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ABSTRACT
Introduction  Secondary analysis of hospital-hosted clinical 
data can save time and cost compared with prospective 
clinical trials for neuroimaging biomarker development. We 
present such a study for Sturge-Weber syndrome (SWS), 
a rare neurovascular disorder that affects 1 in 20 000–50 
000 newborns. Children with SWS are at risk for developing 
neurocognitive deficit by school age. A critical period for early 
intervention is before 2 years of age, but early diagnostic and 
prognostic biomarkers are lacking. We aim to retrospectively 
mine clinical data for SWS at two national centres to develop 
presymptomatic biomarkers.
Methods and analysis  We will retrospectively collect 
clinical, MRI and neurocognitive outcome data for patients 
with SWS who underwent brain MRI before 2 years of 
age at two national SWS care centres. Expert review 
of clinical records and MRI quality control will be used 
to refine the cohort. The merged multisite data will be 
used to develop algorithms for abnormality detection, 
lesion-symptom mapping to identify neural substrate and 
machine learning to predict individual outcomes (presence 
or absence of seizures) by 2 years of age. Presymptomatic 
treatment in 0–2 years and before seizure onset may 
delay or prevent the onset of seizures by 2 years of age, 
and thereby improve neurocognitive outcomes. The 
proposed work, if successful, will be one of the largest 
and most comprehensive multisite databases for the 
presymptomatic phase of this rare disease.
Ethics and dissemination  This study involves human 
participants and was approved by Boston Children’s 
Hospital Institutional Review Board: IRB-P00014482 
and IRB-P00025916 Johns Hopkins School of Medicine 
Institutional Review Board: NA_00043846. Participants 
gave informed consent to participate in the study before 
taking part. The Institutional Review Boards at Kennedy 
Krieger Institute and Boston Children’s Hospital approval 
have been obtained at each site to retrospectively study 
this data. Results will be disseminated by presentations, 
publication and sharing of algorithms generated.

INTRODUCTION
About 1/1000 infants are born with port-wine 
birthmarks (PWB) on the face or neck. Of 

those infants, 5% develop a vascular neuro-
cutaneous disorder called Sturge-Weber 
syndrome (SWS).1 This makes SWS patients 
1 in 20 000 to 1 in 50 000 newborns, and, 
therefore, a rare disease.2 3 SWS is usually 
caused by an activating somatic mutation in 
the gene GNAQ, encoding the Gαq subunit in 
the affected tissue.1 Diagnosis is based on the 
classic PWB at birth and vascular findings in 
brain MRI that are routinely acquired during 
infancy. The disease is not commonly fatal but 
is incurable.4 5 Neurocognitive impairment by 
school age (6–10 years of age) is a primary 
issue in SWS.

A landmark event in the progression of 
SWS is the presence or absence of seizures 
by 2 years of age (figure  1). About 15% of 
patients with SWS do not develop seizures by 
2 years and they often enjoy good school-age 

Strengths and limitations of this study

	► We will retrospectively gather multisite neuroimag-
ing and comprehensive data from  >100 subjects 
with Sturge-Weber syndrome, a rare disease, com-
pared with prior single-site studies with typically 
only a dozen or so patients.

	► This will be the first rigorous multisite neuroimag-
ing biomarker study in the presymptomatic phase of 
Sturge-Weber syndrome, compared with most stud-
ies focusing on the postsymptomatic phase.

	► We will develop and use statistically rigorous lesion-
symptom mapping to predict neurocognitive out-
comes in Sturge-Weber syndrome and rigorously 
test whether combining clinical and MRI information 
outperforms brain MRI alone in outcome prediction.

	► Heterogenous brain MRI protocols (scanner, vendor, 
scanning site, age at MRI, etc) will be used; however, 
this heterogeneity increases the generalisability of 
the results.

http://bmjopen.bmj.com/
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neurocognitive outcomes6 7 Because of this, a critical 
time window to treat or intervene in patients with SWS is 
during infancy up to 2 years of age, the so-called presymp-
tomatic phase. In this phase, very early treatment with 
antiepilepsy drugs (AEDs, such as levetiracetam, with 
or without low-dose aspirin)8–10 may delay or even avoid 
seizure symptoms by 2 years of age and thus improve 
school-age outcomes.6 7 The evidence of the early onset 
of seizures resulting in worse neurologic outcome6 has 
led to a demand for early diagnosis and aggressive inter-
vention for those at increased risk of developing seizures.

