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Abstract: Reliable quantile estimates of annual peak flow discharges (APFDs) are needed for the
design and operation of major hydraulic infrastructures and for more general flood risk management
and planning. In the present study, linear higher order-moments (LH-moments) and nonparametric
kernel functions were applied to APFDs at 18 stream gauge stations in Punjab, Pakistan. The main
purpose of this study was to evaluate the impacts of different quantile estimation methods towards
water resources management and engineering applications by means of comparing the state-of-the-art
approaches and their quantile estimates calculated from LH-moments and nonparametric kernel
functions. The LH-moments (η = 0, 1, 2) were calculated for the three best-fitted distributions, namely,
generalized logistic (GLO), generalized extreme value (GEV), and generalized Pareto (GPA), and
the performances of these distributions for each level of LH-moments (η = 0, 1, 2) were compared in
terms of Anderson–Darling, Kolmogorov–Smirnov, and Cramér–Von Mises tests and LH-moment
ratio diagrams. The findings indicated that GPA and GEV distributions were best fitted for most
stations, followed by GLO distribution. The quantile estimates derived from LH-moments (η = 0, 1, 2)
had a lower relative absolute error, particularly for higher return periods. However, the Gaussian
kernel function provided a close estimate among nonparametric kernel functions for small return
periods when compared to LH-moments (η = 0, 1, 2), thus highlighting the importance of using
LH-moments (η = 0, 1, 2) and nonparametric kernel functions in water resources management and
engineering projects.

Keywords: water resources management; extreme events; return periods; probability distributions;
nonparametric

1. Introduction

Extreme environmental events have always been a vital part of human history. Floods,
rainstorms, droughts, and windstorms are some of the manifestations of these events,
which cause enormous destruction. Flood is often referred to as one of the most devastating
natural disasters in terms of damage to property, infrastructure, and the environment, even
threatening human lives.

Quantile estimations of floods, commonly extracted from annual peak flow discharges
(APFDs), are of great importance for the description of such events. These estimates allow
for the assessment of flood characteristics by associating their magnitude to a corresponding
frequency, from which mitigating hydraulic structures and management practices may
be designed. The objective of flood frequency analysis (FFA) is to obtain a flood quantile
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magnitude estimator for one or more stations on the river system. Depending on the
magnitude of the flood, an estimate of its return period may be required. The common
interest in estimating quantiles of extreme floods for different return periods, i.e., 50-year,
100-year, or 500-year flood, is the design of hydraulic structures such as dams, culverts, and
bridges [1–3].

The parametric estimation method (LH-moments) and nonparametric method (kernel
functions) were used in the present study to estimate the flood magnitude at different
return periods. In parametric methods, the APFDs are assumed to be independent and
identically distributed, as well as being drawn from a population with a known probability
distribution function (PDF). In addition, an adequate PDF is selected from a set of candidate
PDFs using a robust goodness-of-fit test. As described by [4], extensive literature for FFA is
available, not only for the detailed description of PDFs, but also for parameter estimation.
The commonly used PDFs for modeling of the APFDs include: generalized extreme value
(GEV), generalized logistic (GLO), generalized Pareto (GPA), Pearson type 3 (P3), log
Pearson type 3 (LP3), Weibull (WEI), extreme value type 1, extreme value type 2, normal,
log normal, gamma, and exponential [4–9].

The widely used parameter estimation techniques for PDFs include maximum like-
lihood, L-moments, LH-moments, and method of moments. The main drawback of the
maximum likelihood and method of moments is that the product moments of the APFDs
are similarly affected by the small sample size. Furthermore, the higher moments (e.g.,
coefficient of variation and skewness) are greatly influenced by the extremes observation in
the data series [6]. On the other hand, L-moments are less affected by extreme observations
in the data series [10]. Wang [11] introduced LH-moments, which are the generalization
of L-moments, using higher order, i.e., “H”, L-moments. Wang found that LH-moments
produce consistent quantile estimates for large return periods, since LH-moments provide
greater weight to the larger values in the APFD series and hence better fits to the upper
tail of PDFs. This characteristic is even more relevant when sample sizes are small, which
is a common reality of streamflow monitoring in developing countries, including Pak-
istan [8,9,12–14]. Various studies have been conducted on LH-moments in different regions
of the world [11,15–23]. Most of these researchers have focused on comparing LH-moments
with L-moments by using goodness-of-fit-tests for different PDFs.

The aforementioned studies were based on parametric methods, which require a priori
PDF selection. Alternative nonparametric methods do not assume the APFD series in a
distributional form. Many studies on FFA based on the nonparametric approach have been
conducted [24–33], among which kernel function estimators have stood out for producing
the most reliable nonparametric methods. Adamowski [24,25] proposed a nonparametric
kernel estimation for FFA and conducted a Monte-Carlo simulation experiment in order
to compare the nonparametric approach with parametric PDFs, namely, LP3 and WEI
distributions. His results show that the nonparametric method produces more accurate
estimates than parametric methods, but the probability of extrapolation is lower than
the highest data observed in the sample. Lall et al. [34] stressed the choice of a kernel
function that reflects the shape and bandwidth of FFA. Kernel function and bandwidth
selection techniques are implemented in three situations: Gaussian data, skewed data, and
mixed data.

By definition, the extreme event is rare and often occurs in a short time period;
therefore, estimating floods for large return periods is a challenging task, often leading to
gross errors in the estimation of quantiles. Another problem is the identification of a suitable
statistical model. The standard methods of estimation, including maximum likelihood,
method of moments, least squares, may not give consistent quantile estimates for large
return periods when the sample size is small. Therefore, we need an appropriate method
of estimation that gives consistent quantile estimates [35]. The current research attempts to
highlight the significance of LH-moments (η = 0, 1, 2) and nonparametric kernel functions in
FFA. On the one hand, this allows for comparison of the two estimation approaches within
this framework, while on the other hand, it observes the effect of utilizing RAE to evaluate
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quantiles for various return periods. This study does not imply that nonparametric kernel
functions are always the best fit and should be used in place of adequately constructed
parametric methods. However, the possibility of obtaining the best fit for nonparametric
kernel functions may be more significant when using FFA, as these approaches give precise
estimations for observed flood variables [36]. Therefore, the current study emphasizes
the significance of using LH-moments (η = 0, 1, 2) and nonparametric kernel functions to
develop a comprehensive framework for at-site FFA. The steps in the framework are as
follows: (i) selection of the optimized PDFs with a comprehensive level of LH-moments
(η = 0, 1, 2) for the annual peak flow of 18 stations; (ii) estimation of quantiles for various
flood return periods through LH-moments (η = 0, 1, 2) and nonparametric kernel functions;
and (iii) comparison of various flood return periods in terms of RAE. This paper is arranged
into five sections. Section 2 contains a detailed step-by-step explanation of the methodology.
The details of the study area are presented in Section 3. The results and discussions of the
study are provided in Section 4. Section 5 summarizes the conclusions of the study.

