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A B S T R A C T   

Recent research provides insight into the ability of miRNA to regulate various pathways in several cancer types. 
Despite their involvement in the regulation of the mRNA via targeting the 3′UTR, there are relatively few studies 
examining the changes in these regulatory mechanisms specific to single cancer types or shared between different 
cancer types. 

We analyzed samples where both miRNA and mRNA expression had been measured and performed a thorough 
correlation analysis on 7494 experimentally validated human miRNA-mRNA target-gene pairs in both healthy 
and tumoral samples. 

We show how more than 90% of these miRNA-mRNA interactions show a loss of regulation in the tumoral 
samples compared with their healthy counterparts. 

As expected, we found shared miRNA-mRNA dysregulated pairs among different tumors of the same tissue. 
However, anatomically different cancers also share multiple dysregulated interactions, suggesting that some 
cancer-related mechanisms are not tumor-specific. 2865 unique miRNA-mRNA pairs were identified across 13 
cancer types, ≈ 40% of these pairs showed a loss of correlation in the tumoral samples in at least 2 out of the 13 
analyzed cancers. Specifically, miR-200 family, miR-155 and miR-1 were identified, based on the computational 
analysis described below, as the miRNAs that potentially lose the highest number of interactions across different 
samples (only literature-based interactions were used for this analysis). 

Moreover, the miR-34a/ALDH2 and miR-9/MTHFD2 pairs show a switch in their correlation between healthy 
and tumor kidney samples suggesting a possible change in the regulation exerted by the miRNAs. Interestingly, 
the expression of these mRNAs is also associated with the overall survival. The disruption of miRNA regulation 
on its target, therefore, suggests the possible involvement of these pairs in cell malignant functions. 

The analysis reported here shows how the regulation of miRNA-mRNA interactions strongly differs between 
healthy and tumoral cells, based on the strong correlation variation between miRNA and its target that we 
obtained by analyzing the expression data of healthy and tumor tissue in highly reliable miRNA-target pairs. 
Finally, a go term enrichment analysis shows that the critical pairs identified are involved in cellular adhesion, 
proliferation, and migration.   

1. Introduction 

Micro-RNAs (miRNAs) are short molecules, usually 19-25 
nucleotide-long, that work as target recognition elements of an RNA- 
protein complex known as RNA induced silencing complex (RISC) in 
post-transcriptional regulation [1–3]. 

Many biological processes, such as development, cell differentiation, 
and even diseases, have been associated with the activity of miRNAs [4, 
5]. 

Their major mode of action is mRNA target regulation via sequence- 
complementary pairing with 3′ untranslated region (3′UTR) in the 
cytoplasm, which leads to the target translational repression, through a 
temporary and reversible control, or to the target transcript degradation, 
in a non-reversible way, with a consequent decrease in the translation of 
the mRNA [1,6–8]. Several positive regulation mechanisms exerted by 
miRNAs have also been described [9,10]. 

Small RNA deep sequencing shows that some miRNAs are also pre-
sent in the nucleus [11], and some evidence indicates that certain 
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miRNAs exert their biological function in the nucleus [12]. Zou and 
collaborators suggest that the nuclear activating miRNAs (NamiRNAs) 
could play a crucial role in gene expression, in fact they can promote 
transcription by targeting enhancers in the nucleus [13]. Despite the fact 
that dysregulation in gene expression has been widely described in many 
different types of cancer [14,15], a growing number of evidences is 
shedding light on the role of several dysregulated miRNAs, to which an 
oncogenic or an onco-suppressor role can be assigned (e.g. miR-2110 
[16] and miR-452 miRNA families [17]). miRNAs are also involved in 
more complicated relationships where different RNAs, e.g., mRNAs and 
lncRNAs, compete for the same endogenous miRNA (ceRNA) therefore 
positively regulating each other [18,19]. 

As a consequence of gene expression dysregulation in cancer, a loss 
of connectivity in a coding transcript co-expression matrix has been 
described [20]. 

Moreover, a differential regulation, dominated by a loss of regulation 
mechanisms, in miRNA-mediated competitive interactions between 
mRNA and lncRNA (ceRNA) has been observed in breast and ovarian 
cancers [19,21]. 