However, two questions remain open. For one, how to 
accurately identify who is at risk to develop the seizure/
epilepsy symptoms by 2 years of age? These at-risk 
patients should be the ideal target patients to be included 
in future trials for testing AEDs in the critical ‘presymp-
tomatic’ time window. For the other, what are the under-
lying neuroanatomic mechanisms that drive infants with 
SWS to develop epilepsy/seizure symptoms before 2 years 
of age? The neuromechanisms should be the targets to 
design the next-generation AEDs or other presymptom-
atic treatment strategies.4 11

Infant brain MRI is suggested by recent expert consensus 
(20184; 2019)5 in the field to address these two open 
questions. This is because infant brain MRI is routinely 
acquired during the clinical care of patients with SWS 
and is non-invasive. Besides, MRI can probe 3D neuro-
anatomy, with both diagnostic value (commonly seen 
presymptomatic brain abnormalities including leptome-
ningeal, parenchymal and choroidal capillary venous 
malformations with congenitally abnormal and ectatic 
vessels)12 and prognostic value (abnormal neuronal exci-
tation,13 transient diffusion abnormalities14 15 and bilat-
eral hemispheric injuries1 as seen in MRI may suggest an 
adverse outcome). However, these findings were based on 
single-site data, small sample sizes (single-digit or only a 
dozen or so). Moreover, expert interpretations of MRIs 
are largely qualitative or descriptive and may not be repli-
cated across sites. This issue is further complicated by the 
limited clinical radiology expertise on this rare disease, 
especially in less developed regions or countries.4 16

To address these issues, this study aims to collect a 
relatively large multisite cohort for this rare disease and 
develop machine learning biomarkers. Existing MRI 
studies for SWS usually had ≤155 17–19 or dozens11 16 20 21 of 
patients with SWS in single sites. We aim to merge existing 
clinical data from Boston Children’s Hospital (BCH) and 
Kennedy Krieger Institute (KKI) to achieve an sample 
size at least five times bigger. Existing MRI studies for 
SWS mostly used expert reviews. We will leverage MRI 
analytics and machine learning algorithms, which have 
had success in characterising subtle yet complex injury 
patterns22 23 and in predicting outcomes for stroke,24 
tumour,25 autism26 and other neurologic diseases,27 but 
have not yet been used in SWS. Our hypothesis is that 
machine learning-driven MRI and clinical biomarkers 
can predict the onset or absence of seizure symptoms by 
2 years at a sensitivity and specificity higher than random 
guess (ie, 50%). Setting the random guess as the bar is 
because the lack of such a presymptomatic biomarker for 
SWS.

METHODS AND ANALYSIS
Overview
This retrospective study was approved by institutional 
review boards at BCH and KKI. Written consent was 
waived for the retrospective analysis of existing data that 
are anonymised. Figure  2 outlines the major compo-
nents of our study. We plan to start the study in April or 
December of 2022 (pending funding from National Insti-
tute of Health (NIH)). The study period will be for ~2 
years.

Part 1. Retrospective data acquisition
Find candidate patients
We plan to collect data for all patients who (a) were 
born between 2009 and 2020, (b) were under 2 years of 
age at the first MRI and (c) had SWS brain involvement 
confirmed by contrast-enhanced MRI before 2 years of 
age.

Patients will be primarily identified by clinical regis-
tries, in the neurology departments from patients cared 
by Dr. Pinto at BCH and Dr. Comi at KKI.

Figure 1  Need for the early prediction of risk to develop epilepsy/seizure symptoms by 2 years of age among patients with 
SWS in the ‘pre-symptomatic phase’. SWS, Sturge-Weber syndrome.
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A secondary source will be the hospital-wide database. 
We will search clinical database and picture achieving 
and communication system (PACS) imaging systems by 
the ICD codes for SWS (table 1). Candidates missed in 
the clinical registry will be further vetted by their clin-
ical records to confirm eligibility to be included in our 
database.

Query and fetch clinical data
We will review patients’ electronic health records (EHRs) 
and gathered the following clinical variables.

	► Demographics: sex, the extent of brain involvement, 
the extent of PWB (bilateral, unilateral in the left or 
right side), age at first MRI, year of MRI, age at elec-
troencephalogram (EEG) and clinical result, year of 
birth and family history of epilepsy

	► Treatment: whether the patient was treated presymp-
tomatically (ie, before the first onset of seizures).