2. Methods
2.1. Linear Higher Order-Moments (LH-Moments)

LH-moments were proposed by [11] as the expectations of a linear combination of
higher-order statistics. Let n be the sample size drawn from the distribution F(x) = Pr(X ≤ x);
then the four LH-moments are defined as follows:

λ
η
1 = E

[
X(η+1):(η+1)

]
(1)

λ
η
2 =

1
2

E
[

X(η+2):(η+2) − X(η+1):(η+2)

]
(2)

λ
η
3 =

1
3

E
[

X(η+3):(η+3) − 2X(η+2):(η+3) + X(η+1):(η+3)

]
(3)

λ
η
4 =

1
4

E
[

X(η+4):(η+4) − 3X(η+3):(η+4) + 3X(η+2):(η+4) − X(η+1):(η+4)

]
(4)

where

E
[

X(j:n)

]
=

m!
(j− 1)!(m− 1)!

1∫
0

x(F) Fj−1(1− F)n−jdF (5)

When η = 0, LH-moments become equal to L-moments [10]. As η increases, it re-
flects more and more characteristics of the upper part of the PDFs and extreme events
in data. Here, λ

η
1 provides the location of the distribution, λ

η
2 is the spreadness of the

distribution, λ
η
3 represents how the upper part of the distribution is asymmetric, and

λ
η
4 measures the peakedness of the upper parts of the distributions. For η = 0, 1, 2, the

LH-moments are referred to as L-moments, L1-moments, and L2-moments, respectively.
The LH-moment ratios are described below.

τ
η
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1
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λ
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2
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τ
η
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λ
η
4

λ
η
2

(8)

Let x1 ≤ x2 ≤ . . . ≤ xn be the order statistic; then the unbiased estimators of LH-moments
are given below.
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The sample LH-moment ratios are as follows:
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2.2. Estimation of the Parameters of the Selected PDFs Based on LH-Moments

Several PDFs for fitting flood series exist in FFA; among them, the GLO, GEV, and GPA
distributions have been recommended in Pakistan by various researchers to model extreme
flood events [8,9,13,14,37–39]. Based on the comprehensive literature, three PDFs were
selected in the current study, i.e., GLO, GEV, and GPA. The parameters of each respective
PDF were estimated using the LH-moments and given below.

2.2.1. Generalized Logistics (GLO) Distribution

GLO distribution is a generalized variant of the logistic distribution [40,41] that has
been applied in recent years to assess extreme value events. Since GLO was recognized
as the acceptable approach for FFA in the UK [42], its use in hydrology has gained pop-
ularity [43]. The PDF, distribution function (DF), and quantile function (QF) of the GLO
distribution are expressed, respectively, by:

f (x) =
1
α

[
1− k

(
x− ξ

α

)]( 1
k−1)

[
1 +

{
1− k

(
x− ξ

α

)}( 1
k )
]−2

(16)

F(x) =

[
1 +

{
1− k

(
x− ξ

α

)}( 1
k )
]−1

(17)

x(F) = ξ +
α

k

[
1−

(
1− F

F

)k
]

(18)

where x is the APFDs, k is the shape parameter, ξ is a location, and α is a scale parameter.
These parameters are estimated by [17] using LH-moments and given below:
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α̂ =
Γ(η + 2)(η + 2)β̂n+1 − (η + 1)β̂n

Γ
(

η + 1− k̂
)

Γ
(

1 + k̂
) (19)

ξ̂ = (η + 1)β̂n −
α̂

k̂

1−
Γ
(

η + 1− k̂
)

Γ
(

1 + k̂
)

Γ(η + 1)

 (20)

k̂ = −
(η + 3)(η + 2)β̂n+2 −

[
(η + 2)2 + (η + 2)(η + 1)

]
β̂n+1 + (η + 1)2 β̂n

(η + 2)β̂n+1 − (η + 1)β̂n
(21)

2.2.2. Generalized Extreme Value (GEV) Distribution

The GEV was developed by [44] as a feasible tool for extreme value analysis, and it
has gained widespread favor in FFA. The GEV distribution PDF, DF, and QF are written,
respectively, as:

f (x) =
1
α

[
1− k

(
x− ξ

α

)]( 1
k−1)

e−[1−k( x−ξ
α )]

( 1
k )

(22)

F(x) = exp

{
−
[

1− k
(

x− ξ

α

)] 1
k
}

(23)

x(F) = ξ +
α

k

[
1− (−lnF)k

]
(24)

where k, ξ, α are shape, location, and scale parameters, respectively, which are estimated
by [11] and are described below:

α̂ =
k̂
[
(η + 2)β̂n+1 − (η + 1)β̂n

]
Γ
(

1 + k̂
)[

(η + 1)−k̂ − (η + 2)−k̂
] (25)

ξ̂ = (η + 1)β̂n −
α̂

k̂

[
1− (η + 1)−k̂Γ

(
1 + k̂

)]
(26)

k̂ = a0 + a1

[
τ

η
3

]
+ a2

[
τ

η
3

]2
+ a3

[
τ

η
3

]3
(27)

2.2.3. Generalized Pareto (GPA) Distribution

Pickands [45] proposed GPA distribution, and several scholars have widely acknowl-
edged it as the logical alternative for evaluating severe events [46,47]. The PDF, DF, and QF
for GPA distribution are given, respectively, by:

f (x) =
1
α

[
1− k

α
(x− ξ)

]( 1
k−1)

(28)

F(x) = 1−
[

1− k
α
(x− ξ)

] 1
k

(29)

x(F) = ξ +
α

k

[
1− (1− F)k

]
(30)

The location (α), scale (ξ), and shape (k) parameters were estimated by [17] and are stated below:

α̂ = −
k̂Γ
(

η + 3 + k̂
)

Γ
(

η + 2 + k̂
)
(η + 2)β̂η+1 − (η + 1)β̂η

(η + 1)!Γ
(

1 + k̂
)[

(η + 2)Γ
(

η + 2 + k̂
)
− Γ

(
η + 3 + k̂

)] (31)
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ξ̂ = (η + 1)β̂n −
α̂

k̂

1−
(η + 1)Γ(η + 1)Γ

(
1 + k̂

)
Γ
(

η + 2 + k̂
)

 (32)

k̂ = −
−5− 2η +

(η + 3)(η + 3)β̂η+2 − (η + 1)β̂η

(η + 2)β̂η+1 − (η + 1)β̂η

−1 +
(η + 3)β̂η+2 − (η + 1)β̂η

(η + 2)β̂η+1 − (η + 1)β̂η

(33)

2.3. Goodness-of-Fit (GOF) Tests

Four statistical measures, namely, the Anderson–Darling (AD) test, Kolmogorov–
Smirnov (KS) test, Cramér–Von Mises (CVM) test, and LH-moment ratios (LH-ratios)
diagram, were used in this study to determine the GOF tests for the selection of PDFs using
LH-moments (η = 0, 1, 2). The PDFs for the APFDs that produced the smallest values for
all of these GOF measures (AD test, KS test, and CVM test) were determined as a best-fit,
and hence they were chosen for further estimation of quantiles. These GOF tests were
previously applied to peak flow data and are frequently used to choose the best-fitting
PDFs in FFA [8,9,35,48].