To date several experimental procedures are used in the detection of 
RNA interactions increasing the number of known validated miRNA- 
mRNA interactions (e.g. RAID v2.0 [22], RAIN [23], RNAcentral 
[24]). The resulting data increases the performance of computational 
predictive methods and at the same time contributes to their 
improvement. 

Despite the great importance given to the miRNA regulation, there 
are relatively few studies that compared the mRNA-miRNA landscape in 
tumor vs healthy tissue. Andrés-León and collaborators developed a 
statistical approach to identify novel miRNA-target relationships in 
different tumor types within cancer-relevant pathways [25]. Later, 
another research group demonstrated that correlation between miRNAs 
and target genes was greatly reduced in tumors [26]. 

Furthermore, univariate and multivariate Cox regression analysis 
has been used to identify miRNAs as novel biomarkers in early diagnosis 
and prognosis, in order to improve outcomes in gastric cancer [27]. Here 
we present a thorough analysis of the miRNA-mRNA interaction land-
scape in different cancer types thus highlighting the differences that 
exist in the miRNA-mRNA regulatory networks between healthy and 
tumor tissue. Our results show that multiple miRNA-mRNA interactions 
are consistently dysregulated across different cancer types, and that the 
extent of these perturbations is associated with overall survival. 

2. Material and methods 

2.1. TCGA data collection and preprocessing 

The expression data of cancer patients were downloaded from TCGA 
Data Portal (https://tcga-data.nci.nih.gov) using the recommended GDC 
data transfer tool. The processed data (level 3) were used. To date, there 
are 13 cancer types that are associated with data both unrestricted for 
publication and containing paired miRNA and mRNA expression for at 
least 15 matched normal and tumor samples (Table 1). RNA-seq(V2) and 
miRNA-seq were used for mRNA and miRNA expression data, respec-
tively. Normal/tumor information for each sample were obtained 
through the Biospecimen Metadata Browser (https://tcga-data.nci.nih. 
gov/uuid/uuidBrowser.htm) and mapped based on the sample ID. For 
the sequencing data, we used the FPKM (Fragments Per Kilobase of 
transcript per Million mapped reads) values for mRNA and RPM (Reads 
Per Million miRNA mapped) for miRNA. To ensure the homogeneity 
among the samples, we further transformed the FPKM and RPM in 
log2(TPM +1) values.  

TPM(i) = ([FPKM/RPM](i) / sum ([FPKM/RPM] all transcripts)) * 10^6        

2.2. miRNA-mRNA pairs identification 

The experimentally validated miRNA-mRNA interactions were 
collected from RAID (www.rna-society.org/raid/) [22]. This database 
stores more than 4 million RNA-RNA interactions collected from 
numerous resources. 

Only human miRNA-mRNA pairs with at least one experimental 
evidence were selected, using a threshold score ≥0,9. A total number of 
7494 miRNA-mRNA pairs were selected consisting of 557 unique miR-
NAs and 2678 unique mRNAs. 

2.3. Correlation analysis 

Pearson correlation (r) has been calculated using the miRNA and 
mRNA log2(TPM +1) transformed expressions. The Pearson correlation 
test was used to estimate the correlations between miRNAs and their 
mRNA targets and correlated pairs were selected using as thresholds a p- 
value strictly lower than 0.05 and an absolute value of r equal or higher 
than 0.4. 

2.4. Survival curve and statistical analysis 

Overall survival probability curves were plotted using the Kaplan- 
Meier method and comparisons between the curves were analyzed 
using the logrank test [28]. All tests were performed at the 0.05 level of 
significance. 

The samples were split into 4 groups based on miRNA and mRNA 
median expression values: i. samples with a low expression of the 
miRNA and a low expression of the mRNA; ii. samples with a low 
expression of the miRNA and a high expression of the mRNA; iii. samples 
with a high expression of the miRNA and a low expression of the mRNA; 
iv. samples with a high expression of the miRNA and a high expression of 
the mRNA. 

We performed differential expression analysis and overall survival 
curves through GEPIA 2 web server for these highlighted genes [29]. 

2.5. Functional enrichment 

Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis were performed 
using the online tools of Database for Annotation, Visualization and 
Integrated Discovery (DAVID) (https://david.ncifcrf.gov/) [30,31]. We 
focused on Biological Process and Molecular Function GO term cate-
gories, providing the whole genome as background. 