	► Outcome by 2 years: the primary neurological 
outcome will be the presence or absence of seizure 
onset by 2 years, and the age at seizure onset if present. 
The secondary outcome is the SWS neuroscore 
(including seizure score). The neuroscore is a scale 
that measures seizure frequency, hemiparesis, visual 
field cut and cognitive function (points range from 0 
to 15, with lower scores indicating better neurologic 
status.28–31 Patients treated presymptomatically were 
assigned a seizure score of 0 at the time of treatment 
initiation. Subjects with a seizure score of 0 at 2 years 
of age are patients who have achieved 2 years of age 
without seizure onset.

Gather brain MRI data and quality control
We will use patients’ medical record numbers to search 
and download their brain MRIs in the clinical PACS. 
The Computational Health Research Integration System 
(ChRIS) platform offers this function,32 similar to other 

retrospective paediatric brain MRI projects at BCH.27 33 
KKI also hosts the i2b234 platform for this function.

MRI sequences to be downloaded include: T1-weighted 
(T1w; spin echo vs 3D gradient echo), T2-weighted 
(T2w) spin echo, susceptibility-weighted imaging 
(SWI) including the phase and magnitude images, or 
T2*-weighted gradient echo, fluid-attenuated inversion 
recovery (FLAIR), diffusion-weighted imaging or diffu-
sion tensor imaging (DTI) and postgadolinium-contrast 
T1w (spin echo or 3D gradient-echo T1 contrast (T1c) 
images).

For quality control, MRIs will be visually reviewed by 
imaging experts (Dr. Ou for BCH data and Dr. Lin for 
KKI data). MRIs with severe motion, artefacts or part of 
the brain missing will be discarded.

For the kept MRIs, we will record scanner vendors, 
scanner models, field of strength, in addition to the avail-
able sequences among those listed above.

Manage data
We will use REDCap35 to manually enter and maintain 
clinical variables from EHR. REDCap is Health Insurance 
Portability and Accountability Act (HIPAA)-complicant, 
secure and user-friendly and has been used in similar 
multisite database by this team.27

Part 2. Identify presymptomatic injury patterns for seizure 
outcome (population analysis)
MRI preprocessing
Each patient’s T1w brain MRI will undergo our exten-
sively validated brain MRI analysis pipeline. Steps include 
N4 bias correction,36 field of view normalisation,37 multi-
atlas skull stripping,38 atlas-based regional segmentation39 
as adapted and validated in infants 0–2 years of age.38 40 41 
The computed brain mask in T1w MRI will automatically 
skull strip other MRI sequences when rigidly aligned with 
the T1w MRI.2 To compare across patients, their T1w 

Figure 2  Outline of our study protocol.

Table 1  ICD-9/10 codes for SWS as a secondary source to query candidate patients beyond the clinical registry as the 
primary source

ICD-9 Meaning ICD-10 Meaning

759.6 Other hamartoses, not elsewhere classified Q85.8 Other phakomatoses, not 
elsewhere classified

757.32 Angiomatosis Q85.02 Other congenital malformations

759.6 Sturge (-Weber) (-Dimitri) (encephalocutaneous 
angiomatosis)

 �   �

SWS, Sturge-Weber syndrome.
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MRIs will be non-rigidly aligned into our atlas space33 
by our validated42 and public deformable image regis-
tration algorithm.43 DTIs will be used to derive the frac-
tional anisotropy (FA) and apparent diffusion coefficient 
(ADC) maps, after motion correction and tensor recon-
struction using Functional Magnetic Resonance Imaging 
of the Brain Software Library (FSL),44 by factoring out 
the effects of scanners and sites, while controlling for 
other covariates such as sex, age, race, etc. We will use 
the validated45 ComBat tool to harmonise MRI metrics 
extracted from multisite data.46

Abnormality detection
Figure 3 shows different types of abnormalities associated 
with SWS that manifest in multiparametric brain MRI:

	► atrophy, infarction and focal cortical dysplasia or 
polymicrogyria are often observed in T1w11 14 21 30 47–49 
and T2w50–52, FLAIR50–52 and SWI53;

	► abnormal veins (leptomeningeal venous malforma-
tion, enlarged deep medullary and ependymal veins) 
are often observed in T1w with Gadolinium-contrast 
enhancement (T1-Gad12 53–55), and SWI54 56;

	► calcification is best visualised on SWI53);
	► abnormal diffusion, accelerated myelination or 

ischaemic injury are often observed in ADC map,57–59 
a parameter map from diffusion MRI sequences; and

	► damages in the white matter microstructures or disrup-
tions in fibre tracts are often observed inFA map60–62 
of the DTI.

To automate the abnormality detection, we will extend 
our recently-developed algorithm that quantifies normal 
and detect abnormalities as outliers to normal.

