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One of the most widely used types of assisted reproduction technology is the in vitro
fertilization (IVF), in which women undergo controlled ovarian stimulation through the
administration of the appropriate hormones to produce as many mature follicles, as
possible. The most common hormone combination is the co-administration of
gonadotropin-releasing hormone (GnRH) analogues with recombinant or urinary-
derived follicle-stimulating hormone (FSH). In the last few years, scientists have begun
to explore the effect that different gonadotropin preparations have on granulosa cells’
maturation and apoptosis, aiming to identify new predictive markers of oocyte quality and
successful fertilization. Two major pathways that control the ovarian development, as well
as the oocyte–granulosa cell communication and the follicular growth, are the PI3K/Akt/
mTOR and the Hippo signaling. The purpose of this article is to briefly review the current
knowledge about the effects that the different gonadotropins, used for ovulation induction,
may exert in the biology of granulosa cells, focusing on the importance of these two
pathways, which are crucial for follicular maturation. We believe that a better
understanding of the influence that the various ovarian stimulation protocols have on
these critical molecular cascades will be invaluable in choosing the best approach for a
given patient, thereby avoiding cancelled cycles, reducing frustration and potential
treatment-related complications, and increasing the pregnancy rate. Moreover,
individualizing the treatment plan will help clinicians to better coordinate assisted
reproductive technology (ART) programs, discuss the specific options with the couples
undergoing IVF, and alleviate stress, thus making the IVF experience easier.
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INTRODUCTION

The theory that FSH and luteinizing hormone (LH) are both
required for the complete stimulation of follicular maturation
and steroidogenesis was put forward 60 years ago from the
Swedish scientist Bengt Falck (1). This idea was the basis for
the stimulation of both hormonal systems for optimal follicular
growth and maturation in IVF programs. Nowadays, ovarian
stimulation during IVF includes the co-administration of GnRH
analogues with the gonadotropins FSH, LH, and human
chorionic gonadotropin (hCG).

A major drawback in IVF approaches is that the percentage of
successful pregnancies is still low – approximately 27%
pregnancies per IVF treatment in Europe (2, 3). Moreover,
there is still a need for interventions to improve the initial
recruitment and later survival of follicles to ensure good
quality oocytes in healthy women, as well as in patients with
poor ovarian response (POR), primary ovarian insufficiency
(POI), or polycystic ovary syndrome (PCOS). Many studies
compare the effects of different FSH-containing gonadotropin
preparations in ovarian stimulation and IVF cycle outcomes,
namely highly purified urinary human menopausal
gonadotropin (HP-hMG) containing both FSH and LH
activity, and recombinant human FSH (r-hFSH) alone or in
combination with recombinant human LH (r-hLH). However, in
most cases, the results are contradictory and inconclusive, and
have led to controversial interpretations regarding the
effectiveness of these gonadotropin regimens on follicular
growth, antral follicle count, total oocytes retrieved, 2
pronuclear stage (2PN) oocytes, number of embryos, clinical
pregnancy, and live birth rates in IVF (4–9). A pioneering study,
a few years ago, demonstrated that the r-hFSH/r-hLH
combination was more effective compared to HP-hMG, when
the number of retrieved oocytes was high, also with regard to
pregnancy rate per embryo transfer (10). Importantly however, a
critical component of the stimulation regimens in IVF is the
administration of a GnRH analogue, either agonist or antagonist
to control the premature LH surge (11). Accordingly, an
increasing number of studies reveal that the efficacy and the
clinical outcomes of the different gonadotropin regimens appear
to be dependent also, on the GnRH protocol used (9, 12–18). It is
well known that the GnRH analogues can activate specific signal
transduction pathways leading to distinct biological responses
(19). Apparently, these treatments can alter the hormonal milieu,
thereby favoring or hindering embryo quality and pregnancy rate
(20). It is pertinent to note that FSH through binding to its
cognate receptor FSHR (21), regulates the proliferation and
differentiation of granulosa cells and prepares them to respond
to gonadotropins and other endocrine signals, in order to
undergo their final maturation. FSH is a glycoprotein, and it
was recently shown that the hypo-glycosylated forms might be
more efficient in promoting follicular growth and supporting
granulosa cell survival in vivo, possibly by increasing serum
estradiol levels (22). Interestingly, young women express
partially glycosylated FSH whereas postmenopausal women
express mainly the fully glycosylated form (23, 24), and this
might influence both the biochemical properties and the efficacy
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of the various FSH preparations (25). This issue has been
thoroughly discussed in a Delphi Consensus study recently (26).
THE DIFFERENTIAL EFFECTS OF
GONADOTROPIN TREATMENTS ON
OOCYTE – GRANULOSA CELL
COMMUNICATION AND FOLLICULAR
MATURATION

