
Research Article
A Prognostic Tool for Individualized Prediction of Graft Failure
Risk within Ten Years after Kidney Transplantation

Danko Stamenic,1,2 Annick Rousseau,1,2 Marie Essig,1,2 Philippe Gatault,3 Mathias Buchler,3

Matthieu Filloux,4,5 Pierre Marquet,1,2,6 and Aurélie Prémaud 1,2

1 INSERM, U1248, F-87000 Limoges, France
2University of Limoges, UMR 1248, F-87000 Limoges, France
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Identification of patients at risk of kidney graft loss relies on early individual prediction of graft failure. Data from 616 kidney
transplant recipients with a follow-up of at least one year were retrospectively studied. A joint latent class model investigating the
impact of serumcreatinine (Scr) time-trajectories and onset of de novo donor-specific anti-HLA antibody (dnDSA) on graft survival
was developed. The capacity of the model to calculate individual predicted probabilities of graft failure over time was evaluated in
80 independent patients. The model classified the patients in three latent classes with significantly different Scr time profiles and
different graft survivals. Donor age contributed to explaining latent class membership. In addition to the SCr classes, the other
variables retained in the survival model were proteinuria measured one-year after transplantation (HR=2.4, p=0.01), pretransplant
non-donor-specific antibodies (HR=3.3, p<0.001), and dnDSA in patient who experienced acute rejection (HR=15.9, p=0.02). In
the validation dataset, individual predictions of graft failure risk provided good predictive performances (sensitivity, specificity, and
overall accuracy of graft failure prediction at ten years were 77.7%, 95.8%, and 85%, resp.) for the 60 patients who had not developed
dnDSA. For patients with dnDSA individual risk of graft failure was not predicted with a so good performance.

1. Introduction

In kidney transplantation, a new challenge in modelling is
individualized prediction of graft failure risk over time. Up to
now, no study has reported such a model appropriate for any
kidney transplant patients to assess the individual risk and
its evolution with time. Numerous risk factors of kidney graft
failure are known: factors linked to donor (e.g., age, cause of
death, serum creatinine, living or deceased donor, cause of
death, and Expanded Criteria Donor, ECD) [1–6], to trans-
plantation (e.g., cold ischemia time and retransplantation)
[7], and to recipients (demographic, clinical, immunological,
and biological factors) [8–14]. Several recent studies have
identified donor-specific anti-HLA antibodies (DSA) and
antibody-mediated rejection (ABMR) as primary causes of

allograft failure [9, 15–17]. Ways to improve graft survival in
patients who do not develop DSA are less studied although
many graft failures are observed in patients without DSA [18].

Association between graft failure and serum creatinine
(SCr) was studied in taking into account SCr levels measured
at specific time-points and/or SCr linear evolution with time
after transplantation (e.g., SCr slopes between two measure-
ments) [5, 14]. Considering the whole dynamic history of
SCr (i.e., SCr evolution with time) should be an efficient
alternative strategy.

Latent class models could permit studying the hetero-
geneity in the individual time-trajectories of SCr [19]. The
joint models are innovative statistical tools which allow
studying the association between evolution of markers over
time (i.e., time-trajectories of continuous variable), fixed

Hindawi
Journal of Transplantation
Volume 2019, Article ID 7245142, 10 pages
https://doi.org/10.1155/2019/7245142

http://orcid.org/0000-0001-5004-5918
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7245142


2 Journal of Transplantation

Missing immunoclinical data (n=59)

Patients included into study
(n=616)

Donor-specific anti-HLA antibodies
before transplantation (n=13)

Nonfunctional graft within the first two
months after transplantation (n=20)

followed up in Limoges after 
transplantation (n=38)

Patients transplanted
between January 1st , 1984, and 

December 31, 2011
(n=819)

Missing proteinuria at M12 (n=14)

Follow-up < 1year (n=48)

Unknown donor’s cause of death (n=11) 

Figure 1: Flowchart showing selection of renal transplant recipients included in the study.

covariates (i.e., individual factors collected at a given time),
and onset of an event [5, 20]. Statistical developments in
the joint modelling area rely either on the shared random
effects models that include characteristics of the longitudinal
marker as predictors in the model for the time-to-event [21,
22] or on the joint latent class models which assume that
the population can be parted into homogeneous subgroups
(corresponding to latent classes), with a class-specific time-
evolution of the marker and a class-specific risk of the event
[23, 24]. Using a shared random effect model, Fournier et
al. (2016) showed that the risk of graft failure up to 13 years
after transplantation was associated with both current value
and current slope of SCr [5]. Onset of de novoDSA (dnDSA)
was not considered by the authors and no prediction of the
individual graft failure risk was obtained. No joint latent
class model has been developed previously to predict graft
failure.