Table 1 
Paired expression data from TCGA.  

Cancer Symbol Cancer Type # matched samples 

LUSC lung squamous cell carcinoma 37 
HNSC head and neck squamous cell carcinoma 42 
KICH kidney chromophobe 23 
KIRC kidney renal clear cell carcinoma 70 
KIRP kidney renal papillary cell carcinoma 31 
BRCA breast invasive carcinoma 87 
STAD stomach adenocarcinoma 27 
LIHC liver hepatocellular carcinoma 49 
PRAD prostate adenocarcinoma 51 
LUAD lung adenocarcinoma 18 
BLCA bladder urothelial carcinoma 19 
UCEC uterine corpus endometrial carcinoma 21 
THCA thyroid carcinoma 56  
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3. Results 

3.1. Identification of miRNA-mRNA target-gene pairs deregulated in 
tumor 

We set up to analyze the gene expression of experimentally validated 
mRNA and miRNA pairs in a set of 13 cancer tissues, listed in Table 1. 
We collected 7494 miRNA-mRNA targets interactions annotated in the 
RAID database [22] with strong evidence supported by at least one 
experimental validation. For each cancer type we calculated the Pearson 
correlation (r) between the miRNA and mRNA expression profiles in 
both healthy and tumoral samples (see the Methods section). On average 
we found 385 miRNA-mRNA pairs negatively correlated across the 
healthy samples analyzed (Pearson r < − 0.4, adjusted p-value < 0.05) 
(Fig. 1, blue bars). A marked decrease in the number of correlated pairs 
was found in the tumoral samples, where, on average, only 62 
miRNA-mRNA showed a negative correlation across all tumor samples 
within the defined thresholds (Fig. 1, yellow bars). Moreover, the 
comparison between healthy and tumoral samples highlighted that only 
a small number of miRNA-mRNA pairs preserved their correlation in 
both conditions (Fig. 1, green bars) (Table 2). These findings are in 
agreement with data published by Li and colleagues [27], who reported 
a decrease in miRNA-mRNA correlations in tumor tissue. As reported in 
Fig. 1, the number of miRNA-mRNA correlating pairs varies widely 
across the 13 cancer types analyzed in this study (Table 1). 

Notably, thyroid carcinoma (THCA) and lung squamous cell carci-
noma (LUSC) are the only tumor types where the number of correlating 
pairs is higher in the tumor samples (Fig. 1). On the other hand, we also 
found a high number of positive correlations in the healthy samples 
(Pearson r > 0.4, adjusted p-value < 0.05) and a drastic reduction when 
compared with the corresponding tumoral one (as discussed below). 

Firstly, we focused our attention on the negative correlation which 
describes the classic translational regulation carried out by miRNAs in 
the cytoplasm. 

We found that only few miRNA-mRNA pairs preserve their negative 
correlation in the tumoral samples (1 in STAD and KICH, 2 in UCEC and 
KIRP, 3 in BLCA, 8 in HNSC, 13 in BRCA, 20 in KIRC, 24 in THCA, 29 in 
KIHC and 64 in PRAD). The Pearson coefficient distributions of the 
selected miRNA-mRNA pairs in healthy samples and their tumoral 
counterparts are shown in Fig. 2. The medians of Pearson correlation 
values are lower in the healthy (− 0.59 on average) than in the tumoral 

samples (− 0.09 on average) for the 13 analyzed cancers (t-test p < 0.05). 
Moreover, variance is much greater in the tumor samples compared with 
the healthy ones, showing a more tight regulation in the healthy tissue. 

Some of the miRNAs-mRNAs pairs that loose correlation in tumor 
samples are already known to be associated with cancer processes in 
several tissues. For example, ZEB1, which is targeted by the miR-200 
family, regulates epithelial to mesenchymal transition in BRCA [32], 
and FERMT2-miR-200b pair has been associated with invasion in breast 
cancer [32,33]. Additionally, miRNAs like miR-182, miR-183, miR-21 
are known to be associated with tumorigenesis [34–36]. 