Considering the vital role of granulosa cells in oocyte and follicle
maturation, scientists have sought to investigate the influence of
gonadotropin treatment on granulosa gene expression profiles. For
example, the administration of r-hFSH, in comparison toHP-hMG
(27) has beenassociatedwith higher expressionof LH receptors and
enzymes involved in the biosynthesis of steroids, and with lower
mRNA levels of the FSH receptors in the granulosa cells (28). The
presence of the FSH ligand (in cultured rat and bovine granulosa
cells) leads to follicular activation and steroidogenesis, through the
action of the highly conserved phosphoinositide-3 kinase (PI3K)/
Akt/mammalian (ormechanistic) target of rapamycin (mTOR)and
Hippo signaling pathways (29–31). The dysregulation of these
pathways leads to increased apoptosis in ovarian cells (32, 33).
Importantly, the incidence of apoptosis in granulosa cells has been
linked to the quality of the oocytes and to the pregnancy outcome
(34–36). There is some evidence indicating that the administration
ofHP-hMGincreases the apoptosis of cumulus cells compared to r-
hFSH or urinary FSH (37), and a recent study showed that high
dosesof r-hFSHsuppress the apoptosis of granulosa cells in patients
with endometriosis undergoing IVF (38).Therefore, researchers are
currently exploring the consequences of the different protocols of
gonadotropin ovarian stimulation on the apoptosis rate of
granulosa cells (35, 39). However, in the ART clinical setting,
more upstream effectors need to be considered since follicular
growth is a dynamic and continuous process, characterized by a
tightly regulated equilibrium between apoptosis and cell
proliferation. For example, recently, it was elegantly shown that
the FSH receptor synergizes with the G protein-coupled estrogen
receptor (GPER), hence reprogramming FSH-induced death
signals to proliferative stimuli that are important for nourishing
oocyte survival (40). Heterodimerization of GPER with FSHR in
granulosa cells switches the signaling mode from cAMP to pAKT
activation, thereby positively affecting follicle maturation, and
appears to correlate with the FSH responsiveness of patients
undergoing IVF. This is particularly interesting, in light of
evidence showing that estrogen can regulate Hippo signaling via
GPER in breast tissue (41, 42). Accordingly, it might be more
insightful to investigate the effects of the different gonadotropin
preparations on the maturation of granulosa cells and the oocyte
quality by monitoring the activity of the PI3K/Akt/mTOR and
Hippo signaling cascades.

Although there are no studies yet comparing the effect of
different gonadotropins on the Hippo pathway, there are data
showing that r-hFSH and HP-hMG can differentially modulate
the activities of the PI3K/Akt/mTOR signaling. For example, Ji
et al., 2020 (43) using a GnRH antagonist protocol, observed that
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HP-hMG resulted in significantly higher insulin-like growth
factor-1 (IGF-1) levels compared to r-hFSH on the day of
oocyte retrieval, an effect that has been associated with better
oocyte quality and pregnancy rate (44, 45). Interestingly, this was
not the case in earlier studies when a GnRH agonist protocol had
been employed (20, 46). The insulin/IGF-1 signaling pathway
regulates the PI3K/mTOR/p70S6K cascade which as mentioned
above plays an essential role in the FSH-mediated development
of granulosa cells (30, 47, 48). This is important, also in light of
recent findings showing that the hypo-glycosylated form of FSH,
which is less abundant in the pituitary of postmenopausal
women, activates more efficiently the PI3K/mTOR/p70S6K
signaling (22).

Adding to the complexityof these interactions is the fact that there
are many other signaling cues converging on both pathways. For
example, other growth factors in addition to insulin/IGF-1, such
asEGF,PDGForVEGFarepotent regulatorsof thePI3k/Akt/mTOR
signaling in the follicles (49). Moreover, steroid hormones, like
androgens which are the precursors for estrogen production,
and known to stimulate granulosa and theca cell proliferation and
to promote early antral follicle growth, can also regulate the
expression of both FSH and IGF-1 receptor genes (50, 51).
Furthermore, complex disorders such as the PCOS syndrome can
affect the activation of both mTOR and Hippo signaling pathways.
The development of PCOS has been associated with Hippo
disruption and YAP overactivation leading to multiple early antral
follicles and theca hyperplasia (49, 52). In addition, the expression
of mTOR is elevated in a DHEA-treated PCOS animal model that
could lead to insulin resistance, which is a characteristic of the PCOS
phenotype (53). Other pathological conditions, such
as endometriosis and ovarian cancer can exert an impact on
the mTOR pathway by altering the expression of its targets
(54). Scientists have also noticed increased expression of YAP
protein in mouse models with endometriosis whereas in mice
treated with YAP inhibitors the endometriotic lesions were
significantly decreased (55). Notably, the activation of mTOR
pathway plays a fundamental role in the development of many
autoimmune disorders (56), whereas Hippo signaling prevents
autoimmunity and tissue damage (57, 58). In addition, vitamin D
deficiency decreasesmTORactivation in ratmodels (59) and human
uterine fibroid cells (60). These are conditions that can influence the
IVF outcomes (61–64). Future studies addressing the effects of the
various gonadotropin combinations on the PI3k/Akt/mTOR and
Hippo pathways in physiological conditions (including ageing) and
disease states, are expected to increase our understanding of follicle
development and develop personalized treatment plans that will help
clinician’s decision and improve the success rate of IVF.
THE INTERPLAY BETWEEN PI3K/AKT/
mTOR AXIS AND HIPPO PATHWAY IN
FOLLICULAR DEVELOPMENT