The AD test is used to evaluate the fit of an observed distribution function (DF) to its
theoretical DF. The AD test gives a higher weight to the PDF’s tail, which is a necessary
feature in modeling extreme events [35,48]. Heo et al. [49] describe the AD test statistic
as follows:

A2 = −n− 1
n

n

∑
i=1

(2i− 1)log F(xi)−
1
n

n

∑
i=1

(2n− 2i− 1)log F(xi) (34)

Here, A2 denotes the test result, n represents the sample size, x is the variable being studied,
and F(xi) denotes the DF.

The KS test is based on the empirical DF and is used to assess whether a sample is
drawn from a hypothesized continuous distribution. Assuming we have a random sample
(x1, x2, x3, . . . , xn) from some distribution, then empirical DF is as follows:

Fn(x) =
1
n
[Number o f observations ≤ x] (35)

The maximum vertical distance between the theoretical PDF and empirical DF determines
the KS statistic (D). The KS test statistic (D) is as follows:

D = max1≤i≤n

[
F(xi)−

i− 1
n

,
i
n
− F(xi)

]
(36)

where xi is the ith order statistic, n signifies the size of the random sample, and F(xi)
indicates the theoretical DF.

The CVM test, an alternative to the KS test, is used to compare DF to a given empirical
DF. Let (x1:n ≤ xi:n ≤ xn:n) be the order statistics of a sample size n; then the CVM test is
suggested in [50]:

ω2 =
1

12n
+

n

∑
i=1

[
2i− 1

2n
− F(xi)

]
(37)

Hosking [10] initially proposed the L-moment ratio diagram as the simplest way to de-
termine the best-fitted distribution for the actual data. The L-moment ratio diagram is
extended to each level of LH-moments (η = 0, 1, 2) [11]. The LH-ratio diagram is based
on the relationships between LH-skewness and LH-kurtosis. Therefore, this allows better
discrimination between the PDFs, and hence the identification of parent distribution can
also be achieved.
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2.4. Quantile Estimates for Different Return Periods of Floods Based on LH-Moments

Various scientific fields are interested in estimating quantiles corresponding to different
return periods. The return period is also known as a recurrence interval, defined as the
average of inter-event times between flood events [4]. Sometimes, the hydrologist wants
to know the chances of a flood reaching or exceeding a specific magnitude over a set time
period. This is known as the probability of occurrence or the probability of exceedance.
The probability that the exceedance for a given flood (q) with a return period (T) may be
exceeded once in T years is computed as follows:

P(QT ≤ q) =
1
T

(38)

Equation (39) shows the cumulative probability of non-exceedance as follows:

F(QT) = P(QT ≤ q) = 1− P(QT > q) = 1− 1
T

(39)

Equation (39) is used to calculate the magnitude of a flood for given return periods. We can
obtain quantile estimates for different return periods by substituting [F(QT) = 1 − 1/T] in
the quantile function of the GLO, GEV, and GPA distributions, as described below.

GLO⇒ x̂T = ξ̂ +
α̂

k̂

[
1− (T − 1)−k̂

]
(40)

GEV⇒ x̂T = ξ̂ +
α̂

k̂

[
1−

{
−log

(
1− 1

T

)}k̂
]

(41)

GPA⇒ x̂T = ξ̂ +
α̂

k̂

[
1− T−k̂

]
(42)

Equations (40)–(42) above are used to calculate the quantile associated with the required
return periods for the GLO, GEV, and GPA distributions at different levels of LH-moments
(η = 0, 1, 2).

2.5. Quantile Estimates for Different Return Periods of Floods Based on Nonparametric
Kernel Function

The nonparametric kernel function is based on kernel smoothing of the empirical QF
of the variable under study [32]. Let (x1, x2, x3, . . . , xn) be the series of observed APFDs
arranged in ascending order; then the mathematical form of the kernel estimator of the
nonparametric kernel function is expressed as [51]:

f̂h(x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
(43)

where K(.) refers to the kernel function prescribed type (Epanechnikov, Gaussian, Biweight,
or Triweight), n denotes the observation’s sample size, and h represents the bandwidth
or smoothing parameter that controls the variance of the nonparametric kernel func-
tion [25,34,52]. The relation between DF and density of the nonparametric kernel function
is as follows:

F̂h(x) =
x∫

−∞

f̂h(t)dt =
1
n

n

∑
i=1

H
(

x− xi
h

)
(44)

where

H(x) =
x∫

−∞

K(t)dt
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Equation (44) is widely used in hydrology to calculate the quantiles associated with
various return periods. The quantiles obtained by using a nonparametric kernel distribution
estimator are as follows (for details, see [53,54]):

x̂T = F̂−1
h

(
1− 1

T

)
(45)

Estimating the nonparametric kernel density method necessitates the selection of a
kernel function, K(.), and the computation of a smoothing parameter, or bandwidth, h (as
shown in Equation (44). The choice of K(.) is less critical, and different types of kernel
functions that provide good results can be used. This study applied the Epanechnikov,
Gaussian, Biweight, and Triweight kernel functions, which are commonly used in the
literature [24,25,53–57]. The expressions of standard kernel functions are given below:

Epanechnikov⇒ k(x) =


3
4
(
1− x2); i f |x| ≤ 1

0; otherwise
(46)

Gaussian⇒ k(x) =
1√
2π

e(−
x2
2 ); −∞ ≤ x ≤ ∞ (47)

Biweight⇒ k(x) =


15
16
(
1− x2)2; i f |x| ≤ 1

0; otherwise
(48)

Triweight⇒ k(x) =


35
32
(
1− x2)3; i f |x| ≤ 1

0; otherwise
(49)

In Equation (44), the smoothing parameter h plays a crucial role in the kernel estimator. In
practice, selecting an effective technique for computing h for an observed data sample is a
more complicated task due to the influence of the bandwidth on the shape of the associated
estimate. If the value of h is small, we will obtain an undersmoothed estimator with a large
variation. On the other hand, if h is large, the resultant estimator will be extremely smooth
and will be farther away from the function that we are attempting to estimate [32,53]. In
the context of the nonparametric kernel function, least-squares cross-validation, plug-in,
and cross-validation procedures were considered for bandwidth selection. Overall, all the
methods performed well both theoretically and practically; however, the least-squares cross-
validation method needs a very large sample size to achieve satisfactory findings [58,59].
The two different plug-in bandwidth approaches were investigated by [58,60]. The cross-
validation method was developed by [61], which showed promising results. Further,
it was discovered that both cross-validation and plug-in bandwidths produced similar
results in terms of DF estimation, but cross-validation had a clear disadvantage in terms of
computation time [53,54,59]. The plug-in method, which has been employed previously in
similar studies, yielded excellent results [54,60,62]. We used the plug-in approach suggested
by [60] to determine the bandwidth for nonparametric kernel estimation of the DF of APFDs
in this framework. The interested reader can obtain more theoretical information and a
comprehensive explanation of the Polansky and Baker plug-in approach for bandwidth
selection of the nonparametric DF; for details, see [59,60].