3.2. miRNA-mRNA regulation switches 

Interestingly, we found 12 miRNA-mRNA pairs showing a switch in 
their regulation from negative in the healthy to positive in the tumoral 
samples: 3 in prostate adenocarcinoma (PRAD), 1 in liver hepatocellular 
carcinoma (LIHC), 1 in stomach adenocarcinoma (STAD), 2 in breast 
invasive carcinoma (BRCA), 3 in kidney renal clear cell carcinoma 
(KIRC) and 2 in kidney renal papillary cell carcinoma (KIRP) (Table 2). 

Table 2 The number of miRNA-mRNA pairs that showed: i. positive- 
positive (+/+), ii. negative-negative (− /− ), iii. negative-positive (− /+), 
iv. positive-negative (±) correlation in healthy vs tumor samples 
respectively. 

Out of 12 mRNA targets identified, 4 have a transcription factor 
activity, 1 is known to have a tumor suppressor activity and 2 are an-
notated as cell differentiation markers (Table 3). 

ALDH2 and MTHF2 showed a switch in the correlation with their 
respective miRNA regulator in kidney renal papillary cell carcinoma 
(KIRP) and Kidney Renal Clear Cell Carcinoma (KIRC) (Table 2). Both 
genes are up-regulated in tumors (TCGA data, log2FC > 0.8, p-value <
0.05) (Fig. 3a–c) and their expression is also associated with overall 
survival in KIRP (Kaplan-Meier log rank p < 0.05) and KIRC (Kaplan- 

Fig. 1. For each tumor, we report the number of miRNA-mRNA correlating 
pairs identified in healthy and tumoral samples on the left (blu bars) and on the 
right (yellow bars), respectively. In green we report the number of miRNA- 
mRNA correlating pairs that preserved their correlation in tumoral samples. 

Table 2 
miRNA-mRNA correlation comparison between healthy and tumor samples.  

Cancer Symbol +/+ − /− − /+ +/−

LUSC 1 0 0 0 
HNSC 13 8 0 0 
KICH 7 1 0 0 
KIRC 27 20 3 3 
KIRP 11 2 2 2 
BRCA 17 13 2 4 
STAD 2 1 1 0 
LIHC 50 29 1 0 
PRAD 17 64 3 0 
LUAD 0 0 0 0 
BLCA 0 3 0 0 
UCEC 0 2 0 0 
THCA 46 24 0 0  

Fig. 2. Distributions of correlation values of the selected miRNA-mRNA pairs in 
the healthy (R < − 0.4, adjusted p-value < 0.05) and analogous pairs in the 
tumoral samples (blue and orange respectively). 
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Meier log rank p < 0.05) (Fig. 3b–d). 
Interestingly, the expression of MTHFD2 is already known to be 

associated with poor prognosis, migration and invasion in the renal cell 
carcinoma patients [37]. The regulation switch of these miRNA-mRNA 
interactions could suggest a disruption of the regulation of the miRNA 
on its target and subsequently the possibility to give a new malignant 
function to the cells. 

3.3. miRNA-mRNA pairs that are consistently dysregulated across 
multiple cancer types 

Most of the identified miRNA-mRNA dysregulated interactions are 
shared among different cancer types. 2865 unique miRNA-mRNA pairs 
were identified across 13 cancer types, ≈ 40% of these pairs showed a 
loss of correlation in the tumoral samples in at least 2 out of the 13 
analyzed cancers. 

The top 64 pairs, sorted according to the descending number of tu-
mors in which they are deregulated, with a loss of correlation in at least 
5 different cancer types are shown in Fig. 4. 

miR-200b and SEC23a show a loss of correlation in 9 different cancer 
types (stomach, uterus, prostate, bladder, head and neck, breast, and 
kidney (KIRP, KIRC and KICH)). This gene and miR-200 family have 
been extensively studied and their expression has been associated with 
metastasis in different cancer types (lung, breast, and bladder) [38]. 

Likewise, we found a loss of correlation between ZEB1 and its 
regulator miR-429 in 6 different cancer types (head and neck, breast, 
stomach, prostate, bladder, uterus). This interaction has been associated 
with epithelial to mesenchymal transition in breast cancer, suggesting 
that the ZEB1-miR-429 axis could play a key role in promoting tumor 
progression [32]. 

Table 3 
miRNA-mRNA correlation switches between healthy and tumor samples.  