The PI3K/Akt/mTOR axis is a key regulator of survival that
fosters the processes of proliferation and differentiation, and
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inhibits apoptosis and autophagy (65, 66). The activation of this
pathway is crucial for granulosa cell proliferation and follicular
growth, especially during the primordial follicle development
(67). Recent work from our lab revealed that the controlled
pharmacological inhibition of the mTOR pathway in a rat
experimental model can increase the number of competent
primordial follicles while reducing atresia. Specifically, we
showed that the follicles preserve their competence to resume
growth two weeks after mTOR reactivation (68). Consistent with
this, factors like Tsc1/2 and PTEN, which negatively regulate
mTORC1, are capable to maintain the dormancy state of
primordial follicles (69). Deregulation of these inhibitors leads
to overactivation of the mTOR pathway that is linked to
pathological situations where the entire pool of primordial
follicles matures simultaneously resulting in an accelerated loss
of primordial follicles and premature ovarian failure (POF) (70,
71). Over-activation of the mTOR pathway has been also
associated with the emergence of PCOS and ovarian cancer
(72). Importantly, however, there are no studies yet comparing
the activation of mTOR pathway on granulosa cells obtained
from IVF patients undergoing different protocols of
gonadotropin stimulation.

Recent studies indicate that the Hippo signaling plays an
instrumental role in the regulation of follicular growth. This
pathway responds to mechanotransduction signals in order to
maintain organ size through regulating cell proliferation and
apoptosis (73, 74). The central components of the Hippo
pathway are the kinases Mst1/2 and Lats1/2 which lead to the
inactivation of its key downstream effectors Yes-associated
protein (YAP) and transcriptional coactivator with PDZ-
binding motif (TAZ) (75). When Hippo signaling is disrupted,
YAP and TAZ translocate into the nucleus where they bind to
the TEA Domain Transcription Factors (TEADs) promoting the
expression of growth factors and apoptosis inhibitors (73, 76,
77). It has been reported that the development of primordial
follicles is accompanied by an inhibition of the Hippo pathway
(78, 79), while its overstimulation leads to a reduction in
follicular proliferation and estrogen production in granulosa
cells, both in vivo, and in vitro (80, 81). Before ovulation,
oocyte-secreted factors contribute to the activation of YAP
protein in granulosa cells stimulating their proliferation,
whereas after ovulation, the Hippo pathway is transiently
activated leading to YAP degradation, which allows the
differentiation of granulosa cells into luteal cells and the
production of progesterone (79).

There is an intrinsic mechanism that orchestrates the
function of the mTOR and Hippo pathways through YAP and
indirectly controls the granulosa cell–oocyte interactions.
Interestingly, recent studies show that the communication of
the Hippo pathway with the PI3K/Akt/mTOR axis and their
coordinated regulation play a key role in follicular size and
primordial maturity, through YAP and SMAD2/3 complex (48,
82, 83). Activation of the Akt/mTOR pathway using Akt
stimulators in combination with inhibition of Hippo through
ovarian fragmentation appears to increase the number of mature
follicles in mouse models, but also in patients with POI or PCOS,
July 2021 | Volume 12 | Article 702446
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adjusting follicular growth and ovulation, thereby leading to
successful fertilization and pregnancy (49, 52, 84, 85).
Cytoskeleton remodeling is one of the key factors regulating
Hippo signaling and promoting the nuclear localization of YAP/
TAZ complex (86). Importantly, recent findings in mouse
models show that hMG administration leads to activation of
the mTOR pathway (87), and GnRH induces cytoskeleton
reorganization (a key process for the synthesis and secretion of
gonadotropins) by activation of the mTOR kinase (88). Actin
cytoskeleton dynamics mediates vital roles, also, for oocyte
meiotic cell divisions through Hippo and mTOR signaling
(89–91). In early stage oocytes (germinal vesicle) YAP is
predominantly located in the cytoplasm, whereas during the
subsequent stages of oocyte development (metaphase I), YAP
becomes activated and translocates into the nucleus, suggesting a
role of Hippo signaling in oocyte maturation (92). In addition,
the mTOR pathway plays fundamental role on oocyte meiotic
maturation through the activation of translation of specific
mRNAs involved in spindle morphology and chromosomal
alignment (93, 94). Consistently, disruption of mTOR signaling
inhibits spindle migration and asymmetric division in mouse
oocytes (95).
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Thus, it becomes evident from the above that a better
understanding of the way that the different gonadotropin
regimens affect the PI3K and Hippo pathways within the
follicular environment in women with reduced ovarian reserve,
polycystic ovary syndrome or advanced maternal age will allow
their use as potential benchmarks for guidance of physicians
regarding more efficient strategies for IVF (Figure 1).
CONCLUDING REMARKS