The first major component in this algorithm is to quan-
tify normal through constructing age-specific normal 
brain atlases. The atlases will quantify the normal range of 
signals (mean and SD) at each voxel in a normal control 
cohort. We recently developed age-specific normal ADC 
atlases, based on ADC maps from 201 normal participants 
who were scanned during 0–6 years of age, divided into 
10 age groups (first 2 weeks, every quarter in the first year, 
then every year till 6 years).33 The atlases in each age 
group quantified voxel-wise normal range of ADC values, 
and characterised regional and hemispheric differences 
in early-childhood brain development patterns.40 The 
atlases are unbiased to any subject’s anatomy,63 64 based 
on our extensively-validated42 group-wise deformable 
image registration algorithm.43 We plan to build such 
age-specific atlases for each MRI sequence (T1w, T2w, 
FLAIR, SWI, ADC), based on our recently-gathered >200 
multi-parametric brain MRIs on normal participants. 
These normal brain MRIs are from published data 
acquired from Massachusetts General Hospital and BCH 
(see references for more details on demographics and 
imaging protocols)33 40 and they are distinctive from the 
SWS patient data we plan to merge from KKI and BCH.

The second step is to detect abnormalities. This will 
be done by converting the patient’s MRI signal in each 
sequence into a Z score map. The Z map will quantify 
voxel-wise deviation (eg, how many SD away) from the 
normal mean intensity at the corresponding voxel in the 
age-matched atlas of the same sequence. We recently used 
this strategy and successfully identified pre-symptomatic 
ischaemia lesions in ADC maps of 7 SWS patients.59 

Figure 3  Typical abnormalities (different rows) found in the brain MRI of patient with SWS, in multiple MRI sequences (different 
columns). Different figure panels are from different patients. Orange arrows point out the abnormal regions. ADC, apparent 
diffusion coefficient; FLAIR, fluid-attenuated inversion recovery; SWI, susceptibility-weighted imaging; SWS, Sturge-Weber 
syndrome.
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Another study used a similar strategy on T1w and T2w 
images (after histogram normalisation) and identified 
white matter abnormalities in preterm infant’s brain 
MRIs.65 We will do this for each MRI sequence, gener-
ating ZT1, ZT2, ZFLAIR, ZSWI and ZADC maps, and we will call 
abnormalities when Z values are lower than −2.

Accuracy for abnormality detection will be quantified 
by calculating the Dice overlap, sensitivity and specificity 
compared with expert-annotated abnormality regions. 
However, expert annotations of exact abnormality 
boundary in patients with SWS will be subjected to intra-
reader/inter-reader variability. Therefore, an alternative 
approach is to indirectly evaluate the accuracy of abnor-
mality detection in the context of pattern analysis and 
individual outcome prediction (later sections).

Mapping brain injury patterns to outcome
We will focus on the group differences between those 
who had MRI and no symptom till 2 years (group A) 
and those whose seizure occurred after MRI and before 
2 years (group B). The postsymptomatic patients (first 
MRI occurred after seizures but before 2 years of age) will 
form a group C that serves as a validation cohort.

The key question is the ‘neural substrate’ under-
lying outcome—namely, patterns of brain injuries in 
the presymptomatic MRI that underpin the subsequent 
development of seizure by 2 years? This maps to group 
analysis between group A and group B.

We will use the lesion-symptom mapping (LSM) frame-
work66 67 to identify the neural substrate of the outcomes 
(seizure onset or not) by 2 years. To reduce false positives, 
we will control for patient sex, age at MRI and whole-brain 
abnormality volume as covariates.68 69 Three versions of 
LSM models will be used and compared. Voxel-wise LSM 
(V-LSM) compares whether the presence or absence of 
abnormality at each voxel is statistically associated with 
the binary outcomes across patients.68 A limitation of 
V-LSM is that it overlooks the potential interaction among 
voxels. To address this, multivariate LSM (M-LSM) jointly 
considers voxels and voxel clusters and uses multivar-
iate machine learning (support vector machine (SVM)) 
to find a subset of voxels that jointly associate with 
outcomes.70 71 A potential limitation of M-LSM is that the 
autoselected voxel clusters may not have anatomic expla-
nations. To address this, the latest generation of LSM, 
known as connectome-based LSM or C-LSM,72–74 builds 
on findings in NIH’s human connectome project75–77 
and NIH’s Brain Research Through Advancing Innova-
tive Neurotechnologies (BRAIN) initiative77 and quan-
tifies which fibre bundles or functional brain circuits, if 
injured, are associated with outcomes.72 The assumption 
is that patients may differ in exact anatomic locations that 
are injured, but their injuries may intersect with the same 
fibre bundles or brain circuit, which will explain why they 
experience similar outcomes.