Tumor miRNA Target gene Target function 

KIRK miR-22-3p IRF5 transcription factor 
KIRK miR-9-5p MTHFD2 Enzyme 
KIRK miR-483-3p RASGRF1 Rho guanine nucleotide exchange factor 
KIRP miR-34a-5p ALDH2 Aldehyde Dehydrogenase 
KIRP miR-200c-3p ERRFI1 EGFR family member 
BRCA miR-196a-5p HOXC8 transcription factor 
BRCA miR-223-3p ABCB1 cell differentiation marker 
STAD miR-126-3p NFKBIA transcription factor 
LIHC miR-194-5p CDH2 cell differentiation marker 
PRAD miR-204-5p MEIS2 transcription factor 
PRAD miR-29b-3p TUBB2A Tubulins 
PRAD miR-378a-5p SUFU tumor suppressor  

Fig. 3. a) ALDH2 gene expression in KIRP (data from 
TCGA), the expression distributions for healthy and 
tumoral samples are shown respectively in grey and 
red. ALDH2 expression proves to be higher in the 
tumoral samples compared with the healthy one 
(log2FC > 0.8, p-value < 0.05); b) KIRP population 
was split into two groups based on ALDH2 expression 
median. Patients with overexpressed ALDH2 (red 
line) show an overall survival higher than the patients 
with a low expression of the same gene (blue line) 
(Kaplan-Meier log rank p < 0.05); c) MTHFD2 gene 
expression in KIRC (data from TCGA), the expression 
distributions for healthy and tumoral samples are 
shown respectively in red and grey. MTHFD2 
expression is lower in the tumoral samples compared 
with the healthy one (log2FC > 0.80 and p < 0.05); d) 
KIRC population was split into two groups based on 
MTHFD2 expression median. Patients with overex-
pressed MTHFD2 (red line) show an overall survival 
lower than the patients with a low expression of the 
same gene (blue line) (Kaplan-Meier log rank p <
0.05).   
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3.4. Our global analysis thus extends these observations to additional 
tumor types 

As expected, we found shared miRNA-mRNA dysregulated pairs 
among different tumors of the same tissue (KICH, KIRC, KIRP). However 

anatomically different cancers also share multiple dysregulated in-
teractions. As shown in Fig. 5, ~30% of miRNA-mRNA dysregulated 
interactions are shared between stomach (STAD) and bladder (BLCA), 
while ~20% are shared between uterus (UCEC) and bladder (BLCA) 
(Fig. 5). 

Fig. 4. The circle plot displays all miRNA-mRNA interactions that are dysregulated across at least 5 different cancer types. Identified pairs are listed counter-
clockwise according to the descending number of tumors in which they are dysregulated. miRNA-mRNA pairs are reported in light grey. Colored chords identify the 
cancer in which the miRNA-mRNA relationship is lost. 

Fig. 5. Similarity between cancer types, according to the number of dysregulated miRNA-mRNA pairs they share.  
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The green scale represents the magnitude of the similarity between 2 
different tissues, in dark green are shown the couple of tumors that share 
a high number of miRNA-mRNA interaction that lost their negative 
correlation in the tumoral samples. The red scale represents the 
magnitude of the similarity between 2 different tissues, in dark red are 
shown the couple of tumors that share a high number of miRNA-mRNA 
interaction that lost their positive correlation in the tumoral samples. 

3.5. Functional enrichment 

We performed a gene ontology enrichment analysis to describe the 
function of genes that either lost or preserved their negative correlation 
with the cognate miRNA in tumor samples (thus possibly leading to lack 
of repression or over-expression in cancer). In particular we found an 
enrichment in positive regulation of cell division and proliferation, cell 
growth and migration, blood vessel development and remodeling, 
movement of cellular or subcellular component for the genes that lose 
their correlation with the cognate miRNA while genes that preserved 
their correlation are enriched in cell-cell adhesion, cell aging and 
regulation of apoptotic processes. Given the high number of genes 
involved in the lost of correlation with their cognate miRNA and taking 
in to account the biological processes in which they are involved, we can 
hypothesize that the loss of regulation carried out by the miRNA on its 
own targets may be the cause of the tumor onset or cancer progression. 

