-
puting software (e.g., SBtoolbox for Matlab [36]).

Step 2
The second step of the method is to define the state
variables of the reduced model, which we refer to as
modified lumped state variables.
Definition 2: Let x be a lumped state variable corre-

sponding to a subset of the state variables in an appar-
ent conservation relation. Then x is a modified lumped
state variable if the lumping scheme with respect to the
state variables of the original model is proper.
Note that the original state variables have a clear

interpretation in the reduced model (i.e., that the
lumped variables form disjoint sets) if the lumping
scheme is proper, i.e.,

lm = Mmxf (26)

where Mm is a × nf matrix with elements equal to 0 or
1 and column sums equal to 1, and lm denotes the mod-
ified lumped state variables. We typically have a large
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freedom in the choice of Mm. The number of state vari-
ables is maximally reduced if all exact conservation rela-
tions in the model are retained as modified lumped
state variables (and replaced by constants).

Step 3
The third step of the method is to derive fraction para-
meters, which constitute the link between the reduced
model and the original model. Let the original state vari-
ables that constitute the k:th modified lumped state vari-
able lmk be denoted by xmk , so that

lmk =
w∑

i=1

xmki , (27)

A number of nm equations that are linear w.r.t. xmk ,
and linearly independent, are required to calculate frac-
tion parameters. The existance of nm such equations
results in an equation system

bk(lm,p) = A(lm,p)xmk , (28)

where both A(lm, p) ∈ Rnm×nm and bk(lm, p) ∈ Rnm are
known, although some of the equations may in general
be approximate (e.g., QSS). The matrix A(lm, p) is inver-
tible since the equations are linearly independent, and
we have that

xmk = A−1(lm, p)bk(lm, p). (29)

The fraction parameters can then be calculated

ηmki (lm, p) =
xmki

lmk

=
xmki∑nm
i=1 xmki

, (30)

where we used Eq. (27) in the last step.
A modified lumped state variable for which an insuf-

ficient number of linear and linearly independent
equations are available may still be used in the
reduced model. However, the back-translation of the
modified lumped state variable to the original state
variables is then not possible, and step 3 of the
method is ignored.

Step 4
The fourth step of the method is to derive the rate of
change of the modified lumped state variables. Theo-
rem: The dynamics of the modified lumped state vari-
ables is given by

l̇m = (I + J(lm, p))−1 l̇ =

= (I + J(lm, p))−1Mf Ssrs(x, p),
(31)

where Ss and rs(x, p) were defined in Eq. (9), the
matrix Mf is defined in Eq. (11), and

Jij(lm, p) =
∑

k

(Mfik − Mmik)
∂gk(lm, p)

∂lmj

, (32)

where the matrix Mm is defined in Eq. (26), and
gi(lm, p) ≡ xfi is introduced to simplify the notation.
Proof:
First subtract Eq. (26) from Eq. (11)

l = lm + (Mf − Mm)xf = lm + (Mf − Mm)g(lm, p),

and differentiate l with respect to time, which gives

l̇ = l̇m + J(lm,p)l̇m = (I + J(lm,p))l̇m, (33)

where I is the identity matrix and J(lm, p) is the Jaco-
bian of (Mf - Mm)g(lm, p) with respect to lm. The ele-
ment Jij of J(lm, p) is given by

Jij(lm, p) =
∑

k

(Mfik − Mmik)
∂gk(lm, p)

∂lmj

.

From Eq. (33) it is straight-forward to derive l̇m ,
which takes the form

l̇m = (I + J(lm, p))−1 l̇ =

= (I + J(lm, p))−1Mf Ssrs(x, p),

where Eq. (12) was used in the last step. □
The matrix I + J(lm; p) is symbolically invertible, but

may in general contain singularities for particular com-
binations of parameters values and state variable values.
However, the matrix is always invertible for the models
discussed in this paper, since the corresponding deter-
minants are strictly positive.

Step 5
The final step of the method is to back-translate the
modified lumped state variables to the original state
variables with the fraction parameters derived in step 3.
This allows a comparison between the predictions by
the reduced model to those of the original model.
The implementation of the method is straight-forward,

and we have used Matlab (R2008b) together with the
SBtoolbox [36] as computing software for the models in
this paper.

Results
We will now demonstrate the method through applica-
tion to two example models.

Enzyme Kinetics Model
The model below describes the process of conversion of
a substrate, S, into a product, P, which is catalyzed by
an enzyme, E.
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Note that the complexes Cs and Cp are formed by S
bound to E, and P bound to E, respectively. This model
is frequently occurring as part of larger models of biolo-
gical systems, although the reaction from CS to CP is
sometimes neglected, or reversible. The ODEs for the
model are listed in Appendix A.1, where the three reac-
tions are defined as: r1 = k1SE - k-1CS, r2 = k2CS, and r3
= k3CP - k-3PE.
The reaction terms r1(x, p) and r3(x, p) are assumed to

be dominating, and the reaction term r2(x, p) to be
insignificant in the ODEs. This results in that all state
variables are in QSS, which gives

k1SE − k−1CS ≈ 0, (34)

k3PE − k−3CP ≈ 0. (35)

We denote the sum of the state variables containing
the enzyme by

LE = E + CS + CP, (36)

which is constant since the total amount of the
enzyme E is conserved in the system.
Reduction of the Enzyme Kinetics Model
The first step of the method is to identify the apparent
conservation relations from the matrix Sf. Since r2(x, p)
is dominated by r1(x, p) and r3(x, p) the model ODEs
can be written on the form of Eq. (9)

⎛
⎜⎜⎜⎜⎝

Ṡ
Ė
Ṗ
ĊS

ĊP

⎞
⎟⎟⎟⎟⎠ = Ssrs(x, p) + Sf rf (xf , p) =

=

⎛
⎜⎜⎜⎜⎝

0
0
0

−1
1

⎞
⎟⎟⎟⎟⎠ r2 +

⎛
⎜⎜⎜⎜⎝

−1 0
−1 1
0 1
1 0
0 −1

⎞
⎟⎟⎟⎟⎠

(
r1

r3

)
,

A basis of the left null space of Sf is given by the row
vectors of Mf, which is defined by

l =

⎛
⎝LS

LP

LE

⎞
⎠ =

=

⎛
⎝1 0 0 1 0

0 0 1 0 1
0 1 0 1 1

⎞
⎠

⎛
⎜⎜⎜⎜⎝

S
E
P
CS

CP

⎞
⎟⎟⎟⎟⎠ =

= Mf xf ,

(37)