As several papers reportedmodels predictive of graft fail-
ure using data collected up to one year after transplantation,
it seemed relevant (i) to jointly model the change of serum
creatinine over at least the first year after transplantation and
(ii) to investigate in such a model the impact of individual
potential risk factors on both change of SCr and graft failure
risk. Therefore, the objectives of the present study were (i)
to develop a joint latent class model investigating the impact
of serum creatinine time-trajectories and onset of dnDSA on
graft survival and (ii) to study the possibility of individualized

risk prediction of kidney graft failure within ten years after
transplantation.

2. Material and Methods

2.1. Study Population. Data was extracted from the retro-
spective cohort of kidney transplant recipients grafted at the
University Hospital of Limoges (France) between 1984 and
the end of 2011 (n=819). Among these patients, 616 who had
sufficient data with a clinical and immunological follow-up
of at least one year were included in the study. A flowchart
showing patient selection is presented in Figure 1.

The study database was approved by the French Infor-
matics and Liberty National Commission (CNIL, registration
number 1795293). All the grafts came from heart-beating
deceased donor. More details about the patients included can
be found in a previous work of our group [10].

2.2. Outcomes and Study Endpoint. Graft failure, defined as
return to dialysis or preemptive retransplantation, was used
as the outcome variable. Death was considered as a censored
event when the recipient died with a functioning graft.

2.3. Available Variables. Donor-specific variables were age
and cause of death (categorized to vascular, traumatic vehi-
cle accident, traumatic nonvehicle accident, and others).
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Table 1: Immunological parameters, donor, recipient, and transplant characteristics (n=616).

Donor characteristics
Mean age (SD) [years] 43.5 (16.4)
Age ≥60 years (n) 110 (17.8%)
Cause of death (n)

Vascular 268 (43.5%)
Traumatic vehicle accident 106 (17.2%)
Traumatic nonvehicle accident 116 (18.8%)
Others 36 (5.8%)
Unknown 90 (14.6%)

Recipient characteristics
Age (years, mean (SD)) 49.5 (13.8)
Male/female (n) 375/241
Biological parameters
Mean proteinuria measured at M12 [g/L] (SD) 0.166 (0.451)
Mean serum creatinine at month 12 [𝜇mol/L] (SD) 139 (67)
Clinical characteristics
Death with functioning graft (n) 56 (9.1%)
Acute rejection (n) 135 (21.9%)
Graft failure (n) 68 (11.0%)
Initial immunosuppressant
AZA/MMF 134/473
Unknown 9
Immunological parameters
De novo donor specific anti-HLA antibodies (n) 60 (9.7%)
Non–donor-specific anti-HLA before transplantation (n) 96 (15.6%)
Transplant characteristics
Retransplantation (n) 52 (8.5%)
Mean cold ischemia time [minutes] (SD) 1138 (369)
Period of transplantation (n)

From 1984 to the end of 1993 99 (16.0%)
From 1994 to the end of 2002 194 (31.5%)
From 2003 to the end of 2011 323 (52.5%)

AZA = azathioprine; MMF = mycophenolate mofetil.

Transplantation-related variables included cold ischemia
time, retransplantation, and transplantation period (1984-
1993, 1994-2002, and 2003-2011). Recipient variables included
the following: age at transplantation, gender, nondonor-
specific anti-human leucocyte antigen antibodies (NDSA)
before transplantation, initial immunosuppressive regimen,
and proteinuria levels at month 12 (M12) after transplantation
(in case of missing data for proteinuria at month 12, the first
value collected between M12 and M18 was used). Addition-
ally, repeated measures of SCr within the first 18 months
after transplantation (usually at M1, M3, M6, M12, and M18,
median number of measurements: 5, range: 2-8), diagnosis of
the first acute rejection episode (AR), and onset of de novo
donor specific anti-HLA antibodies (dnDSA) were collected.

Anti-HLA antibodies were screened and identified
using Luminex� solid-phase assay (One Lambda LABScreen
assays) in samples collected before transplantation, at three,
six, and twelve months after transplantation and annually
thereafter or whenever clinically indicated. Results were

expressed as median fluorescence intensity (MFI). MFI>1000
was considered positive. All sera collected and tested using
the Complement Dependent Cytotoxicity method prior to
availability of Luminex� technology in our center (2007)
were reanalyzed using Luminex� as previously described.[10]
Patients in whom the Luminex� reanalysis identified pres-
ence of DSA before transplantation were excluded from the
database studied.