3.6. miRNA-mRNA and overall survival correlation in breast cancer 
patients 

We estimated the overall survival (OS) over time on BRCA patients 
considering both the high number of matched healthy and tumor bi-
opsies available and the high number of miRNA-mRNA dysregulated 
pairs identified with the previous analysis. To identify the clinical 
relevance of miRNA-mRNA gene-target pairs we split the population in 
four groups according to the miRNA and the mRNA median expression 
values (i. miRNA under expressed - mRNA over expressed; ii. miRNA 
under expressed - mRNA under expressed; iii. miRNA over expressed - 
mRNA over expressed; iv. miRNA over expressed - mRNA under 

expressed). Then we performed survival analysis comparing the four 
identified groups in pairs. Out of 454 miRNA-mRNA dysregulated in-
teractions in BRCA, 2 were associated with OS (p < 0.05) while using 
single miRNA or mRNA as discriminant no association was found. 

miR-205 and ZEB2 showed a negative correlation in healthy samples 
(R = − 0.48, p-value < 0.05) while no correlation was found in tumors. 
Individually miR-205 and ZEB2 expression were not found to be asso-
ciated with OS (Fig. 6c and d). On the other hand, when using both 
miRNA-mRNA expression levels to split the population in 2 cohorts, we 
found a significant association between miR-205 over-expression/ZEB2 
under-expression and low survival rate (Kaplan-Meier log rank adjusted 
p-value < 0.05) (Fig. 6f). Likewise, miR-205 and ZEB1 showed a nega-
tive correlation in the healthy samples (R = − 0.52, p < 0.05) while no 
correlation was found in tumoral samples, also in this case individually 
miR-205 and ZEB1 expression resulted not associated with OS (Fig. 6b 
and c). However, miR-205 over-expression/ZEB1 under-expression were 
significantly associated with low survival rate (Kaplan-Meier log rank 
adjusted p-value < 0.05) (Fig. 6f). 

In this study we showed the prognostic power of 2 new markers for 
BRCA patients, the expression of these miRNA-mRNA dysregulated pairs 
resulted statistically associated with OS rate (Kaplan-Meier log rank p <
0.05). 

3.7. Loss of miRNA-mRNA positive correlations in several cancer types 

In contrast to the general assumption that miRNA-mediated down-
regulation is a one-way process leading to decreased mRNA stability 
and/or translational inhibition, several recent studies highlighted how 
miRNAs could upregulate gene expression in specific cell types and 
conditions [9,10]. Two different mechanisms underlying this process 
were described by Liang and collaborators: i) cytoplasmic mRNA sta-
bilization or ii) transcription activation [39]. Accordingly, we focused 
our analysis on positive correlations between miRNAs and their targets. 

On average we found 380 miRNA-mRNA positively correlated pairs 
across all healthy samples (Pearson r > 0.4, adjusted p-value < 0.05). 
Conversely, a drastic reduction in the number of positive correlations 
was found in tumor tissue (on average 63 pairs within the same 

Fig. 6. BRCA samples miR-205 expression distribution in healthy (blue) and tumoral (orange) samples (a); BRCA patients have been split into two groups based on 
ZEB1, ZEB2, miR-205-5p median (respectively in b, c, d). The blue line represents the group with higher expression of the analyzed feature while the orange line 
represents the group associated with lower expression. No significant association between expression and overall survival have been found using ZEB1, ZEB2, miR- 
205-5p individually (Kaplan-Meier log rank p > 0.05). The BRCA population has been split using both miR-205/ZEB1 and miR-205/ZEB2 expressions (e, f 
respectively). In both cases miRNA overexpression and gene under expression appears to be significantly associated with low survival rate (orange line, p-value 
< 0.05). 
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thresholds). 
The expression of miR-183-5p is positively correlated with that of its 

target PDCD6 in 8 out of 13 healthy tissues (head and neck, kidney, 
breast, stomach, liver, prostate, and bladder) and this relationship is 
completely lost in the corresponding tumor samples. PDCD6 mediates 
apoptosis via p53 dependent and independent pathways, and its 
expression is dysregulated in different cancers [40]. 

More generally, the genes for which a loss of positive regulation was 
observed are enriched in biological processes such as cell adhesion, 
apoptotic process and inflammatory or immune response, cell division 
and DNA replication, recombination, and repair (data not shown). 