where LS and LP are apparent conservation relations
and LE is an exact conservation relation.
The second step is to define the modified lumped

state variables on the form of Eq. (26). The number of
state variables is maximally reduced if LE is retained as a
state variable in the reduced model (i.e., since LE, unlike
LS and LP, can be replaced by a constant). The vector of
modified lumped state variables then is defined

lm =

⎛
⎝ S

P
LE

⎞
⎠ =

⎛
⎝1 0 0 0 0

0 0 1 0 0
0 1 0 1 1

⎞
⎠

⎛
⎜⎜⎜⎜⎝

S
E
P
CS

CP

⎞
⎟⎟⎟⎟⎠ =

= Mf xf ,

In the third step of the method we calculate fraction
parameters for the modified lumped state variable LE.
There are five equations (Eqs. (34)-(35) and (37)) that
are linear w.r.t. the state variables E, CS, and CP, which
are lumped into the state variable LE. Note that only nm
= 3 equations are required to derive fraction parameters,
and we use Eqs. (34)-(36) to formulate an equation sys-
tem as in Eq. (28) with the solution

E = ηELE ≈ 1
1 + M1S + M3P

LE ≡ g2(lm, p), (38)

CS = ηCSLE ≈ M1S
1 + M1S + M3P

LE ≡ g4(lm, p), (39)

CP = ηCP LE ≈ M3P

1 + M1S + M3P
LE ≡ g5(lm, p), (40)

where M1 = k1
k−1 and M3 = k3

k−3 . The two remaining

modified lumped state variables correspond to S and P
in the original model, so we define that
lm1 = S ≡ g1(lm, p) and lm2 = P ≡ g3(lm, p) .
In the fourth step we derive the rate of change of the

modified lumped state variables. Eq. (32) gives that

L̇E = 0, which is replaced by a constant, and

Ṡ ≈ −k2M1SLE((1 + M1S + M3P)2 + M3LE)
φ(S, P, LE, M1, M3)

, (41)

Ṗ ≈ k2M1SLE((1 + M1S + M3P)2 + M1LE)
φ(S, P, LE, M1, M3)

. (42)

where

φ(S, P, LE, M1, M3) = ((1 + M1S + M3P)3+(M1+M3+M1M3(P+S))(1+M1S+M3P)LE+M1M3L2
E).
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The two ODEs in Eqs (41)-(42) define the dynamics of
the state variables in the reduced model. We finally note
that the exact conservation relation for the substrate, LT
= S + P + CS + CP, together with Eqs. (39)-(40) can be
used to reduce the model further to a single state.
In the fifth step of the method we use the fraction

parameters, defined in Eqs. (38)-(40), to back-translate
the modified lumped state variables to the state variables
of the original model. A comparison between predic-
tions of the original state variables, from simulations of
the original model and the reduced model, is presented
in Figure 1. Implementations of the original model
(Additional file 1), the reduced model (Additional file 2),
and a script for simulation with SBtoolbox2 for
MATLAB [36] (Additional file 3), are available in Addi-
tional files.
The only assumption that was used in the derivation

of the reduced model is that the reaction terms r1(x, p)
and r3(x, p) dominate the reaction term r2(x, p), which

results in that all state variables are in QSS. To assess
the impact of these assumptions on the reduced model
we compute the relative difference between the state
variables in the original and in the reduced model

εi(t) =
|xo

i (t) − xr
i (t)|

xo
i (t)

, i = 1, . . . , n,

where xo
i is state variable i in the original model, xr

i is
the corresponding back-translated state variable in the
reduced model, and |x| denotes the elementwise abso-
lute values of x. The maximal mean and infinity norm
of εi(t) in Eq. (43) over time is presented in Table 1 for
parameter values over five orders of magnitude. In gen-
eral, the reduced model appears to be robust to changes
in the parameter values, although slightly more sensitive
to some parameters (e.g., small values of k-1, large values
of k1, or large values of k2, which violate the assump-
tions used in the reduction). However, note that the
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Figure 1 Small example model. A comparison between the state variables of the original enzyme kinetics model and the backtranslated state
variables of the reduced version of the same model.
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validity of the QSS assumption may also depend on the
state variables, for example the total concentration of
the enzyme. Interestingly, we observed that the reduced
model can well approximate the original model over
several order of magnitudes around the nominal enzyme
concentration (LE = 1). It is well-known that the QSS
approximation is only valid for sufficiently small enzyme
concentrations, and as expected the performance of the
reduced model starts to decrease for immense enzyme
concentrations.
Note that all the state variables of the original model

have a direct biological interpretation also in the
reduced model, and that Eqs. (38)-(40) can be used to
back-translate the state variables. The reduced model
may be depicted

where the fraction parameters specify the distribution
of the enzyme among the corresponding original state
variables.

Glucose Transport in Budding Yeast
A model for the transport of glucose into a cell of
baker’s yeast (S. cerevisiae), which constitutes the first
step of glycolysis, is presented in [37]. The inflow of glu-
cose is modeled as a facilitated diffusion process, in
which a carrier enzyme is responsible for the transport
between the inner and outer regions of the cellular
membrane. It is assumed that glucose 6-phosphate
(G6P) has an inhibitory role in the glucose transport
process by binding to the transporter. A graphical repre-
sentation of the model is shown in Figure 2, and the
ODEs for the state variables are listed in Appendix A.2.
In [27] we described how the calculation of fraction

parameters, based on a set of assumptions, leads to the
same reaction rates in the reduced model as were
reported in [37]. The assumptions are that state vari-
ables participating in reactions for uptake and release of
glucose and G6P across the cell membrane are in QSS,
that the transporter is conserved, and that the

concentrations of the transporter in the inner and outer
regions of the cellular membrane are constant.
The assumption that the state variables

xe
Glc, xi

Glc, xi
E−G6P , and xi

E−Glc−G6P , which participate in

the uptake and release of G6P and glucose across the
cell membrane, are in QSS gives that

k1xe
Exe

Glc − k−1xe
E−Glc ≈ 0, (43)

k2xi
Exi

Glc − k−2xi
E−Glc ≈ 0, (44)

k4xi
Exi

G6P − k−4xi
E−G6P ≈ 0, (45)

Table 1 Robustness of the reduced model for large deviations from the nominal parameter point are presented for
the enzyme kinetics model, with a sampling frequency of 0.1 (starting from 0.1) time units.