Donor, recipient, and transplant characteristics are pre-
sented in Table 1.

2.4. Statistical Analysis

2.4.1. Joint Latent Class Model. A joint latent class model for
a longitudinal outcome and a right-censored (left-truncated)
time-to-event outcome was developed in the “lcmm” R-
Package, version 17.8 (available at https://cran.r-project.org/
web/packages/lcmm/lcmm.pdf). This model considers the

https://cran.r-project.org/web/packages/lcmm/lcmm.pdf
https://cran.r-project.org/web/packages/lcmm/lcmm.pdf
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population of subjects as heterogeneous and assumes that
the population consists of a finite number of homogeneous
subgroups (the so-called latent classes)[24, 25]. Each latent
class was characterized by a class-specific time-trajectory of
SCr and a class-specific risk of graft failure. This type of joint
model constitutes of three submodels: (1) amultinomial logis-
tic submodel aiming at calculating each patient probability of
belonging to each latent class, (2) a mixed effect submodel to
describe the SCr time-trajectories specific of each class, and
(3) a survival submodel to describe the risk of graft failure
specific of each class. A general mathematical representation
of these submodels, aswell as R codes, can be found elsewhere
[19, 25].

The model was constructed in a step-by-step procedure.
The first step of model building aimed at defining (i) amixed-
effects model for the SCr trajectories, (ii) the baseline risk
function, and (iii) the number of latent classes. Different
link functions were compared to transform the observed
SCr values into a Gaussian latent variable (i.e., herein, the
unobserved kidney function): (i) a linear transformation,
(ii) a rescaled cumulative distribution function of a beta
distribution, (iii) quadratic I-splines with equidistant nodes,
and (iv) quadratic I-splines with nodes located at the quan-
tiles of SCr distribution. The most appropriate link function
was selected on the basis of goodness-of-fit as measured
by the discretized Akaike criterion (dAIC) [25]. The risk of
graft failure was modelled using a parametric proportional-
hazards model. Weibull, piecewise constant, and M-splines
baseline risk functions were tested and compared using the
Akaike criterion (AIC). The joint latent class model was
estimated for a number of latent classes varying from 1 to
5 and the Bayesian information criterion (BIC) was used to
compare them [25].

In the second step, the impact of the available covariates
(see Table 1) as well as the impact of their interaction on
(i) the class-membership probabilities and (ii) both class-
specific SCr trajectories and graft failure risk was studied
through fixed effects common within all classes and/or class-
specific effects. Each covariate was first tested in univariate
analysis and entered in multivariate analysis when univariate
association (p<0.2) was found. If the onset of dnDSA was
retained as covariate, its impact would be studied by taking
into account several post-dnDSA follow-up periods because
associated adverse effects are known to be delayed from
their onset. The criteria for final model selection were
the BIC and the highest mean posterior class membership
probabilities which assess the ability of the model to dis-
criminate between the different latent classes. Finally, the
predicted class-specific survivals were compared with the
observed survivals within each class using Kaplan-Meier
analysis.

Because certain research teams studied the factors pre-
dictive of short-term graft survival [9], we also analyzed the
factors predictive of 5-year graft survival. Numerous studies
having investigated the predictive factors of graft failure
among the individual factors known up to one year after
transplantation, the final joint model was compared to a
model including follow-up data collected up to 1 year after
transplantation only.

2.4.2. Individual Predictions in an Independent Patient Group.
An independent database of 80 patients (60 without and
20 with dnDSA randomly selected) grafted since 2002 and
followed up in another French transplant center (CHUTours,
Aster database approved by the CNIL, authorization number
DR-2012-518) was used to evaluate the capacity of the model
to calculate individual predicted probabilities of graft failure
over time [26].