3. Study Area and Data

Climate change has significantly impacted the entire world. Its impacts may vary
from increases in the magnitude and frequency of natural disasters, such as floods and
droughts, to the extinction of species and the spread of vector-borne diseases. However,
the effects of climate change are not equally observed across the globe. As a matter of fact,
developing countries are much more vulnerable to climate change-related hazards, mainly
due to their lack of proper infrastructure. For instance, Pakistan has suffered significant
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economic losses in the past 6 to 7 years as a result of the recent increases on the melting
rate of South Asia’s glaciers, which leads to more frequent and severe floods.

Pakistan has a population of around 208 million people encompassing an area of
approximately 796,000 km2. The country is bounded by the Himalayan Mountains to the
north, India to the east, Iran to the west, and the Indian Ocean to the south (Figure 1).
Its altitudes vary from 8500 m in the northern regions to 0 m in the coastal regions, thus
having a strong orographic influence over monsoon winds. Pakistan’s climate is usually
considered hot and dry, being classified as semi-arid in the south and dry cold in the north
by means of Koppen climate classes [63].
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The Indus River and its tributaries, i.e., Sutlej, Beas, Ravi, Chenab, Jhelum, Swat,
and Kabul, are vital to the economy of Pakistan, as they are the main source of water
for irrigation, industry, and urban water supply. However, this river network is also
responsible for economic losses through large flood events, most frequent in the Punjab and
Sindh regions, affecting not only fertile agricultural lands, but also large urban centers near
the river network. This situation is aggravated when considering future climate change
scenarios, as higher variabilities in precipitation and glacier melting are projected, as well
as rises in sea level and storm surges, leading to stress of current drainage network systems,
especially during the monsoon season.

In this study, the annual maximum peak flows data of 18 sites of Pakistan, located on
five rivers, namely, Indus, Jhelum, Chenab, Ravi, and Sutlej, were used in this study. The
geographical location of these river sites is given in Figure 1. The data for these sites were
collected from the hydrology department of the Water and Power Development Authority
(WAPDA) and the Federal Flood Commission. Most of the annual maximum peak flows
at sites were recorded in the peak of the monsoon season (from July to September). The
annual peak flow discharge of 18 stations was measured in cusec. Summary statistics for
18 stations are given in Table 1. The highest mean peak flow discharge was recorded at the
Guddu station (609,909.423), and the lowest mean peak flow discharge was observed at
Islam station (49,089.45). The highest standard deviations were observed at Kotri, Sukkur,
Guddu, Qadirabad, Khanki, and Trimmu stations. The range of skewness varied from 0.552
to 4.240, while Guddu had the smallest skewness, and Mangla had the largest skewness.
Similarly, the kurtosis varied from −0.645 to 22.770, with Mangle, Kotri, Rasul, and Tarbela
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having the highest Kurtosis, while the lowest kurtosis was observed at Sukkur, Guddu,
Qadirabad, and Marala stations.

Table 1. Summary statistics of 18 stations.

Name of
Stations River Latitude

(North)
Longitude
(East)

Period
(Years) Mean Standard

Deviation Skewness Kurtosis
Minimum

Peak
Flow

Maximum
Peak
Flow

Tarbela Indus 33.99 72.61 1960–2013 386,962.963 87,785.537 2.626 11.806 273,000 835,000
Kalabagh Indus 32.95 71.50 1968–2013 464,719.956 151,843.363 1.186 2.102 237,297 936,453
Chashma Indus 32.43 71.38 1971–2013 475,333.046 149,635.274 1.22 3.727 214,045 1,038,873

Taunsa Indus 30.50 70.80 1958–2013 452,791.554 140,793.102 0.804 2.144 182,372 959,991
Guddu Indus 28.30 69.50 1962–2013 609,909.423 284,534.413 0.552 −0.557 170,831 1,176,150
Sukkur Indus 27.72 68.79 1982–2013 546,609.594 309,470.519 0.629 −0.645 126,130 1,172,000
Kotri Indus 25.22 68.22 1970–2013 395,262.068 379,599.333 3.705 18.290 47,100 2,409,000

Mangla Jhelum 33.15 73.65 1960–2013 132,481.778 136,385.297 4.240 22.770 20,460 932,700
Rasul Jhelum 32.68 73.50 1970–2013 134,418.386 161,219.596 3.582 15.787 19,702 952,170

Marala Chenab 32.68 74.43 1960–2013 308,572.407 196,419.272 1.097 0.227 93,150 792,765
Khanki Chenab 32.40 73.92 1925–2013 351,963.191 242,710.633 1.494 1.391 97,058 1,086,460

Qadirabad Chenab 32.33 73.73 1970–2013 356,547.704 247,771.998 1.030 0.106 76,336 948,520
Trimmu Chenab 31.14 72.15 1968–2013 261,376.217 194,828.961 1.099 0.1693 42,756 706,433
Panjnad Chenab 29.33 71.00 1960–2013 260,134.722 193,661.339 0.980 0.554 17,833 802,516
Balloki Ravi 31.22 73.86 1922–2013 87,914.728 64,039.572 2.183 6.180 14,000 399,356
Sidhani Ravi 30.58 72.07 1925–2013 64,143.427 56,691.878 2.159 4.916 8488 296,086

Sulemanki Sutlej 30.38 73.86 1975–2013 70,254.923 84,914.177 2.267 5.865 1506 399,453
Islam Sutlej 29.82 72.55 1974–2013 49,089.45 63,209.754 2.362 6.497 1231 306,425

4. Results and Discussion

The AD test, KS test, and CVM test were applied to each station in order to choose
the best-fit PDF among the GEV, GLO, and GPA. The selection of the best fitted PDF for
each station was based on the smallest GOF tests among the three PDFs. The best fitted
PDF results for each station according to GOF tests at a 5% significance level are reported
in Table 2.

Table 2. GOF results for GEV, GLO, and GPA distributions using LH-moments (η = 0, 1, 2).