LSM successfully identified neural substrates of survival 
and language outcomes after adult brain tumor78; LSM 
identified neural substrates of language,79–81 motor,82 

word comprehension,83 voice recognition,84 attention,85 
computational ability82 and somatosensory outcomes86 
after adult stroke lesions, etc. These studies used one 
LSM model, not three, and mostly V-LSM, the basic 
LSM model. We plan to use all three LSM models, with 
different assumptions, for the first time in SWS, based on 
the identified abnormality regions from the previous task 
(abnormality detection).

We will use two methods to validate the identified neural 
substrate for the outcome. One indirect validation will be 
by comparison with group C (postsymptomatic cohort). 
We hypothesise that the injury patterns that differentiate 
between group A and group B are the early and subtle 
stage of abnormalities that will also manifest, to a more 
severe extent, in group C. The other validation is a direct 
quantification of the accuracy in individual predictions, 
as described next.

Part 3. Outcome prediction (individual precision)
The previous part 2 focuses on the group contrast. 
However, patients in the same outcome group are 
different in their clinical and MRI characteristics. The 
key question in this part 3 is: how to use the presymp-
tomatic brain MRI to predict which patient is at risk to 
develop seizures after MRI and by 2 years? This is indi-
vidual prediction.

Traditional machine learning models
SVM87 88 or random forest (RF),89 90 represent each 
patient by a feature vector. One set of features will come 
from the presence or absence (1/0) of abnormality in 
the key neuroanatomic regions as identified by V-LSM, 
M-LSM and C-LSM neural substrate pattern analysis. This 
set of features assumes that the spatial patterns of abnor-
malities can infer outcome. Our second set of features 
will be imaging appearance features, as listed in table 2. 
We will concatenate features in neural substrates (spatial 
features) and imaging appearance features into a long 
feature vector to represent a patient. We will use our itera-
tive forward inclusion and backward elimination (iFIBE) 
feature selection algorithm to automatically identify the 
subset of features that optimally predict outcomes.43 91–94 
Here, optimality is defined as the sensitivity, specificity 
and area under the receiver operating characteristic curve 
(AUC) in k-fold (we will choose k=5) cross validations.

Not all features are equally useful. Some features may 
be redundant. To select the best feature combinations, 
we developed and implemented into software an iFIBE 
feature selection tool.43 91 Usually, iFIBE automatically 
selects 5–70 features out of hundreds to thousands of 
features. It automatically decides how many features 
to select, based on tasks. It starts from the single most 
predictive feature (by AUC in cross-validation) and iter-
atively adds features that increase the AUC than adding 
any other feature. When no more features can be added 
that further improves AUC, the algorithm removes 
features from the selected subset, one at a time, such 
that the removed feature will increase the AUC of the 
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remaining feature subset more than removing any other 
feature. The iFIBE algorithm iterates between adding and 
removing features, until no more features can be added 
or removed to increase the AUC. Using our iFIBE feature 
selector43 91 with Gaussian-kernel SVM,87 88 we selected 
12 texture features out of ~200 features for deformable 
brain MRI registration42 43 95; we selected 7 from >3 00 000 
features for histology-based tumour staging (AUC=0.96) 
and grading (AUC=0.83),91 from 83 patients; we selected 
53 features among  >2000 brain MRI features for classi-
fying bipolar disorder, major depression and normal 
controls (AUC=0.61),92 from 113 subjects; and, we 
selected 69 from >2000 brain MRI features for diagnosing 
schizophrenia (AUC=0.75),93 from 124 subjects.

These MRI features and the SVM/RF prediction models 
are commonly used radiomics features and models for 
predicting brain disease progression and outcomes. The 
use of SVM and RF is because of their wide use in radio-
mics to predict brain disease progression and outcomes, 
and also because they are the baseline model on which 
we built the iFIBE feature selection algorithm (ie, our 
iFIBE feature selection is at the best performance when 
coupled with SVM and RF). Using some of these MRI 
features in prediction models has led to 0.6–1.0 sensi-
tivity/0.76–0.99 specificity classifying original or meta-
static brain tumor,96 97 0.77–0.93 sensitivity/0.76–0.92 
specificity predicting good/poor outcomes after acute 
brain haemorrhage,98 99 0.91–0.94 sensitivity/0.91–1.0 
specificity grading brain tumor100 0.86 sensitivity/0.92 
specificity predicting psychomotor outcome in preterm 
neonates,101 and 0.71–0.82 sensitivity/0.68–0.92 speci-
ficity predicting multiple sclerosis worsening or not102 
or predicting relapsing-remitting multiple sclerosis (MS) 
patients.103