3. Results

3.1. Follow-Up Description. Among the 616 patients studied,
graft failure was observed in 68 (11%) patients over the 10
years of follow-up (incidence per 1,000 person-years, 16.8;
95% CI, 13.1 to 21.3). The median follow-up time in patients
up to graft failure was 4.97 years (range: 1-10). Among 548
event-free patients, median follow-up time was 7.13 years
(range: 1-10). There were 56 deaths with a functional graft.
Sixty patients developed dnDSA (incidence per 1 000 person-
years, 14.8; 95% CI, 11.3 to 19.1; median time of onset 3.93
years; range: 0.02-9.8) and 12 (20%) of them lost their graft.
In these 60 patients, the median follow-up time up to graft
failure was 6.13 years (range: 1-10). In the 556 patients who did
not develop dnDSA, graft failure was observed in 56 patients
(11.2%) over the 10 years of follow-up. The median follow-
up time to graft failure in these 556 patients was 4.39 years
(range: 0.94-10). One hundred and thirty-five patients were
treated for the first acute rejection episode over the whole
study period, 121 (90%) of which were biopsy proven. T-cell
mediated rejection (TCMR) was evidenced in 104 patients,
ABMR in 14 patients, and mixed rejection (TCMR+ABMR)
in 3 patients. Ninety-four first rejections occurred within the
first year after transplantation.

3.2. Joint Latent Class Modelling. The SCr time-trajectories
were fitted after transformation with a I-spline link function
with 5 equidistant nodes since it provided the lowest dAIC.
The time-trajectories of SCr after transformation were best
described using quadratic function of time to allow nonlinear
mean trajectories over time. The baseline risk function
was modelled parametrically using a two-parameter Weibull
baseline risk function. The joint latent class model including
three latent classes was retained. The class-specific risks of
graft failure were described using presence of NDSA before
transplantation, proteinuria at M12 greater than 0.275 g/L
(yes/no), and interaction between onset of acute rejection and
development of dnDSA (yes/no). The estimations related to
the proportional hazard submodel of the final joint model are
reported in Table 2.

The donor age (categorized as greater or not greater than
60 years) contributed to explaining latent class membership
with the recipients of kidneys from donors younger than
60 years having a significantly higher probability to be
allocated to class 1 (characterized by the lowest Scr values
and the best graft survival). The mean posterior probability
of belonging to each class ranged from 82.6% in patients
allocated to class 1 to 89.2% in class 3, indicating a clear
discrimination between the latent classes. Of note, this
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Table 2: Joint latent class mixed model estimates of hazard ratio for graft failure risk.

Survival submodel
HR 95% CI p-value

NDSA before transplantation (yes vs. no) 3.27 [1.75 - 6.13] <0.001
Proteinuria at M12 (>0.275 g/L vs. ≤0.275 g/L) 2.41 [1.22 - 4.76] 0.011
dnDSA (yes vs. no) 0.49 [0.05 - 4.46] 0.524
Acute rejection (yes vs. no) 0.78 [0.39 - 1.56] 0.486
Interaction (dnDSA∗acute rejection) 15.35 [1.55 -152.43] 0.019
HR= hazard ratio, CI= confidence interval, NDSA=non-donor-specific anti-HLA antibodies, and dnDSA=de novo donor-specific anti-HLA antibodies.
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Figure 2: Class-specific predictedmean trajectories (top panel) and
class-specific predicted event-freeprobabilities (bottompanel) from
the final joint latent-class mixed model; class 1 (n=189) is in green,
class 2 (n=392) in black, and class 3 (n=35) in red. Dashed lines are
the computed 95% confidence intervals.

model including acute rejection and dnDSA data collected
over the follow-up outperformed a joint model taking into
account data collected up to the end of the first year after
transplantation only (p=0.001). This comparison showed the
added value of the dnDSA data collected after one year after
transplantation.

Figure 2 shows the estimated trajectories retranslated into
SCr and the associated predicted graft failure-free survival for
each class. Class 1 with 189 patients (30.7%)was characterized
by a mean SCr baseline value close to 100 𝜇mol/L, a slow

decrease in SCr within the first 18 months after transplan-
tation, and a mean risk of graft failure at 10 years after
transplantation close to 5%. Class 2 corresponding to the
majority of the patients (n=392, 63.6%) was characterized
by a higher mean SCr baseline value close to 150 𝜇mol/L
and a stable mean trajectory over the first 18 months after
transplantation while the mean risk of graft failure at 10 years
after transplantation achieved 10%. In comparison with class
1, it was associated with a significant increase in the observed
incidence of graft failure at 10 years after transplantation (log-
rank test, p=0.0346). Finally, class 3 with 35 patients (5.7%)
was characterized by a mean SCr value close to that of class
2 at baseline followed by a rapid rise of SCr within the first
18 months after transplantation. In comparison with class 1
and class 2, it was associated with a significant increase in the
observed incidence of graft failure (p<0.0001).Themean risk
of graft failure at 10 years after transplantation in this classwas
100%, and no subject in this class had a graft survival greater
than seven years.