Stations

L-Moments (η = 0) L1-Moments (η = 1) L2-Moments (η = 2)

AD Test KS Test CVM
Test AD Test KS Test CVM

Test AD Test KS Test CVM
Test

Tarbela GEV(0.984) GEV(0.975) GEV(0.973) GEV(0.395) GEV(0.605) GEV(0.670) GEV(0.233) GEV(0.332) GLO(0.360)
Kalabagh GLO(0.954) GLO(0.938) GLO(0.972) GLO(0.855) GLO(0.785) GLO(0.876) GLO(0.642) GLO(0.682) GLO(0.696)
Chashma GLO(0.983) GLO(0.965) GLO(0.970) GLO(0.943) GLO(0.895) GLO(0.951) GLO(0.801) GLO(0.836) GLO(0.853)

Taunsa GLO(0.811) GEV(0.537) GLO(0.705) GLO(0.832) GEV(0.606) GLO(0.761) GLO(0.762) GLO(0.627) GLO(0.753)
Guddu GEV(0.740) GLO(0.878) GEV(0.769) GEV(0.765) GLO(0.889) GEV(0.781) GEV(0.742) GEV(0.923) GEV(0.790)
Sukkur GPA(0.990) GPA(0.978) GPA(0.992) GPA(0.944) GPA(0.962) GPA(0.960) GPA(0.963) GPA(0.988) GPA(0.971)
Kotri GEV(0.974) GEV(0.837) GEV(0.924) GEV(0.947) GEV(0.821) GEV(0.916) GEV(0.859) GEV(0.831) GLO(0.887)

Mangla GLO(0.956) GLO(0.900) GLO(0.932) GEV(0.803) GEV(0.864) GEV(0.916) GEV(0.537) GLO(0.851) GLO(0.877)
Rasul GEV(0.946) GEV(0.984) GLO(0.939) GEV(0.962) GEV(0.988) GEV(0.950) GPA(0.928) GEV(0.991) GPA(0.943)

Marala GPA(0.969) GPA(0.973) GPA(0.974) GPA(0.758) GPA(0.823) GPA(0.880) GPA(0.735) GPA(0.875) GPA(0.787)
Khanki GEV(0.693) GPA(0.868) GEV(0.744) GEV(0.612) GEV(0.713) GEV(0.712) GEV(0.465) GEV(0.741) GEV(0.655)

Qadirabad GPA(0.995) GPA(0.996) GPA(0.999) GEV(0.930) GPA(0.983) GPA(0.988) GPA(0.943) GPA(0.985) GPA(0.968)
Trimmu GPA(0.779) GPA(0.778) GPA(0.726) GEV(0.683) GPA(0.679) GPA(0.699) GEV(0.698) GPA(0.622) GPA(0.648)
Panjnad GPA(0.908) GEV(0.879) GEV(0.878) GPA(0.914) GPA(0.885) GPA(0.894) GPA(0.933) GPA(0.897) GPA(0.906)
Balloki GEV(0.582) GEV(0.624) GEV(0.551) GEV(0.486) GEV(0.621) GEV(0.517) GEV(0.325) GEV(0.621) GEV(0.480)
Sidhani GEV(0.978) GEV(0.990) GEV(0.974) GEV(0.971) GEV(0.992) GEV(0.969) GEV(0.933) GEV(0.982) GEV(0.957)

Sulemanki GPA(0.996) GPA(0.994) GPA(0.998) GPA(0.998) GPA(0.991) GPA(0.998) GPA(0.999) GPA(0.990) GPA(0.998)
Islam GPA(0.900) GPA(0.753) GPA(0.877) GPA(0.931) GPA(0.693) GPA(0.885) GPA(0.936) GPA(0.715) GPA(0.886)

In the case of η = 0, it is clear from Table 2 that GPA and GEV distributions were best
fitted for seven stations, while GLO was best fitted for four stations according to the AD
test. Similarly, the KS test results well matching the results of the AD test except for Taunsa,
Guddu, Khanki, and Panjnad stations. According to the KS test results for η = 0, the most



Entropy 2022, 24, 898 11 of 20

appropriate PDFs were GPA and GEV. Investigating the CVM test results for η = 0, the
GEV distribution was suitable for most stations, followed by GPA distribution, which was
selected for six stations. Overall, in the case of η = 0, the results of the AD test, KS test,
and CVM test indicated that the GEV and GPA distributions were the most adequate for
most stations.

Moving forward to η = 1 in Table 2, the AD test selected the GEV distribution for the
highest number of stations (10 stations out of 18) followed by GPA distribution, which was
selected for five stations. However, the KS test and CVM test selected the GEV and GPA
distributions for the same number of stations, 8 and 7, respectively. Considering AD test,
KS test, and CVM test results for η = 1, the GEV distribution was selected for eight stations,
the GPA distribution for seven stations, and the GLO distribution for only three stations.
Finally, for η = 2, it is observed from Table 2 that the AD test and CVM test selected GPA
distribution for eight stations, GEV distribution for seven stations, and GLO distribution for
the remaining four stations. On the other hand, GPA and GEV distributions each yielded
the best-fit for seven stations based on the KS test.

It is also worthwhile to mention that the GOF test produced different results for
Mangla, Rasul, and Panjnad stations as we increased the value η = 1, 2. However, in
general, increasing η = 1, 2 had no effect on the results for most stations.

The LH-ratio diagram is a useful tool that simplifies analysis, demonstrating the
versatility of how various PDFs plot. Furthermore, it can be shown that PDFs can have
several different skewness and kurtosis values, rendering them more valuable for analyzing
the shape of the distribution. The LH-ratio diagram for η = 0, η = 1, and η = 2 of 18 stations
was plotted in Figure 2. It is observed from Figure 2, for η = 0, that most of the scatter points
were between the GEV and GPA distributions curves, whereas a few scattered points were
closed to the GLO distribution curve. Therefore, according to the L-ratio diagram (η = 0),
GEV and GPA were the most suitable PDFs for the annual peak flow series of 18 stations.
By observing Figure 2 in the case of η = 1 and η = 2, most of scattered points were closed
to the GPA distribution curve, followed by GEV. We also note from Figure 2 that as we
increased η = 1, 2, peak flow series tended to follow GPA and GEV distributions. Overall,
the findings obtained from GOF tests were generally in good agreement with the LH-ratio
diagram for most stations.

Further the relation between the return period and APFD was also established for
GEV, GLO, and GPA distributions. Figure 3 shows the curves for Balloki, Taunsa, and
Islam stations, highlighting how well the APFD series at lower return periods and upper
return periods were estimated by LH-moments (η = 0, 1, 2). It is seen from Figure 3 that the
GEV, GPA, and GLO distributions well fitted the observed APFD series at lower and higher
return periods. Figure 3 indicates that as the level of LH-moments increased (η = 1, 2), the
GEV, GLO, and GPA distributions performed well in reflecting the extreme tail at higher
return periods. In Figure 3, it is noted that most of the observations fell within 2–50 years
(0.02 ≤ p ≤ 0.5), implying that hazardous flood events with low probability or large return
periods (100 and 500) have rarely occurred at these stations.