Param./Factor 10-2 10-1 100 101 102

k1 0.00053/0.0082 0.0018/0.0071 0.0010/0.0059 0.019/0.18 0.19/1.8

k-1 0.19/1.9 0.0061/0.079 0.0010/0.0059 0.0017/0.0025 0.00024/0.0028

K2 0.00019/0.0060 0.00082/0.0055 0.0010/0.0059 0.035/0.23 0.21/0.39

k3 0.0068/0.014 0.0053/0.010 0.0010/0.0059 0.0067/0.044 0.035/0.29

K-3 0.020/0.30 0.0048/0.032 0.0010/0.0059 0.0051/0.0093 0.0069/0.015

All 0.012/1.2 0.0014/0.062 0.0010/0.0059 0.025/0.41 0.010/0.045

The nominal parameter values (k1 = 1000, k-1 = 2000, k2 = 1, k3 = 1000, and k-3 = 3000) are modified by a multiplicative factor, and the maximal (for any state
variable) time average/infinity norm of the relative difference between the original and the reduced model is presented above. Note that only concentrations
larger than 10-6 are considered in the analysis above, due to potential numerical inaccuracies.

Figure 2 Glucose transport model. The original model for glucose
transport in baker’s yeast (S. cerevisiae). This figure was originally
presented in [27].
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k3xi
E−Glcx

i
G6P − k−3xi

E−Glc−G6P ≈ 0. (46)

We have the following exact conservation relations in
the model

LE =xi
E−G6P + xi

E−Glc−G6P + xe
E−Glc + . . .

xi
E−Glc + xe

E + xi
E,

(47)

LGlc = xe
Glc + xi

Glc + xi
E−Glc−G6P + xe

E−Glc + xi
E−Glc, (48)

LG6P = xi
G6P + xi

E−G6P + xi
E−Glc−G6P , (49)

where LE, LGlc, and LG6P are constant over time. The
assumption in [37] that the concentrations of the trans-
porter in the inner and outer regions of the cell mem-
brane are constant is formulated

α(xe
E−Glc − xi

E−Glc) + β(xe
E − xi

E) = 0. (50)

It is not clear how equations for back-translation of
the state variables in the reduced model in [27,37] can
be derived. The reduced model has three state variables;
external- and internal glucose and G6P, but only two
differential equations for the in- and outflow of glucose,
since the ODE for G6P is replaced by a representative
function that is inferred from the G6P data. Our
method does not rely on that such information is avail-
able, although it would in principle be possible to utilize
data fitted functions for the state variables. Also note
that the equations in the reduced model describe the
total influx and efflux of glucose across the membrane
[27], which cannot be interpreted w.r.t. the state vari-
ables of the original model. Other assumptions in [37]
that complicates a comparison with our method are that
the efflux of glucose is negligible, that the concentration
of glucose in the cytosol is negligible, and that the con-
centrations of the transporter are constant in the inner
and outer regions of the cell membrane (Eq. (50)).
It is not possible to generate a reduced model by

direct substitution of the fraction parameters that were
derived in [27] into the ODEs of the original model,
since this would lead to the prediction that the state
variables are constant (as discussed in [27]). We will
now instead illustrate how our method can be used to
derive a reduced and zoomable version of the glucose
transport model.
Reduction of the Glucose Transport Model
Before applying our method to the glucose transport
model we tried an alternative approach. Eqs. (43)-(46)
were solved w.r.t. the state variables in QSS, and the
resulting expressions were then substituted into the
remaining ODEs. The details of the derivation of the

reduced model are presented in Appendix A.3. The
reduced model does not produce satisfactory predictions

for any other state variable than xi
G6P , which remains

approximately constant during the simulation. Imple-
mentations of the original model (Additional file 4), the
reduced model (Additional file 5), and a script for simu-
lation with SBtoolbox2 for MATLAB [36] (Additional
file 6), are available in Additional files.
Since the first approach turned out to be insufficient

for reduction of the glucose transport model we
applied our method to the same model. Following [37],
we initially assumed constant transporter concentra-
tions in the inner and outer regions of the cellular
membrane, as defined by Eq. (50). For the details on
the derivation of the reduced model we refer to
Appendix A.4. The reduced model clearly performs
better than the model resulting from the first
approach, but it is still not satisfactory. However, the
assumption of constant regional concentrations of the
transporter may not be valid since the transport of glu-
cose across the cell membrane is a rate limiting step in
the model, and appears to be important for the state
variable dynamics. We therefore decided to neglect Eq.
(50) in the reduction process.
Implementations of the original model (Additional file

4), the reduced model (Additional file 7), and a script
for simulation with SBtoolbox2 for MATLAB [36]
(Additional file 8), are available in Additional files. In
the first step of the method we identify the following
apparent conservation relations

l =

⎛
⎜⎜⎜⎜⎝

LGlc1

LE1

LGlc2

LG6P

LE2

⎞
⎟⎟⎟⎟⎠ = Mx =

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1 0
0 1 0 1 0 0 1 0 0
0 0 1 1 1 0 0 0 0
0 0 1 1 0 0 1 0 1

⎞
⎟⎟⎟⎟⎠ x.

(51)

We note that there are two disjoint clusters of fast
reactions in the model, corresponding to the outer- and
inner parts of the cell membrane.
In the second step we define the modified lumped

state variables. We decide to keep the lumped state
variables LE1 and LG6P as modified lumped state vari-
ables. The choice to keep LG6P leads to the largest pos-
sible reduction in the number of state variables, since
the conservation of LG6P is exact (which is not true for
any other state variable in l). The modified lumped
state variables are defined true for any other state

Sunnåker et al. BMC Systems Biology 2011, 5:140
http://www.biomedcentral.com/1752-0509/5/140

Page 10 of 21



variable in l). The modified lumped state variables are
defined

lm =

⎛
⎜⎜⎜⎜⎝

xe
Glc

LE1

xi
Glc

LG6P

LE3

⎞
⎟⎟⎟⎟⎠ = Mmx =

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎠ x,

(52)

where

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xe
Glc

xi
Glc

xi
E−G6P

xi
E−Glc−G6P

xi
G6P

xe
E−Glc

xi
E−Glc
xe

E
xi

E

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that two of the state variables in the original

model, xe
Glc and xi

Glc , are also modified lumped state

variables.
In the third step of the method we calculate fraction

parameters for the modified lumped state variables that
correspond to more than one of the original state vari-
ables (i.e., LE1 , LG6P, and LE3 ). All of the modified
lumped state variables satisfy the requirement that at
least nm of Eqs. (43)-(49) and Eq. (52) are linear, and
linearly independent, with respect to the corresponding
original state variables. Eqs. (43) and (52) form a non-
linear equation system with the solution

(
xe

E
xe

E−Glc

)
=

(
ηe

E
ηe

E−Glc

)
LE1 ≈

≈ 1
(K1 + xe

Glc)

(
K1

xe
Glc

)
LE1 .