The short-term risk (5 years) of graft failure was also
studied using the developed joint three latent classes’ model.
This 5-year risk was significantly associated with serum crea-
tinine latent classes (p<0.0001), proteinuria at M12 (p=0.003),
and pretransplant NDSA (p=0.034). Contrary to the 10-year
model, the effect of interaction between dnDSA and acute
rejection was not significant any more.

3.3. Individual Predictions in an Independent Patient Group.
Individual predictions of graft failure up to the end of follow-
up were computed for 60 patients from the validation dataset
who had not developed DSA, according to their observed
history of SCr and the covariates retained in the final 10-
year joint model. In the 36 tested patients with graft failure,
failure risk was adequately predicted in 28 patients as the
95% confidence interval of the predicted probability of graft
failure included values greater than 50%. In the 24 patients
whodid not experience graft failure, the predicted probability
of graft failure remained lower than 30% (with an upper
limit of the 95% confidence interval<50%) until the end
of the follow-up except for one patient. Thus, using data
collected up 12 months after transplantation in this patient
subpopulation, sensitivity, specificity, and overall accuracy of
the graft failure prediction at ten years were 77.7%, 95.8%, and
85%, respectively. Figure 3 depicts the predicted probability
of graft failure in 18 patients randomly selected from this
subgroup.
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Figure 3: Individual predictions of 10-year graft failure risk based on covariates known at 1 year after transplantation for 18 patients without
dnDSA (a) who experienced graft failure and (b) who did not experience graft failure. Solid lines indicate the predicted medians and dashed
lines indicate the 95% confidence intervals; the vertical line indicates time of graft failure.
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In the 20 tested patients who had developed dnDSA, the
model predicted an increased risk of graft failure, but the
individual risk of graft failure was not adequately predicted
for most of these patients. The best and worth predicted
curves of graft failure obtained in this patient subgroup are
shown in Figure 4.

4. Discussion

This study presents a new tool which adequately predicts the
individual risk of graft failure in patients who did not develop
dnDSA. In patients with dnDSA, individual prediction of
graft failure risk was not obtained with a so good accuracy.
The variables retained in the model are patient variables
routinely collected and are classically reported to be associ-
ated with graft failure (measurements of SCr and proteinuria,
presence of pretransplant NDSA, dnDSA, acute rejection,
and donor age) [8–10, 12, 14, 27]. Our study confirms the
association of donor age above sixty years with both worse
renal function and shorter graft survival [6, 28]. In the model
developed herein, the proteinuria level observed at one year
after transplantation also contributed to explaining the graft
failure risk. Proteinuria at M12 was previously retained in
association with several SCr values determined within the
first year after transplantation in the KTFS score aiming
at predicting the graft survival at 8 years [14]. Our model
included an interaction term between dnDSA and acute
rejection showing, as previously reported, that dnDSA are
more deleterious for graft survival when the patient has
also experienced acute rejection [11]. This work confirms the
deleterious impact of pretransplant NDSA which was less
studied than the impact of preformed DSA but was found
to influence clinical decisions in personalized medicine [29,
30].

Although numerous works highlighted the potential
impact of certainDSA classes on graft failure [9, 10, 31], nearly
all reported survival models and scoring systems developed
to predict graft survival in the kidney-transplant population
did not take into account the onset of dnDSA [5, 8, 14]. At side,
some studies focused on patients with preexisting and/or de
novoDSA [17]. Recently, Viglietti et al. reported a new score to
predict kidney allograft survival in patients with preexisting
or de novo DSA and who experienced ABMR [31]. Ignoring
the impact of dnDSA on the prediction of graft failure risk
in a predictive tool could lead not only to underestimating
this risk in patients with dnDSA but also to overestimating
the risk in patients without dnDSA, especially in the long
term. Herein, taking into account dnDSA it improved on
average the long-term survival prediction but not the short-
term one (e.g., 5-year graft survival). Consistently, Gonzales
et al. found that adding presence of dnDSA at 1 year after
transplantation to an existing riskmodel (which incorporates
recipient factors at 1 year, including age, sex, ethnicity,
renal function, proteinuria, and acute rejection) [8] did not
improve predictive ability of graft loss by 5 years [9]. This
result could be due to a too short time horizon because
(i) dnDSA occur all over the follow-up and are mostly
absent in the first year after transplantation and (ii) graft
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Figure 4: The worst (patient A) and the best (patient B) prediction
of probabilities of 10-year graft failure with 95% confidence intervals
from the final joint latent-class mixed model among the group of
patients who developed de novo donor-specific anti-HLA antibody
(dnDSA). The black part of the curve corresponds to predictions
based on covariates known up to 1 year after transplantation while
the red curve corresponds to prediction recalculated after onset
of both dnDSA and acute rejection; the vertical dashed black line
indicates the time of graft failure.

loss attributable to dnDSA can occur several years after their
onset [12]. Recently, significant progress has been made to
understand the pathophysiology of DSA-mediated injuries
and the determinants of graft loss [17, 32, 33].