Other clinical features include patient sex, the extent 
of PWB (left/right/bilateral), age at first MRI, the extent 

of brain involvement and EEG report (normal/not). 
Our hypothesis is that combining these clinical variables 
with MRI features will improve the sensitivity and spec-
ificity of outcome prediction compared with using MRI 
features alone. Our feature selection algorithm will be 
used to select the subset of clinical and MRI features that 
together best predicts the outcome.

Deep learning
Deep learning convolutional neural network (CNN) takes 
the whole image or image patches as input for outcome 
prediction. We will use the transfer learning strategy,104 
using the pretrained 2D CNN models that were trained in 
the ImageNet database (>14 million natural images).105–107 
The big data-powered pretrained CNN model will be 
refined in our SWS cohort, on 2D slices that contain 
the abnormal regions. This transfer learning strategy is 
widely used to enable and stabilise deep learning in small 
sample studies. Successful applications included image-
based classification and outcome prediction in 2D chest 
X-ray images,104 108 2D retina images,109–112 2D histological 
images113–118 and recently in 3D brain MRI for tumour 
classification.11 Prediction results on various slices of the 
same patient can be combined through majority voting 
into a final prediction.116 This plan avoids training a 3D 
CNN directly on our data, where the sample size may lead 
to overfitting. The accuracy of deep learning outcome 
prediction will also be quantified by sensitivity, specificity 
and AUC in fivefold cross-validations and be compared 
with those metrics by the traditional machine learning.

The transfer learning strategy has been commonly used 
to deal with small sample problems. For 2D images, we 
can initialise with the benchmark artificial intelligence 
(AI) model from imageNet, and refine the model by 
samples in a specific task, for each specific AI study.104 
The benchmark AI model can initialise studies (1) across 

Table 2  MRI appearance features characterising abnormalities for outcome prediction.

Categories Details of features

I.Anatomy of 
abnormalities

I.1. Mass centre in standard atlas space;
I.2. Percentage of the whole-brain volume and the volume of each of the 61 auto-segmented brain 
structures being injured39 41;
I.3. Ratios of volumetric injury in the same brain structures between the left and right hemisphere;
I.4. Percentage and distribution of abnormalities in 28 major fibre tracts as defined in the JHU atlas.145

II. Geometry of 
abnormalities

II.1. Volume of abnormal regions;
II.2. Maximum diameter along different orthogonal directions, maximum surface of abnormal regions, 
geometric compactness, spherecity, surface-to-volume ratio in the abnormal regions.

III. Heterogeneity of 
abnormalities

III.1. Histogram analysis (0, 25, 50, 75 and 100-percentile) of T1w, T2w, T1-Gad, FLAIR, ADC, SWI, ZT1w, 
ZT2w, ZFLAIR, ZADC, ZSWI signal values within the abnormal regions;
III.2. Skewness (asymmetry), kurtosis (flatness), and randomness (entropy, SD) of T1w, T2w, T1-Gad, 
FLAIR, ADC, SWI, ZT1w, ZT2w, ZFLAIR, ZADC, ZSWI signal values within abnormal regions;

IV. Texture of 
abnormalities

IV.1. Gray-level co-occurrence matrix features and gray-level run-length matrix of T1w, T2w, T1-Gad, 
FLAIR, ADC, SWI, ZT1w, ZT2w, ZT1-Gad, ZFLAIR, ZADC, ZSWI signal values within abnormal regions;
IV.2. fractal analysis, Minkowski functionals, wavelet transform and Laplacian transforms of Gaussian-
filtered images for the abnormal regions.

ADC, apparent diffusion coefficient; FLAIR, fluid-attenuated inversion recovery; SWI, susceptibility-weighted imaging.
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sample size: trained in  >14 million images in ImageNet, 
it can initialise other AI studies with only hundreds to 
thousands of samples104 114 119; (2) across tasks: trained to 
recognise natural objects (eg, cats, dogs, balloons, etc), 
it can initialise clinical AI tasks, such as disease diag-
nosis,104 110 111 113 115 120 severity evaluation,109 117 118 treat-
ment evaluation3 and prediction of prognosis108 112 114 121 
and (3) across imaging modalities: trained in camera-
acquired natural images, it can initialise studies involving 
chest X-ray images,104 108 retina images110 111 and histo-
logical images.113 114 119 In these Nature, Cell, Lancet, 
JAMA, PNAS studies, initialisation with the benchmark 
model and refinement with samples in each specific 
AI task has led superior accuracies than training from 
scratch in specific tasks.104 122 In 3D medical images, we 
just trained a 3D benchmark AI model from 16 705 brain 
MRIs across the lifespan for predicting the continuously 
valued age.123 124 This offers one of the first benchmark 
AI models that can be transferred to small sample size 
studies such as in this SWS case. We will test the predic-
tion accuracy in SWS with and without transferring the 
benchmark model.