It is clear, that further randomized controlled studies are needed
to investigate the effects of the different gonadotropin
preparations in the IVF outcome, and importantly, to combine
both clinical and molecular attributes in order to appreciate the
ovarian biological underpinnings of the various treatments. A
better knowledge of the effects of the various gonadotropin
preparations on the activation of follicles will allow the
elaboration of appropriate biomarkers which in turn will
render it possible to evaluate the efficacy of the different
stimulation protocols in in vitro fertilization in different groups
of patients. Current evidence reveals the presence of an active
FIGURE 1 | The PI3K/mTOR/Hippo pathways as guidance for clinical decision-making. Top: The PI3K/Akt/mTOR and Hippo pathways exert opposite effects on
follicular development during the gonadotropin-independent phase. Activation of the PI3K pathway is crucial for each growing stage of the follicle, especially at the
primordial and primary stages (30, 94). The Hippo pathway acts in a coordinated manner with PI3K in order to accelerate primordial follicle activation and promote
follicular development (48). Bottom: The two pathways maintain their concerted action on follicular development during the gonadotropin-dependent phase of
follicular growth, and especially on the maturation of granulosa cells and oocytes in the preovulatory follicles, thereby assuring regulated follicular activation and high
oocyte quality (79, 96). Various disease states, aging, and the uniqueness of each woman, by influencing this balance, may affect the response to different
gonadotropin preparations, and consequently, the outcome of the IVF. The activation status of key components of the PI3K and Hippo pathways may serve as a
prognostic or predictive biomarker that can help clinicians guide treatment planning. (RG, Regulatory Genes).
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cross-talk between the PI3K/Akt/mTOR and the Hippo
pathways, which is instrumentally involved in the regulated
activation of primordial follicles, as well as, in follicular and
oocyte growth. Consequently, a deeper understanding of the
influence of the various ovarian stimulation protocols might
exert on this interplay could help scientists to translate the
emerging novel knowledge into clinical success and contribute
to more efficient management of assisted reproduction methods.
However, this is not an easy task. Despite the substantial progress
in understanding ovarian follicular physiology, ART remains an
inefficient process (97, 98). While the success rates of IVF/ART
programs initially displayed an upward trend, the pregnancy and
birth rates are declining in recent years (3). This issue has been
thoroughly discussed by Norbert Gleicher and co-workers (99).
Apparently, there are several causes, including potentially
harmful add-ons to IVF practice, the woman’s age that
dramatically influences the responses to exogenous
gonadotropin stimulation (100–102) but also an evolving
industrialization and commoditization of IVF (99).
Considering the heterogeneity of the infertile population,
understanding the best gonadotropin regimen for a particular
patient necessitates two prerequisites. On the one hand, a
personalized tailored approach (103, 104) which implies that
we need to understand the mechanisms by which the same
protocol results in different outcomes in different women, for
example by monitoring gene expression profiles (105–108). On
the other hand, the international cooperation between fertility
societies such as ESHRE (European Society of Human
Reproduction and Embryology), ASRM (American Society for
Reproductive Medicine), or IFFS (International Federation of
Fertility Societies) as well as Delphi Consensus statements, which
by continuing to periodically update progress in basic research
Frontiers in Endocrinology | www.frontiersin.org 5
and reinforcing the dissemination of evidence-based information
can facilitate and foster the translation of basic research into
clinical practice.

In the long term, the elaboration of more straightforward and
simple testing procedures based on key signaling cascades
governing granulosa cell biology will help clinicians to prevent
their patients from unnecessary treatment, and hopefully, will
lead to more effective and individualized treatment protocols to
improve birth rates.
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