(53)

Let us define that g6 ≡ xe
E−Glc and g8 ≡ xe

E . Similarly,
the fractions of the two carrier state variables in the
inner regions of the cell to the lumped state variable
LE3 can be computed from Eqs. (44) and (52) (Eq. (28))

(
xi

E−Glc
xi

E

)
=

(
ηi

E−Glc
ηi

E

)
LE3 ≈

≈ 1

(xi
Glc + K2)

(
xi

Glc
K2

)
LE3 .

(54)

We define that g7 ≡ xi
E−Glc and g9 ≡ xi

E . The fraction

parameters for the G6P-state variables can be computed
from Eqs. (45)-(46) and Eq. (28) with the solution

⎛
⎝ xi

E−G6P
xi

E−Glc−G6P
xi

G6P

⎞
⎠ =

⎛
⎝ ηi

E−G6P
ηi

E−Glc−G6P
ηi

G6P

⎞
⎠ LG6P ≈

≈ 1
ξ

⎛
⎝ K3xi

E
K4xi

E−Glc
K3K4

⎞
⎠ LG6P.

(55)

where ξ = K3K4 + K4xi
E−Glc + K3xi

E . We define that

g4 ≡ xi
E−Glc−G6P , g4 ≡ xi

E−Glc−G6P , and g5 ≡ xi
G6P . For

the two original state variables that are kept as modified
lumped state variables in the reduced model we define

that g1 ≡ xe
Glc and g2 ≡ xi

Glc .

The fourth step of the method is to derive rate equa-
tions for the modified lumped state variables. Since the
apparent conservations are separated into two disjoint
clusters of fast state variables, we can treat the model
for the inner and outer regions of the membrane sepa-
rately. Let the modified lumped state variables corre-
sponding to the outer region of the cell membrane be

denoted by lm1 = (xe
Glc LE1 )T , and the variables in the

inner region of the cell membrane by lm2 = (xi
Glc LE3 )T .

Note that the state variable LG6P can be replaced by a
constant in the model, since L̇G6P = 0 . The ODEs of the
modified lumped state variables are derived with Eq.
(31). In the inner region the ODEs are

l̇m1 =
(

ẋe
Glc

L̇E1

)
= (I + J)−1 l̇1 =

=
(

1 + J11 J12

0 1

)−1

l̇1,

(56)

where

l̇1 =
(

L̇Glc1

L̇E1

)
≈

≈
( −α(xe

EGlc − xi
EGlc)

−α(xe
EGlc − xi

EGlc) − β(xe
E − xi

E)

)
.

(57)

In the larger outer region of the cell membrane the
ODEs take the form

l̇m2 ≈
(

ẋi
Glc

L̇E3

)
= (I + J)−1 l̇2 =

=
(

1 + J11 J12

J21 1 + J22

)−1

l̇2,

(58)
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where

l̇2 =
(

L̇Glc2

L̇E2

)
≈

≈
( −α(xi

EGlc − xe
EGlc)

−α(xi
EGlc − xe

EGlc) − β(xi
E − xe

E)

)
.

(59)

In the fifth step of the method the reduced model,
which is defined by the four ODEs in Eqs. (56)-(59), is
simulated. The trajectories of the state variables of the
reduced model can be back-translated to the original
state variables with the fraction parameters defined in
Eqs. (53), (54), and (55). The simulation results are
shown in Figure 3 and Figure 4. All the state variables
can be back-translated properly, which shows that the
model properties that are important for recovery of the
state variables are retained in the reduction. Implemen-
tations of the original model (Additional file 4), the
reduced model (Additional file 9), and a script for simu-
lation with SBtoolbox2 for MATLAB [36] (Additional
file 10), are available in Additional files.
If we use LE2 instead of LG6P as a modified lumped

state variable, the reduced model will have the same

state variables as the reduced model in [27,37] (i.e.,

xe
Glc, xi

Glc , and xi
G6P) two additional state variables for

the transporter. This gives a reduced model with five
state variables, but equally many parameters as in the
previous case. A comparison between the original model
and the reduced model, w.r.t. the original state variables,
is shown in Figure 5 and Figure 6. As can be seen the
comparison is very good, in fact it is even slightly better
than for the reduced model with four state variables.
The details of the derivation of the reduced model are
presented in Appendix A.5. Implementations of the ori-
ginal model (Additional file 4), the reduced model
(Additional file 11), and a script for simulation with
SBtoolbox2 for MATLAB [36] (Additional file 12), are
available in Additional files.
Note that the only assumption used to derive the

reduced model is that states that are involved in reac-
tions at the membrane are in QSS. To investigate the
parameter space region in which the QSS assumptions
are valid we use the measure defined in Eq. (43). The
maximal mean and infinity norm of the relative differ-
ence between the original and the reduced model in Eq.
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Figure 3 Reduction with our method to four state variables. A comparison between the original glucose transport model and the model
reduced to four state variables with our method, w.r.t. the state variables of the original model.
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(43) over time is presented in Table 2. The reduced
model appears to be relatively robust to changes in the
parameters, although sensitive to small values of k-4 and
to large values of k4. This is mainly due to that a large

proportion of the transporter E is absorbed in xi
E−G6P ,

which leads to that some of the QSS assumptions are
invalid. We also observed that relative difference
between the models is insensitive to the total concentra-
tion of the transporter for several orders of magnitude
around the nominal value (LE = 0.01). However, note
that this observation is specific to the studied model
and may not be generalizable to other similar biochem-
ical models.