Integrate MRI and non-MRI information
We hypothesise that such integration can more accu-
rately predict outcomes than using MRI alone. In tradi-
tional machine learning models, clinical features can be 
concatenated into the feature vector for each patient. 
The remaining steps (classification, feature selection and 
cross-validation) stay the same. In deep learning models, 
clinical features can be added into each feature layer in 
the CNN architecture,125 and the rest is the same. In both 
cases, the learning process will automatically parse the 
interaction between MRI and clinical information and 
find the best combination. We will compare the sensi-
tivity, specificity and AUC between the traditional and 
deep learning models after combining MRI and clinical 
information.

Expected sample size and power analysis
From clinical registries, we have identified 98 patients (62 
from KKI and 36 from BCH) with brain MRIs before 2 
years of age, of which 63 (42 from KKI and 21 from BCH) 
had the first MRI before the onset of seizure. We expect 
a more thorough search of clinical registries and ICD-
based hospital-wide search can bring us to the expected 
80 sample size for infants who had the first MRI before 
the first onset of seizure. This sample size will be >5 times 
bigger than most existing presymptomatic studies for 
SWS.

In the single-variate analysis, with power=0.8 and 
alpha=0.05, correlating a predictive variable and the 
neuroscore outcome variable will need 194, 85, 47, 29 
subjects to call significance if the correlation is 0.2, 0.3, 
0.4, 0.5. Between patient groups presenting and not 
presenting seizure symptoms by 2 years of age, we need 
393, 99 or 63 patients to call significant group differ-
ences if a feature has a shared SD between two groups 

and the difference in this feature between two groups is 
20%, 40%,or 50% of the mean of one group. With our 
expected sample size (BCH+KKI), we will be able to call 
a predictive variable significantly associated with outcome 
if the correlation is greater than 0.41, and the group 
difference is more than 50% of the mean in one group.

In multivariate machine learning, our expected sample 
size of 80 will allow our algorithm to select up to eight 
MRI and clinical variables for outcome prediction, 
according to the ‘rule of 10’ in multivariate ML predic-
tion.126–128 Our algorithm typically selects 5–10 variables 
from hundreds of variables extracted from MRI and 
clinical variabels.11 14 25 48 49 Thus, overfitting is not a big 
concern in this multisite MRI data for SWS.

Patient and public involvement
Patient advocacy groups will be involved in the distribu-
tion of the summary of the findings after publication of 
results. The development of the research question was 
informed by the unmet needs determined during the 
Sturge-Weber Foundation Clinical Care Network confer-
ence in 2018. Patients or the public were not involved in 
the design, or conduct, or reporting or dissemination 
plans of our research.

DISCUSSION AND DESSEMINATION
Secondary use of hospital-hosted data can be time-efficient 
and cost-efficient. This efficiency is further amplified in 
rare diseases. A typical clinical trial often requires signif-
icant funding and years to collect data from single digits 
or dozens of patients with SWS. Our study protocol, on 
the other than, plans to retrospectively collect presymp-
tomatic data for  ~80 patients with SWS who had neuro-
imaging under 2 years of age and were cared in BCH and 
KKI, two large nationwide centres for SWS care, including 
presymptomatic SWS care.

The importance of identifying reliable biomarkers for 
early diagnosis of SWS relies on the potential for presymp-
tomatic intervention impacting neurological outcomes of 
SWS. The first goal of this study is to further elucidate 
the pathogenesis of early epileptogenesis and brain injury 
in SWS by quantifying and comparing neuroimaging 
patterns, which reflect the integrity and reorganisation 
of neural networks. Comparing brain MRIs in patients 
with SWS with or without seizures after the first MRI will 
identify injury patterns that may aid early diagnosis of 
SWS brain involvement, and guide treatment to improve 
the prognosis of those at high risk for seizures before 2 
years of age and subsequent cognitive and neurologic 
impairment.