In the planning and design of hydrological systems, it is critical to determine the
return period since a given flood event. Further, we calculated quantiles for different
return periods using LH-moments (η = 0, 1, 2) and nonparametric kernel functions; results
for Tarbela, Kalabagh, Qadirabad, and Trimmu stations are reported in Figure 4. The
results of quantile estimates in Figure 4 can be interpreted as follows: for Tarbela station’s
return period of 500 years, the GEV distribution (η = 0) produced quantile (847,553.3) is the
threshold value of flow that may occur once every 500 years on average. In other words,
there is only a 0.2% chance that in a return period of 500 years, one-time discharge (peak
flow) will exceed the threshold value (847,553.3) and consequently a flood will occur. At
the same time, 99.9% is the chance that the one-time discharge (peak flow) will be less than
the threshold value (847,553.3) in a return period of 500 years.
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Figure 3. Relation between return period and annual peak flow based on the LH-moments.
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We also investigated the impact of LH-moment choice (η = 0, 1, 2) and nonparametric
kernel functions on estimating quantiles associated with predefined return periods via
relative absolute error (RAE). The RAE is an assessment of the difference between the actual
flood estimate and the flood estimate by the best-fit PDF. The RAE was calculated using
the following equation, described in [35,48,64].

RAE =

∣∣∣∣X−Y
Y

∣∣∣∣ (50)

where X is the actual peak flow, and Y denotes the design quantile estimate obtained
through the LH-moments and the nonparametric kernel function.

Tables 3 and 4 summarize the RAE associated with each station using LH-moments and
a nonparametric kernel function, emphasizing the significance of evaluating techniques
for diverse return periods. It is crucial to investigate the discrepancy between actual
flood estimates and quantiles produced via PDF and the nonparametric kernel function.
Although all these PDFs passed GOF testing, there were still considerable discrepancies
in quantile estimations. These discrepancies are significant to policymakers, planners,
and decision-makers.

Table 3. RAE of quantile estimates for GEV, GLO, and GPA distributions using LH-moments
(η = 0, 1, 2).

Station Name Best Fitted Distribution 2 5 10 20 50 100 500

Tarbela
(η = 0) 0.008 0.009 0.015 0.028 0.053 0.077 0.156

GEV (η = 1) 0.004 0.005 0.008 0.011 0.017 0.022 0.035
(η = 2) 0.003 0.004 0.006 0.008 0.011 0.014 0.02

Kalabagh
(η = 0) 0.011 0.012 0.023 0.041 0.072 0.103 0.202

GLO (η = 1) 0.009 0.012 0.016 0.021 0.03 0.039 0.063
(η = 2) 0.009 0.013 0.015 0.018 0.024 0.029 0.045

Chashma
(η = 0) 0.01 0.012 0.022 0.036 0.061 0.085 0.156

GLO (η = 1) 0.01 0.014 0.017 0.022 0.03 0.037 0.059
(η = 2) 0.011 0.014 0.016 0.019 0.025 0.031 0.048

Taunsa
(η = 0) 0.009 0.012 0.019 0.029 0.046 0.061 0.106

GLO (η = 1) 0.01 0.014 0.016 0.02 0.027 0.033 0.05
(η = 2) 0.01 0.013 0.015 0.019 0.025 0.03 0.046

Guddu
(η = 0) 0.016 0.016 0.025 0.041 0.065 0.087 0.144

GEV (η = 1) 0.013 0.015 0.022 0.032 0.047 0.06 0.09
(η = 2) 0.012 0.015 0.02 0.028 0.039 0.047 0.067

Sukkur
(η = 0) 0.023 0.026 0.032 0.053 0.086 0.112 0.172

GPA (η = 1) 0.021 0.024 0.03 0.048 0.076 0.096 0.14
(η = 2) 0.018 0.021 0.027 0.043 0.066 0.082 0.114

Kotri
(η = 0) 0.03 0.041 0.043 0.081 0.159 0.235 0.483

GEV (η = 1) 0.019 0.021 0.03 0.047 0.075 0.099 0.163
(η = 2) 0.017 0.021 0.028 0.039 0.054 0.067 0.096

Mangla
GLO (η = 0) 0.042 0.046 0.073 0.079 0.159 0.235 0.47
GEV (η = 1) 0.016 0.018 0.026 0.042 0.068 0.09 0.148
GLO (η = 2) 0.016 0.018 0.026 0.037 0.056 0.072 0.119

Rasul
GEV (η = 0) 0.056 0.067 0.089 0.096 0.174 0.256 0.505
GEV (η = 1) 0.022 0.034 0.036 0.065 0.113 0.157 0.285
GPA (η = 2) 0.018 0.022 0.027 0.044 0.069 0.087 0.124

Marala
(η = 0) 0.022 0.024 0.031 0.052 0.09 0.124 0.214

GPA (η = 1) 0.017 0.018 0.025 0.041 0.069 0.092 0.151
(η = 2) 0.013 0.014 0.019 0.031 0.049 0.063 0.094
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Table 3. Cont.

Station Name Best Fitted Distribution 2 5 10 20 50 100 500

Khanki
(η = 0) 0.021 0.026 0.036 0.056 0.112 0.166 0.337

GEV (η = 1) 0.012 0.017 0.021 0.04 0.073 0.103 0.189
(η = 2) 0.009 0.01 0.016 0.025 0.04 0.053 0.087

Qadirabad
(η = 0) 0.025 0.029 0.034 0.057 0.098 0.133 0.226

GPA (η = 1) 0.022 0.023 0.029 0.048 0.079 0.105 0.166
(η = 2) 0.018 0.019 0.025 0.041 0.065 0.082 0.119

Trimmu
(η = 0) 0.027 0.032 0.035 0.06 0.105 0.145 0.253

GPA (η = 1) 0.022 0.024 0.03 0.05 0.083 0.109 0.175
(η = 2) 0.017 0.02 0.025 0.042 0.064 0.079 0.109

Panjnad
GEV (η = 0) 0.02 0.031 0.035 0.058 0.099 0.135 0.235
GPA (η = 1) 0.018 0.026 0.03 0.048 0.071 0.086 0.112
GPA (η = 2) 0.015 0.022 0.026 0.044 0.068 0.079 0.096

Balloki
(η = 0) 0.023 0.026 0.038 0.056 0.114 0.17 0.343

GEV (η = 1) 0.011 0.014 0.02 0.035 0.061 0.084 0.149
(η = 2) 0.008 0.01 0.014 0.021 0.032 0.04 0.06

Sidhani
(η = 0) 0.028 0.028 0.047 0.06 0.123 0.182 0.362

GEV (η = 1) 0.013 0.02 0.023 0.042 0.073 0.099 0.173
(η = 2) 0.012 0.012 0.019 0.03 0.046 0.059 0.093

Sulemanki
(η = 0) 0.053 0.059 0.085 0.09 0.173 0.253 0.512

GPA (η = 1) 0.037 0.042 0.054 0.076 0.138 0.193 0.355
(η = 2) 0.029 0.039 0.044 0.069 0.118 0.158 0.263

Islam
(η = 0) 0.058 0.068 0.091 0.096 0.175 0.256 0.518

GPA (η = 1) 0.042 0.044 0.063 0.08 0.149 0.211 0.397
(η = 2) 0.031 0.039 0.046 0.07 0.121 0.164 0.278

Table 4. RAE of quantile estimates for Epanechnikov, Gaussian, Biweight, and Triweight kernel functions.