The positive correlation between the expression of miRNAs and their 
targets suggests how the miRNA could promote an increase in the 
expression level of the targets themselves in the physiological condition, 
following the molecular mechanisms described in the last years [9,10]. 
Given that the positively regulated genes are involved in key processes 
for the cell homeostasis we can hypothesize that the disruption of the 
positive regulation exerted by miRNA could be associated with an 
altered state for the cell possibly causing the cancer onset or progression. 

4. Discussion 

The miRNA-mRNA regulatory network has been shown to be asso-
ciated with the onset and progression of several human diseases 
including cancer [27,41–46]. 

In this work we investigated the relationship between the expression 
of miRNAs and that of their target mRNAs, first in the tumoral samples 
and later in the healthy biopsies simulating a physiological scenario. 
Comparing the two conditions we highlighted miRNA-mRNA in-
teractions dysregulated in cancer. 

From a computational point of view, regulation of gene expression 
by miRNA has been extensively studied in the last years using several 
methods [19,47–49]. Negative or positive regulation exerted by miRNA 
on its targets could result in a negative or positive correlation respec-
tively between the expression of the miRNA and its targets. With this 
analysis, we shed light on the miRNA-mRNA regulation landscape 
comparing the healthy and tumoral states. We found a global reduction 
of both positive and negative miRNA-mRNA interactions in the tumor 
samples when compared with the corresponding healthy samples for 11 
out of 13 cancers analyzed. We also highlighted some miRNA-mRNA 
pairs with a switch in the sign of correlation between healthy and tu-
moral samples in some tissues. These findings suggest possible changes 
in the regulation operated by a miRNA on its targets, moving from the 
target translational repression or degradation in the healthy condition to 
a putative target upregulation in the tumoral or vice versa. 

Interestingly, we demonstrate how this loss of correlation for a single 
miRNA-mRNA pair quite often is not a tumor specific related event, 
highlighting how in different tissues the same changes may occur in the 
miRNA regulatory landscape resulting in the determination of cancer 
onset, stage or progression. 

Since the expression changes of miRNA or mRNA regulated by 
various factors could cause the changes of correlation between them, the 
factors which result in the reduced correlation in tumor tissues were 
indistinct. 

The loss of miRNA-target correlation could be explained by several 
hypotheses. Firstly, miRNAs are globally less expressed in tumor tissues, 
and this could influence the regulation of its target genes. Only the most 
abundantly expressed miRNAs could affect their target mRNAs stability 
by effectively binding to the available mRNA target sites [50]. 

Additionally, transcription factors and endogenous long noncoding 
RNA could also mediate mRNAs regulation exerted by miRNAs [51,52]. 

Moreover, we tested the clinical relevance of the dysregulated 
miRNA-mRNA pairs we found in BRCA patients. A significant associa-
tion with overall survival was found for 2 miRNA-mRNA pairs, these 
findings highlight putative biomarkers which were not observed in 
previous studies. For both ZEB1 and ZEB2 we found no association 

between their expression and overall survival rate, on the contrary, 
samples where these 2 genes were downregulated and at the same time 
present an upregulation of their cognate miRNA showed a low survival 
rate compared with the samples where the miRNAs were 
downregulated. 

Finally, with this analysis we highlight the changes in the miRNA- 
mRNA regulation that occur between the tumoral and the healthy 
samples. The miRNA-mRNA critical pairs, for which a loss of correlation 
in the tumoral samples was found, result enriched in biological processes 
and molecular functions such as cell proliferation and migration, regu-
lation of cell death and metabolism, epithelial-mesenchymal transition, 
IL2 and MTOR signaling, inflammatory response and angiogenesis. Our 
analysis provides both pan-cancer and cancer specific dysregulated 
miRNA-mRNA interactions in cancer, a starting point to better under-
stand the miRNA regulatory network and its relationship with cancer 
onset and progression. Experimentally validated miRNA-mRNA in-
teractions, already associated with a specific cancer type, show a similar 
deregulation in other types of cancers suggesting a shared mechanism 
across several tumors. Experimental validation of these results could be 
useful for the identification of new critical miRNA-mRNA pairs not yet 
described in the literature that can be biologically and clinically 
meaningful. 
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