SWS is a developmental disorder and the epileptogen-
esis mechanism during early ages will likely differ from 
the mechanisms in the mature brain. Prior studies have 
repeatedly associated early age of seizure onset in SWS 
with worse neurologic outcome, more severe epilepsy 
and worse cognitive outcome.6 48 129 Thus, delaying or 
preventing seizure onset in SWS has become a main 
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treatment goal driving recent efforts to enhance early 
diagnosis of brain involvement.9 Standard imaging 
techniques and assessments result in only about a 25% 
sensitivity in early imaging130 resulting in the loss of 
opportunity to intervene early in many children and 
slowing efforts to determine the most effective presymp-
tomatic treatment. The proposed quantitative and objec-
tive study may improve early diagnosis. More infants with 
SWS brain involvement may benefit from presymptom-
atic studies, anticipatory guidance and close monitoring 
for neurologic and developmental impairments. Zallman 
et al showed that infants with PWBs and evidence of SWS 
brain involvement on imaging were more likely to receive 
appropriate early care, compared with those who were 
not diagnosed before the onset of seizures.130

SWS is a spectrum disorder with a well-identified patho-
logical process allowing precise diagnosis, and it is an 
excellent model for LSM to quantify neuroanatomic basis 
of outcomes. The brain involvement ranging in extent 
from single lobe (usually occipital) to extensive bilateral 
brain involvement of both hemispheres.131 As a result, the 
most important factor determining the neurologic and 
cognitive outcome, other than the age of seizure onset, 
is the extent of brain involvement. The greater extent 
of SWS brain involvement is correlated with earlier age 
of seizure onset.131–133 Early age of seizure onset, partic-
ularly less than a year of age, has been associated with a 
significant impact on intelligence quotient (IQ),48 worse 
hemiparesis129 and lower cognitive function quality of 
life.28 Therefore, the full extent of SWS brain involve-
ment, as determined by later MRI imaging with contrast 
and appropriate imaging, after a year of age, is needed; 
early imaging, even when abnormal, can underestimate 
the extent of brain involvement. The extent of brain 
involvement (on imaging after a year of age) will be an 
important clinical factor in the AI analysis.

Adding clinical variables to neuroimaging is important. 
Males are associated with worse cognitive outcomes, and 
with a greater risk of suicidality in SWS.134 135 Whether 
gender impacts the early evolution of SWS as manifested 
in neuroimaging remains to be studied. A family history 
of seizures or epilepsy is associated with an early age of 
seizure onset in SWS.136 This suggests that genetic factors, 
beyond the underlying somatic mutation in GNAQ, have 
a role in determining the timing of seizure onset in SWS.1 
The extent of skin involvement with PBW may also be 
a prognostic factor. A greater extent of PWB (bilateral 
vs unilateral/none) is associated with worse neurologic 
status.137 Bilateral skin involvement is associated with 
bilateral brain involvement. Therefore, the extent of skin 
involvement is to some extent a proxy for the extent of 
brain involvement that impacts the neurologic outcome. 
However, it has also been shown that patients with no PWB 
present later and have a better outcome than patients 
with a similar extent of brain involvement.138 139 This 
observation suggests that more extensive SWS (in terms 
of more structures (brain, skin and/or eye) involved is in 
some way different with regards to the evolution of brain 

injury, from less extensive SWS (brain only) involvement. 
Gender, family history of epilepsy and the extent of skin 
involvement are, therefore, also important predictive 
clinical factors to include in the AI neuroimaging model-
ling and analysis.

During early stage SWS, the extent of neuroimaging 
alteration is similar to that of other small diffuse lesions; 
our sample size is similar to other published datasets 
(including chronic stroke lesions140 141 and multiple scle-
rosis).142–144 Identificatication of biomarkers is a complex 
process but has proved to result in rapid bench-to-bedside 
translation in many other pathological conditions. The 
identification of reliable presymptomatic biomarkers will 
ultimately be used to predict response to therapies and 
influence ‘go’ or ‘no go’ decisions before advancing clin-
ical trials for SWS.

This protocol describes a multicentre effort to validate 
emerging techniques in a rare potentially devastating 
disease. The centres involved have the expertise and the 
combined number of cases, indicating the strong feasi-
bility of this study. The results will benefit future prospec-
tive trials.

Ethics and dissemination
The Institutional Review Boards at Kennedy Krieger Insti-
tute and Boston Children’s Hospital approval have been 
obtained at each site to retrospectively study this data. 
Results will be disseminated by presentations, publication 
and sharing of algorithms generated.
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