Preliminary tests were performed from our model for
making individualized risk predictions in distinguishing
patients with and without dnDSA.

The graft failure risk has been less studied in patients who
had not developed dnDSA. However, most of the kidney graft
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failures are observed in this subpopulation. The frequency
of graft failure observed herein (in database used for model
development) was similar to the frequency reported by
Terasaki’s team (11% allograft loss) with a similar follow-up
(median of 94 months) [18]. In this population, predictive
performance of our model seems high. Using the validation
dataset, graft loss was actually observed in 28 out of the 29
patients without dnDSA for whom the graft failure was pre-
dicted by ourmodel (i.e., one false positive). As a comparison,
a sensitivity of 0.72 and a specificity of 0.71 were reported
for the Kidney Transplant Failure Score [14]. Although our
model might not be appropriate for predictions of graft loss
in the global kidney transplant population, it can still be
used to generate more than satisfying individual predictions
in the majority of this population (i.e., the patients who do
not develop dnDSA). It is noteworthy that this prediction
can be performed for one year after transplantation using
data routinely collected in clinical setting. Interestingly, this
prediction tool does not require histologic data, which is in
accordance with the current practice to decrease the use of
biopsies.

Great differences between the present model and the
previously published tools for graft failure prediction are in
(i) predicting the individual risk of graft failure over time
contrary to scoring systems which classified the patient in a
risk class (e.g., 3- or 4-level system) [10, 14, 31] and (ii) taking
into account the time-evolution of Scr levels within the first
year after transplantation contrary to works which consider
single time-points [14].

We used for the first time the recently proposed statistical
approach of joint latent class models to predict graft out-
come. Interestingly, the strengths of this approach have been
demonstrated in oncology [34] and dementia [23].

While we are in an era with very few new therapeutic
strategies and new immunosuppressive drugs, individual
prognostic tools are necessary for the optimal selection
of patients in clinical trials. To demonstrate significant
effects of candidate molecules, future trials should focus on
patients with poor renal prognoses, and we believe that our
model may be a valuable tool for identification of these
patients.

Last, our findings should be interpreted by taking into
account the limitations of current study. We were unable to
directly test the impact of immunosuppressive regimens and
their blood levels because of dose adjustments and switches
from one regimen to another which occurred frequently in
patients over such a long study period (from 1984 until 2011).
However, we would expect that the different immunosup-
pressive regimens are at least in part related to different
transplantation period, and the period of transplantation
was tested but not among the covariates significant in the
multivariate model. Similarly, two out of four criteria for
expended donation (i.e., last donor SCr and history of hyper-
tension) were missing in the present study but by combining
the two remaining criteria in a single dichotomous variable
(i.e., donor age ≥60 years or between 50 and 59 years with
cardiovascular accident vs. others) we did not observe a
better performance of our model than using donor age
alone.

Although allograft histology thanks to repeated biopsies
also was found to be associated with transplant outcome
[31], it was not possible to investigate its impact in the
present study. Indeed, the database included almost exclusive
biopsies performed when there were clinical signs in favour
of graft lesions, such as an increase in serum creatinine.
Anyway, the purpose of this work was to develop a simple-
to-use tool taking into account routinely collected data after
transplantation. This is in accordance with the general trend
to decrease the graft biopsy appeal.

5. Conclusion

Joint models were used to characterize the kinetics of Scr
and their link with time-to-event (time-to-graft failure) and
to identify relevant covariates linked to graft survival. The
individual predictions of graft failure probability obtained
in patients without DSA show that this approach could be
useful to improve patient’s follow-up and the early detec-
tion of numerous at-risk patients as approximately half of
graft failures are observed in patients without DSA. The
graft failure risk would be reevaluated throughout the time
after transplantation in case of dnDSA occurrence or acute
rejection. In the future, we have the project to include our
predictive model in an expert system available for transplant
physicians.
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