Discussion
In this paper we have presented a novel method for
reduction of biochemical models that is compatible with
the concept of zooming. Several methods for reduction
of biochemical models already exist in the literature.
However, few of these methods result in biochemically
interpretable models, and to our knowledge there are no
nonlinear lumping methods for which the state variables

and parameters of the reduced model can be back-trans-
lated (mapped) to the original model.
The application of the QSS assumption has been a

commonly used tool in the modeling of biochemical
networks since the late 1960s, and in chemical kinetics
for more than 80 years [38]. The validity of the QSS
approximation is well studied both for specific biochem-
ical mechanisms [38,39] and for more complex models
[40,41]. The resulting equations, together with conserva-
tion relations, are typically used to eliminate some of
the state variables in the model (e.g., see [40]). However,
with the examples in this paper we have showed that
such an approach is not always sufficient, and we pro-
pose to use proper lumping of state variables in combi-
nation with back-translation.
Our method has several important advantages when

applied to biochemical models. The most important
advantage is that we end up with reduced models with a
clear biological interpretation, meaning that each state
variable of the original model corresponds to a fraction
of exactly one of the state variables in the reduced
model. A consequence is that neighboring species in the
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Figure 4 Reduction with our method to four state variables. A comparison between the original glucose transport model and the model
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original model remain neighbors in the reduced model.
Hence we can consider the original and reduced models
as two different degrees of zooming; a concept that we
discussed in some detail in [27] for linear models.
The work in this paper can be seen as an extension of

the theory introduced for linear models in [27] to non-
linear models. The method is based on assumptions
regarding the dynamics that result in a sufficient number
of equations that are linear w.r.t. the state variables to be
back-translated. Such equations are typically a natural
result of QSS assumptions and conservations relations in
models based on mass action kinetics [42], and in particu-
lar in models that involve transporters and enzymes (e.g.,
the models in this paper). However, note that our method
may also be applicable to models with other types of reac-
tion kinetics. We also note that if too few linear relations
are available for calculation of fraction parameters for a
part of a model, this part can still be reduced and the
reduced model can be simulated, although we cannot
back-translate the corresponding modified lumped state
variables since no fraction parameters are available. How-
ever, depending on the purpose of the model it may be
enough to calculate fraction parameters for a subset of the

state variables in the reduced model. Linearization of the
model around a steady state operating point may also be a
feasible approach to calculate fraction parameters with the
method in [27].
The proposed method enables mapping of the state

variables and parameters of the reduced model to those
of the original model. In [27] we referred to this mapping
as back-translation. Back-translation is of great impor-
tance, since we can directly observe how modifications to
the reduced model impact the original model. It also
gives the modeler an opportunity to check whether the
assumptions underlying the reduction are acceptable. To
illustrate the power of back-translation we provide plots
for comparison of simulations of the original and reduced
models, w.r.t. the original state variables, for the models
to which the method is applied in this paper.
Back-translation of state variables typically requires

the solution of a system of nonlinear equations, which
often results from the assumption of state variables in
QSS and conservation relations. Unfortunately, analytic
solutions to systems of nonlinear equations do in gen-
eral not exist. An advantage with the proposed method
is that such solutions are not required, since they are
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Figure 5 Reduction with our method to five state variables. A comparison between the original glucose transport model and the model
reduced to five state variables with our method, w.r.t. the state variables of the original model.
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replaced by computation of the inverse of a matrix for
each cluster of fast state variables, which is in general a
more feasible task.
Our method was applied to a small model with five state

variables that commonly appears as part of larger

biochemical models, and to a previously published model
for the transport of glucose in baker’s yeast (S. cerevisiae)
[37]. The first model was reduced from five to one state
variable, and from five to three parameters. However, note
that our focus has been on the reduction of the number of
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Figure 6 Reduction with our method to five state variables. A comparison between the original glucose transport model and the model
reduced to five state variables with our method, w.r.t. the state variables of the original model.

Table 2 Robustness of the reduced model for large deviations from the nominal parameter point are presented for
the glucose transport model, with a sampling frequency of 1 (starting from 1) time units.

Param./Factor 10-2 10-1 100 101 102

k1 0.079/0.091 0.079/0.10 0.081/0.091 0.083/0.10 0.084/0.11

k-1 0.085/0.23 0.084/0.093 0.081/0.091 0.078/0.10 0.078/0.089

k2 0.16/0.93 0.080/0.55 0.081/0.091 0.063/0.083 0.054/0.062

k-2 0.054/0.10 0.062/0.074 0.081/0.091 0.097/0.10 0.10/0.10

k3 0.081/0.091 0.082/0.091 0.081/0.091 0.079/0.089 0.075/0.082

k-3 0.070/0.080 0.079/0.089 0.081/0.091 0.082/0.091 0.081/0.091

k4 0.23/0.32 0.21/0.30 0.081/0.091 6.36/6.93 310/336

k-4 310/336 6.36/6.93 0.081/0.091 0.21/0.30 0.23/0.32

a 0.10/0.10 0.095/0.17 0.081/0.091 0.080/0.089 0.083/0.088

b 0.076/0.088 0.091/0.096 0.081/0.091 0.075/0.15 0.074/0.19

All 0.16/0.97 0.081/0.69 0.081/0.091 0.060/0.091 0.054/0.081

The nominal parameter values (k1 = 1000, k-1 = 1100, k2 = 1000, k-2 = 1200, k3 = 1000, k-3 = 7000, k4 = 1000, k-4 = 1100, a = 4.2, and b = 1) are modified by a
multiplicative factor, and the maximal (for any state variable) time average/infinity norm of the relative difference between the original and the reduced model is
presented. Note that due to potential numerical inaccuracies only concentrations larger than 10-6 are considered in the analysis.
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state variables and not the number of parameters, which
are reduced as a side-effect of the QSS assumptions.
The model for glucose transport was first reduced with

an approach in which the QSS equations and conservation
relations were directly substituted into the remaining
ODEs. The results of this approach are not satisfactory
since the reduced model gives predictions that are differ-
ent from the original model for most state variables. Our
method was then applied to the same model both together
with the assumption of equal concentration of the trans-
porter in the inner and outer regions of the cell membrane
used in [37], and without any additional assumptions. The
application of our method together with the assumptions
used in [37] results in a model with three state variables.
The state dynamics is significantly better preserved than
with the first approach, although still not satisfactory. We
then decided to reduce the original model without the
assumption regarding the localization of the transporter,
with two different definitions of modified lumped state
variables. While one of these definitions results in a
reduced model with four state variables and gave rather
accurate predictions, the other choice reduces the number
of state variables to five and gives an excellent description
of the state dynamics. It is therefore apparent that there is
a tradeoff between accuracy and the number of state vari-
ables in the reduction process. The glucose transport
model corresponds to the first part of glycolysis, in which
glucose is transported into the cell. We therefore propose
that it might be rewarding to carefully re-investigate the
assumptions underlying the reaction rate equations in
complete models of glycolysis (see [43] for one example).
We have also observed a few issues regarding the