Station Name Kernel Function Type 2 5 10 20 50 100 500

Tarbela

Epanechnikov 0.027 0.033 0.046 0.064 0.182 0.346 0.728
Gaussian 0.014 0.02 0.027 0.049 0.079 0.12 0.24
Biweight 0.029 0.047 0.064 0.087 0.211 0.39 0.74
Triweight 0.03 0.06 0.081 0.107 0.23 0.31 0.5

Kalabagh

Epanechnikov 0.01 0.024 0.101 0.124 0.2 0.23 0.33
Gaussian 0.004 0.01 0.018 0.023 0.032 0.07 0.125
Biweight 0.006 0.013 0.125 0.127 0.14 0.19 0.21
Triweight 0.014 0.016 0.145 0.149 0.17 0.198 0.24

Chashma

Epanechnikov 0.004 0.078 0.081 0.12 0.183 0.263 0.58
Gaussian 0.005 0.01 0.024 0.068 0.088 0.2 0.534
Biweight 0.003 0.055 0.127 0.152 0.214 0.434 0.63
Triweight 0.002 0.029 0.128 0.178 0.239 0.488 0.678

Taunsa

Epanechnikov 0.019 0.089 0.097 0.101 0.103 0.121 0.2
Gaussian 0.014 0.017 0.02 0.025 0.046 0.067 0.167
Biweight 0.019 0.115 0.116 0.122 0.129 0.222 0.29
Triweight 0.019 0.134 0.139 0.14 0.153 0.267 0.32

Guddu

Epanechnikov 0.013 0.014 0.023 0.091 0.182 0.311 0.671
Gaussian 0.003 0.005 0.017 0.042 0.11 0.224 0.422
Biweight 0.02 0.023 0.033 0.11 0.196 0.375 0.76
Triweight 0.025 0.023 0.054 0.127 0.215 0.46 0.845

Sukkur

Epanechnikov 0.032 0.035 0.069 0.139 0.216 0.297 0.532
Gaussian 0.027 0.03 0.035 0.06 0.1 0.19 0.383
Biweight 0.035 0.041 0.089 0.171 0.342 0.441 0.72
Triweight 0.035 0.046 0.089 0.199 0.438 0.564 0.783
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Table 4. Cont.

Station Name Kernel Function Type 2 5 10 20 50 100 500

Kotri

Epanechnikov 0.095 0.131 0.162 0.191 0.257 0.501 0.732
Gaussian 0.04 0.055 0.083 0.15 0.2 0.295 0.527
Biweight 0.05 0.11 0.13 0.158 0.222 0.45 0.69
Triweight 0.073 0.124 0.15 0.181 0.245 0.489 0.705

Mangla

Epanechnikov 0.107 0.127 0.132 0.154 0.231 0.476 0.845
Gaussian 0.051 0.068 0.099 0.134 0.198 0.345 0.695
Biweight 0.12 0.153 0.183 0.203 0.282 0.523 0.912
Triweight 0.135 0.17 0.185 0.212 0.292 0.545 0.989

Rasul

Epanechnikov 0.069 0.092 0.105 0.15 0.315 0.605 1.21
Gaussian 0.06 0.09 0.099 0.13 0.265 0.55 0.999
Biweight 0.083 0.101 0.163 0.193 0.386 0.71 1.421
Triweight 0.085 0.105 0.183 0.213 0.412 0.8 1.89

Marala

Epanechnikov 0.03 0.045 0.055 0.08 0.12 0.223 0.525
Gaussian 0.028 0.04 0.053 0.069 0.1 0.193 0.412
Biweight 0.055 0.075 0.097 0.13 0.274 0.498 0.875
Triweight 0.067 0.091 0.104 0.198 0.32 0.53 0.995

Khanki

Epanechnikov 0.081 0.09 0.124 0.175 0.243 0.475 0.822
Gaussian 0.043 0.075 0.106 0.135 0.203 0.422 0.79
Biweight 0.099 0.109 0.141 0.19 0.275 0.49 0.918
Triweight 0.103 0.116 0.142 0.203 0.303 0.503 1.116

Qadirabad

Epanechnikov 0.046 0.061 0.076 0.122 0.17 0.328 0.631
Gaussian 0.029 0.052 0.076 0.105 0.152 0.298 0.608
Biweight 0.058 0.073 0.079 0.139 0.185 0.347 0.675
Triweight 0.063 0.079 0.096 0.151 0.196 0.365 0.692

Trimmu

Epanechnikov 0.038 0.083 0.108 0.244 0.331 0.644 1.976
Gaussian 0.025 0.058 0.101 0.175 0.305 0.563 1.107
Biweight 0.033 0.063 0.106 0.261 0.36 0.682 2.19
Triweight 0.033 0.073 0.125 0.273 0.36 0.705 2.806

Panjnad

Epanechnikov 0.034 0.073 0.095 0.109 0.136 0.275 0.595
Gaussian 0.047 0.057 0.083 0.105 0.126 0.234 0.498
Biweight 0.038 0.073 0.117 0.128 0.143 0.283 0.607
Triweight 0.064 0.073 0.126 0.156 0.17 0.303 0.67

Balloki

Epanechnikov 0.031 0.047 0.077 0.119 0.177 0.219 0.445
Gaussian 0.04 0.049 0.064 0.108 0.133 0.212 0.414
Biweight 0.028 0.043 0.092 0.124 0.192 0.324 0.59
Triweight 0.029 0.046 0.105 0.135 0.205 0.335 0.67

Sidhani

Epanechnikov 0.068 0.081 0.095 0.155 0.218 0.402 0.851
Gaussian 0.041 0.051 0.075 0.131 0.197 0.359 0.738
Biweight 0.085 0.096 0.105 0.174 0.29 0.507 0.907
Triweight 0.098 0.104 0.118 0.192 0.317 0.541 0.942

Sulemanki

Epanechnikov 0.068 0.112 0.146 0.182 0.268 0.573 1.165
Gaussian 0.063 0.078 0.112 0.148 0.233 0.438 0.91
Biweight 0.071 0.087 0.137 0.185 0.271 0.518 1.154
Triweight 0.071 0.082 0.132 0.155 0.251 0.502 1.123

Islam

Epanechnikov 0.099 0.145 0.191 0.245 0.399 0.745 1.168
Gaussian 0.067 0.11 0.154 0.21 0.367 0.61 0.929
Biweight 0.109 0.168 0.217 0.268 0.409 0.778 1.481
Triweight 0.118 0.19 0.26 0.329 0.418 0.819 1.921

As shown in Table 3, the GLO, GEV, and GPA distributions produced very small
errors for all stations. In Table 3, the results of GEV distribution for Tarbela, Guddu, Kotri,
Khanki, Balloki, and Sidhani stations based on L2-moment (η = 2) produced a small error
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for all return periods. However, it was noticed that for return periods of 5 years, the GEV
distribution provided the same result for Kotri and Guddu stations based on L1-moment
(η = 1) and L2-moment (η = 2).

According to Table 3, the RAE findings for return periods (2, 5, and 10 years) for GLO
distribution based on L-moment (η = 0), L1-moment (η = 1) and L2-moment (η = 2) for
Kalabagh, Chashma, and Taunsa stations had a fairly close error, whereas for the remaining
return periods, L2-moment (η = 2) had a clear edge over the L-moment (η = 0) and L1-
moment (η = 1). It was also observed, as seen in Table 3, that the GPA distribution using
L2-moment (η = 2) produced a minimal error for all return periods for Sukkur, Marala,
Qadirabad, Sulemanki, and Islam stations.

Table 3 indicates that for Mangla station, the RAE for GLO and GEV distributions
were estimated through L-moment (η = 0), L2-moment (η = 2) and L1-moment (η = 1),
respectively; however, the GLO and GEV distributions produced the same amount of
error for the return periods (2, 5 and 10 years) when using the L2-moment (η = 2) and
L1-moment (η = 1), but the L2-moment (η = 2) had the edge for return the periods of 20, 50,
100, and 500 years. Similarly, the findings for Rasul and Panjnad stations indicated that
GPA distribution using L2-moment (η = 2) had lower values of RAE at all return periods
than did GEV distribution when using L-moment (η = 0) and L1-moment (η = 1).

Moreover, as can be seen in Table 3, the findings of RAE for all stations using L-
moment (η = 0), L1-moment (η = 1), and L2-moment (η = 2) at the return periods of (2,
5, 10, 20 years) were close, but L1-moment (η = 1) and L2-moment (η = 2) had a slight
advantage over L-moment (η = 0). However, for high return periods (50, 100, 500 years), the
L2-moment (η = 2) performed better than the L1-moment (η = 1) and L-moment (η = 0). We
also observed, as seen in Table 3, that with the increasing level of LH-moments (η = 0, 1, 2),
the error became smaller, especially for high return periods. In other words, the L2-moment
(η = 2) yielded the lowest error compared to the L1-moment (η = 1) and L-moment (η = 0).
Additionally, it was found that there were a few overlaps among these PDFs for certain
return periods. For example, for the Mangla station at return periods of 2, 5, and 10 years,
the GEV and GLO distributions yielded the same amount of error (0.016, 0.018, and 0.026).
This implies that the performance of the PDFs was the same for a certain return period.

Table 4 compares quantile estimates in terms of RAE for Epanechnikov, Gaussian,
Biweight, and Triweight kernel functions for all stations. It is evident from Table 4 that the
Gaussian kernel function had the lowest RAE throughout all return periods among the
Epanechnikov, Biweight, and Triweight kernel functions for Tarbela, Kalabagh, Taunsa,
Guddu, Sukkur, Kotri, Mangla, Rasul, Marala, Khanki, Qadirabad, Trimmu, Sidhani,
Sulemanki, and Islam stations.

The results in Table 4 for Chashma station indicate that the Triweight kernel function
had a low RAE for the return period of 2 years, followed by the Biweight and Epanechnikov
kernel functions; however, the Gaussian kernel function performed better for the return
periods of 5, 10, 20, 50, 100, and 500 years. Similarly, the findings for the Balloki station
revealed that the Biweight kernel function had an edge at the return periods of 2 and
5 years. Additionally, we also observed that the Epanechnikov kernel function had a lower
RAE than Gaussian, Biweight, and Triweight kernel functions for the Panjnad station at
a return period of 2 years, whereas the Epanechnikov, Biweight, and Triweight kernel
functions performed equally well for the return period of 5 years. In accordance with
the findings of the previous study [55], the results of our investigation demonstrated that
among nonparametric kernel functions, the Gaussian kernel function performed best for
the observed flood.

Finally, to evaluate the performance of the LH-moments (η = 0, 1, 2), the nonparametric
kernel functions in terms of the RAE measures of quantile estimates were calculated and
given in Tables 3 and 4. The findings reveal that the LH-moments (η = 0, 1, 2) led to more
accurate estimates for most of the stations than did the nonparametric kernel function. On
the other hand, it was also noted that the nonparametric kernel function performed better
than LH-moments (η = 0, 1, 2) for Kalabagh, Chashma, and Guddu stations at return periods
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of 2, 5, and 10 years. Besides that, among nonparametric kernel functions, the Gaussian
kernel function provides very close estimates for smaller return periods as compared to LH-
moments (η = 0). Similar findings were reported by Adamowski et al. [52], who evaluated
L-moments and nonparametric methods for the annual maxima and partial duration flood
series. However, in the case of L2-moments (η = 2), we found significant differences,
specifically in the higher quantile estimates, with nonparametric kernel functions. This
ensures that the L2-moments (η = 2) accurately estimate the extreme quantiles for the
current dataset compared to any other approach considered in this work.

5. Conclusions

Estimating quantiles is a widespread practice in hydrology, and it is often used in
the planning, design, and operation of a hydraulic system. In this study, we employed
LH-moments (η = 0, 1, 2) and a nonparametric kernel function to estimate the peak flow
series at 18 stations in Punjab, Pakistan. Based on the findings of this study, the following
conclusions may be drawn:

Main findings of the paper: The findings of the AD test, KS test, CVM test, and
LH-ratio diagram indicate that the best fits PDFs for estimating peak-flow data are GPA,
followed by GEV and GLO distributions. It was identified that by raising the value of
(η = 1, 2) in the LH-moments, the GOF test produced different findings for Mangla, Rasul,
and Panjnad stations; nevertheless, increasing (η = 1, 2) did not affect the results for the rest
of the stations. The magnitudes of quantile estimates obtained using the nonparametric
kernel function are greater than those obtained through LH-moments (η = 0, 1, 2). Overall,
the LH-moments (η = 0, 1, 2) accurately estimate the quantile in terms of RAE for most of
the stations; however, for Kalabagh, Chashma, and Guddu stations at return periods of
2, 5, and 10 years, nonparametric kernel function provide smaller RAE than LH-moments
(η = 0, 1, 2). The L-moment (η = 0), L1-moment (η = 1), and L2-moment (η = 2) provide
relatively close estimates of quantile errors for all stations at the return periods of 2, 5,
10, and 20 years; moreover, L2-moments (η = 2) yielded the lowest error for the higher
return period of 50, 100, and 500 years among L-moment (η = 0), L1-moments (η = 1),
and nonparametric kernel functions. We also found that among nonparametric kernel
functions for small return periods, the Gaussian kernel function provides a very close
estimate compared to LH-moments (η = 0, 1, 2).

Limitations of this work and future research: Further research is needed on nonpara-
metric kernel functions, specifically for large return periods, to improve the results in terms
of RAE. This is the first application of nonparametric kernel functions in flood frequency
analysis of 18 stations in Punjab, Pakistan. This research may be expanded by integrating
all of Pakistan’s river gauging stations in order to determine the best estimation methods
for the whole country.

Broader impacts: The findings of this research will enhance recommendations for
future development to preserve current infrastructure and minimize economic damage
due to floods. Additionally, the findings will also aid in designing and implementing flood
mitigation measures, such as more effective stormwater management.
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