implementation of the method. The symbolic inversion
of the matrix that is necessary to compute the dynamics
of the modified lumped state variables may be expen-
sive. However, this is typically only a practical limitation
for large matrices, which result from large clusters of
fast state variables. In our experience large clusters of
fast state variables are relatively rare also in large bio-
chemical models. Another option, if it is not practically
feasible to invert the symbolic matrix, is to solve the sys-
tem of linear equations in Eq. (31) numerically. We also
observed that the symbolic right-hand side of the result-
ing differential equations may be long. However, these
are usually not practical limitations for the applicability
of the method, e.g., the simulations of all examples in
this paper are very fast on a modern computer. Avail-
able methods to reduce the analytic reaction rate
expressions include sensitivity analysis w.r.t. state vari-
ables and parameters, and the method proposed in [17].
There is still no consensus method for automatic identi-

fication of state variables in QSS, although criteria for the
detection of state variables in QSS have been proposed,
for example in [30]. A simple approach is to simulate the

original model and investigate for which state variables the
corresponding in- and outflow reaction rates are approxi-
mately equal. State variables for which this condition
holds are then considered to be in QSS. Note that for the
models in this paper it was already clear from the bio-
chemical understanding of the corresponding systems
which of the state variables that could be considered fast
(see [37] for the glucose transport example). However, an
appropriate general criterion for automatic identification
of state variables in QSS is still lacking.
Although the theory presented in this paper constitutes

a great leap forward for construction of zoomable mod-
els, more research is required to make the method fully
automatic. An important challenge is to define a mean-
ingful measure for the similarity between the hierarchical
model layers (degrees of zooming). Another interesting,
although trivial, observation that deserves further atten-
tion is that QSS assumptions typically do not hold in the
whole parameter space. Although the reduced models in
this paper appear to be robust to varying parameter
values it may not be the case in general. It may therefore
be revealing to compare the original model and the
reduced model to characterize the parameter space
regions in which the QSS-assumptions are valid.

Conclusions
We have presented a novel method for reduction of bio-
chemical models that is compatible with the concept of
zooming. Zooming allows the modeler to operate on
different levels of model granularity, and enables a direct
interpretation of how modifications to the model on one
level affect the same model on other levels in the hierar-
chy. The proposed method is based on the application
of proper lumping in combination with the identifica-
tion of linear relations in nonlinear equations.
The method was applied to two example models. The

first model is small and commonly occurring as a part
of larger biochemical models. The second example is a
model for glucose transport in baker’s yeast, which con-
stitutes the starting point for glycolysis. Both models
could be significantly reduced with the proposed
method, and the resulting state variables could be back-
translated to the original state variables. The method
that is presented in this paper constitutes an extension
of the method that was previously developed for linear
biochemical models to its nonlinear counterpart. Since
most models in the systems biology community are in
fact nonlinear, our method constitutes an important
step towards zoomable biochemical models.

A Appendix
A.1 Appendix 1
The ordinary differential equations for the enzyme
kinetics model take the form
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ẋ =

⎛
⎜⎜⎜⎜⎝

Ṡ
Ė
Ṗ
ĊS

ĊP

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

−k1SE + k−1CS

−k1SE + k−1CS + k3CP − k−3PE
k3CP − k−3PE

k1SE − k−1CS − k2CS

k2CS − k3CP + k−3PE

⎞
⎟⎟⎟⎟⎠ =

=

⎛
⎜⎜⎜⎜⎝

−1 0 0
−1 0 1
0 0 1
1 −1 0
0 1 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎝ r1

r2

r3

⎞
⎠ = Sr(x, p),

where r1 = k1SE - k-1CS, r2 = k2CS, and r3 = k3CP - k-
3PE.
The parameters are set to values that satisfy the

assumptions of dominating and insignificant reaction
terms, with k1 = 1000, k-1 = 2000, k2 = 1, k3 = 3000, and
k-3 = 1000, together with the initial conditions S(0) = E
(0) = 1 and P(0) = CS(0) = CP(0) = 0. This gives the
parameter values M1 = 0.5, M3 = 3 and LE = 1 in the
reduced model. Initial conditions can in general be
obtained from a short simulation of the original model,
until the fast state variables reach QSS, but in this case
Eq. (19) gives an analytic expression of S(0) (P(0) = 0)

S(0) =
1
2

(LS − LE − M−1
1 +

√
(LS + LE + M−1

1 )2 − 4LSLE) =

=
√

3 − 1,

where M−1
1 = K1 , S = A, LS = L1, and LE = L2.

A.2 Appendix 2
The ordinary differential equations for the glucose
transport model take the form

dxe
Glc

dt
= −k1xe

Exe
Glc + k−1xe

E−Glc,

dxi
Glc

dt
= −k2xi

Exi
Glc + k−2xi

E−Glc,

dxi
E−G6P

dt
= k4xi

Exi
G6P − k−4xi

E−G6P ,

dxi
E−Glc−G6P

dt
= k3xi

E−Glcx
i
G6P − k−3xi

E−Glc−G6P ,

dxi
G6P

dt
= −k3xi

E−Glcx
i
G6P + k−3xi

E−Glc−G6P−
k4xi

Exi
G6P + k−4xi

E−G6P ,

dxe
E−Glc

dt
= α(xi

E−Glc − xe
E−Glc) + k1xe

Exe
Glc − k−1xe

E−Glc,

dxi
E−Glc

dt
= α(xe

E−Glc − xi
E−Glc) − k3xi

E−Glcx
i
G6P+

k−3xi
E−Glc−G6P + k2xi

Exi
Glc − k−2xi

E−Glc,

dxe
E

dt
= β(xi

E − xe
E) − k1xe

Exe
Glc + k−1xe

E−Glc,

dxi
E

dt
= β(xe

E − xi
E) − k4xi

Exi
G6P + k−4xi

E−G6P−
k2xi

Exi
Glc + k−2xi

E−Glc,

which was introduced in [27].

A.3 Appendix 3
In this section we investigate an alternative (naive)
approach to reduce the glucose transport model. The
first step is to identify state variables for which the QSS
assumption holds, and the mass conservation relations
in the model. In the second step of this approach we
then substitute the corresponding system of equations
into the ODEs corresponding to slow state variables.
Now consider the model for glucose transport in

yeast. We assume that the state variables xe
Glc , xi

Glc ,

xi
E−G6P and xi

E−Glc−G6P are in QSS, which gives Eqs.

(43)-(46). Note that Eqs. (45)-(46) indirectly imply that

xi
G6P is in steady state. The substitution of Eqs. (43) -

(46) into the ODEs of the original model gives

dxe
E−Glc

dt
≈ α(xi

E−Glc − xe
E−Glc), (61)

dxi
E−Glc

dt
≈ α(xe

E−Glc − xi
E−Glc), (62)

dxe
E

dt
≈ β(xi

E − xe
E), (63)

dxi
E

dt
≈ β(xe

E − xi
E). (64)

Note that the state variables xe
E−Glc and xi

E−Glc are

decoupled from the state variables xe
E and xi

E in Eqs.

(61)-(64).
There are three molecules (moieties) whose mass is con-

served in the model as a whole, i.e., Glc, G6P, and E. How-
ever, we can not substitute any of the conservation
relations into the remaining ODEs without re-introducing
state variables that were already eliminated. So the final
reduced model takes the form of Eqs. (61) - (64). However,

the sum of the state variables xe
E−Glc and xi

E−Glc , and xe
E

and xi
E is conserved in the reduced model, which makes it

possible to reduce the model to two state variables.
Unfortunately, due to the form of the ODEs and the

initial conditions of the state variables in the reduced

model, the state variables xe
E−Glc and xi

E−Glc remain equal

to zero at all times, and only the state variables xe
E and

xi
E take non-zero values. We therefore decided to simu-

late the original model for a short time until the fast state
variables reach QSS, and to use the final state variable
values as initial conditions in the reduced model.
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The solution to the equation system defined by Eqs.
(43)-(46) and Eq. (49) is

xe
Glc ≈ K1

xe
E−Glc

xe
E

,

xi
Glc ≈ K2

xi
E−Glc

xi
E

,

xi
G6P ≈ K3K4

K4xi
E−Glc + K3xi

E + K3K4
LG6P,

xi
E−G6P ≈ K3xi

E

K4xi
E−Glc + K3xi

E + K3K4
LG6P,

xi
E−Glc−G6P ≈ K4xi

E−Glc

K4xi
E−Glc + K3xi

E + K3K4
LG6P,

which can be used for back-translation of the state
variables of the reduced model to those of the original
model.
The predictions of the state variables of the original

model, resulting from simulations of the original model
and the reduced model with the parameter values set as
in [37], is not satisfactory for any other state variable
than G6P, which remains approximately constant over
time. Implementations of the original model and the
reduced model in SBtoolbox2 for MATLAB [36] are
included in Additional files.

A.4 Appendix 4
In this section we apply our method to the glucose
transport model, and following [37] we will assume that
the concentrations of the transporter are constant in the
inner and outer regions of the cellular membrane. With
this assumption the distribution among the transporter
state variables of the original model, which constitute
the lumped state variables LE, is uniquely defined.
The first step of the method is to identify the apparent

conservation relations in the model. We note that G6P
and the transporter E are conserved, and apparent con-
served glucose (see Definition 1) in the inner and outer
regions of the membrane, respectively. The four appar-
ent conservation relations take the form

l =

⎛
⎜⎜⎝

LGlc1

LGlc2

LG6P

LE

⎞
⎟⎟⎠ = Mx =

=

⎛
⎜⎜⎝

1 0 0 0 0 1 0 0 0
0 1 0 1 0 0 1 0 0
0 0 1 1 1 0 0 0 0
0 0 1 1 0 1 1 1 1

⎞
⎟⎟⎠ x,

where
x = (xe

Glc xi
Glc xi

E−G6P xi
E−Glc−G6P xi

G6P xe
E−Glc xi

E−Glc xe
E xi

E)T .

In the second step of the method we define the modi-
fied lumped state variables. We decide to keep LE in the
reduced model since it corresponds to an exact conser-
vation, and therefore results in the largest reduction
possible (note that the exact conservation relations, LE
and LG6P, can not simultaneously be used since the
lumping would then not be proper). The modified
lumped state variables take the form

lm =

⎛
⎜⎜⎝

xe
Glc

xi
Glc

xi
G6P
LE

⎞
⎟⎟⎠ = Mmx =

=

⎛
⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 1 0 1 1 1 1

⎞
⎟⎟⎠ x.

We note that Eqs. (43)-(47), and (50) are all linear w.r.t.
the state variables that constitute state LE, so the require-
ment for the existence of at least 6 (nm) linear relations is
satisfied, which enables back-translation in step three of
the method.
In the third step of the method we derive the fraction

parameters for the lumped state variable LE. Eqs. (43)-
(47), and (50) form an equation system, corresponding
to Eq. (28)

A(lm, p)xmk =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 −xe′
Glc 0

0 0 0 1 0 −xi′
Glc

1 0 0 0 0 −xi′
G6P

0 1 0 −xi”
G6P 0 0

0 0 α −α β −β

1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

·

·

⎛
⎜⎜⎜⎜⎜⎜⎝

xi
E−G6P

xi
E−Glc−G6P
xe

E−Glc
xi

E−Glc
xe

E
xi

E

⎞
⎟⎟⎟⎟⎟⎟⎠

≈

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
x′

L

⎞
⎟⎟⎟⎟⎟⎟⎠

= bk(lm, p),

(65)

where xe′
Glc = k1

k−1
xe

Glc , xi′
Glc = k2

k−2
xi

Glc , xi′
G6P = k2

k−2
xi

G6P and

xi
G6P = k4

k−4 xi
G6P. The solution to Eq. (65) is given by Eq.

(29)
⎛
⎜⎜⎜⎜⎜⎜⎝

xi
E−G6P

xi
E−Glc−G6P
xe

E−Glc
xi

E−Glc
xe

E
xi

E

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

ηi
E−G6P

ηi
E−Glc−G6P
ηe

E−Glc
ηi

E−Glc
ηe

E
ηi

E

⎞
⎟⎟⎟⎟⎟⎟⎠

LE ≈

≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xi′
G6P(β + αxe′

Glc)

ζ

xi”
G6Pxip

Glc(β + αxe′
Glc)

ζ
xe′

Glc(β + αxi′
Glc)(β + αxe′

Glc)

ζ
xi′

Glc(β + αxe′
Glc)

ζ
(β + αxi′

Glc)(β + αxe′
Glc)

ζ
(β + αxe′

Glc)

ζ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

LE

(66)
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where

ζ =(βxe′
Glc + 2xe′

Glcαxi′
Glc + 2β + αxi′

Glc + αxe′
Glc + βxi′

Glcx
i
G6P + · · ·

+ αxi′
Glcx

i
G6Pxe′

Glc + βxi′
Glc + βxi′

G6P + αxe′
Glcx

i′
G6P)

(67)

and where the fraction parameters were calculated
with Eq. (30). We note that the fraction parameters are

functions of xe
Glc , xi

Glc , and xi
G6P , which are state vari-

ables both in the original- and in the reduced model. In
the fourth step of the method we derive differential
equations for the modified lumped state variables. The
ODE for the fourth state is l̇m4 = L̇E = 0 , which is
replace by a constant. The ODEs for the other states are

l̇m1:3 =

⎛
⎝ ẋe

Glc
ẋi

Glc
ẋi

G6P

⎞
⎠ =

⎛
⎝1 + J11 J12 J13

J21 1 + J22 J23

J31 J32 1 + J33

⎞
⎠

−1

l̇1:3

where lm1:3 denotes the first three states variables in
lm. Note that there are three state variables in the
reduced model, which is the same number as for the
reduced model in [37].
In the fifth step of our method we compare predic-

tions of the original state variables between the original
and reduced models, where LE is back-translated with
the fraction parameters defined in Eqs. (66)-(67).
The simulation results are clearly more accurate than

with the approach in Appendix A.3, although still not
satifying. We refer to Additional files for implementa-
tions of the original and reduced models in SBtoolbox2
for MATLAB [36].

A.5 Appendix 5
In this section we apply our method to the glucose
transport model, but with an alternative definition of
the modified lumped state variables. We do not use the
assumption of constant regional concentrations of the
transporter (Eq. (50)).
In the first step of the method we note that the appar-

ent conservations are given by Eq. (51).
In the second step of our method we decide to keep

state variable LE2 , instead of LG6P, in the reduced model.
This leads to the following definition of the modified
lumped state variables

lm =

⎛
⎜⎜⎜⎜⎝

xe
Glc

LE1

xi
Glc

xi
G6P
LE2

⎞
⎟⎟⎟⎟⎠ = Mmx =

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 1 0 1

⎞
⎟⎟⎟⎟⎠ x,

(68)

Where
x = (xe

Glc xi
Glc xi

E−G6P xi
E−Glc−G6P xi

G6P xe
E−Glc xi

E−Glc xe
E xi

E)T ,

and we note that xe
Glc , xi

Glc , and xi
G6P are state variables

both in the original and reduced models. Also note that
the requirement of at least nm equations, that are linear
w.r.t. the original state variables and linearly indepen-
dent, is satified for each of the modified lumped state
variables by Eqs. (43)-(49).
In the third step of the method we calculate fraction

parameters for the modified lumped state variables LE1

and LE2 , which correspond to more than one of the ori-
ginal state variables. The fraction parameters for state
variable LE1 are given by Eq. (53). We can now use Eqs.
(44)-(46) and Eq. (68) to form an equation system corre-
sponding to Eq. (28)

A(lm, p)xmk =

⎛
⎜⎜⎝

−xi
Glc K2 0 0

−xi
G6P 0 K4 0
0 −xi

G6P 0 K3

1 1 1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

xi
E

xi
E−Glc

xi
E−G6P

xi
E−Glc−G6P

⎞
⎟⎟⎠ ≈

≈

⎛
⎜⎜⎝

0
0
0

LE2

⎞
⎟⎟⎠ = bk(lm, p),

with the solution given by Eq. (29)
⎛
⎜⎜⎝

xi
E

xi
E−Glc

xi
E−G6P

xi
E−Glc−G6P

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ηi
E

ηi
E−Glc

ηi
E−G6P

ηi
E−Glc−G6P

⎞
⎟⎟⎠ LE2 ≈

≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K2K3K4

ξ
K3K4xi

Glc

ξ
K2K3xi

G6P

ξ
K4xi

G6Pxi
Glc

ξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

LE2 ,

(69)

where

ξ = xi
G6P(K4xi

Glc + K2K3) + K3K4xi
Glc + K2K3K4

and the fraction parameters were calculated with Eq.
(30).
The fourth step of the method is to derive ODEs for

the modified lumped state variables. Since the apparent
conservations are separated into two disjoint clusters of
fast state variables, we can treat the model for the inner
and outer regions of the membrane separately. The rate
equations for the outer region are given by Eqs. (56)-
(57). Eq. (31) gives us the ODEs of the modified lumped
state variables in the inner region
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l̇m3:5 =

⎛
⎝ ẋi

Glc
ẋi

G6P
L̇E2

⎞
⎠ = (I + J)−1 l̇ =

=

⎛
⎝1 + J33 J34 J35

J43 1 + J44 J45

0 0 1

⎞
⎠

−1

l̇3:5,

(70)

where l3:5 and lm3:5 are the last three state variables of
l and lm, respectively, and

l̇3:5 =

⎛
⎝ L̇Glc2

L̇G6P

L̇E2

⎞
⎠ ≈

≈
⎛
⎝ −α(xi

E−Glc − xe
E−Glc)

0
−α(xi

E−Glc − xe
E−Glc) − β(xi

E − xe
E)

⎞
⎠ ,

(71)

In the fifth step of the method we simulate the
reduced model with Eqs. (56)-(57) and (70)-(71) and we
then use Eqs. (53) and (69) for back-translation of the
state variables. A comparison between the original
model and the reduced model, w.r.t. the state variables
of the original model, is presented in Figure 5 and Fig-
ure 6. The agreement between the models is very good.
We refer to Additional files for implementations of the
original and reduced models in SBtoolbox2 for
MATLAB [36].

Additional files
The original and reduced versions of the models pre-
sented in this paper, and scripts for simulation and
comparison between the original and reduced versions
of the models. Note that the systems biology toolbox for
MATLAB [36] and the symbolic math toolbox for
MATLAB must be installed on the system for simula-
tion of the attached models.

Additional material

Additional file 1: Model 1. The original enzyme kinetics model.

Additional file 2: Model 2. The reduced enzyme kinetics model.

Additional file 3: Script 1. Script for comparison between the original
enzyme kinetics model and the reduced model.

Additional file 4: Model 3. The original glucose transport model.

Additional file 5: Model 4. The reduced glucose transport model with
the alternative (naive) approach.

Additional file 6: Script 2. Script for comparison between the original
glucose transport model and the reduced model with the alternative
(naive) approach.

Additional file 7: Model 5. The reduced glucose transport model with
our method and the assumption of constant concentrations of the
transporter in the inner and outer regions of the cellular membrane.

Additional file 8: Script 3. Script for comparison between the original
glucose transport model and the reduced model with our method and

the assumption of constant concentrations of the transporter in the
inner and outer regions of the cellular membrane.

Additional file 9: Model 6. The reduced glucose transport model with
four state variables with our method.

Additional file 10: Script 4. Script for comparison between the original
glucose transport model and the reduced model with four state
variables with our method.

Additional file 11: Model 7. The reduced glucose transport model with
five state variables with our method.

Additional file 12: Script 5. Script for comparison between the original
glucose transport model and the reduced model with five state variables
with our method.
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