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Pan-cancer transcriptomic analysis associates long
non-coding RNAs with key mutational driver events
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Thousands of long non-coding RNAs (lncRNAs) lie interspersed with coding genes across the

genome, and a small subset has been implicated as downstream effectors in oncogenic

pathways. Here we make use of transcriptome and exome sequencing data from thousands of

tumours across 19 cancer types, to identify lncRNAs that are induced or repressed in relation

to somatic mutations in key oncogenic driver genes. Our screen confirms known coding and

non-coding effectors and also associates many new lncRNAs to relevant pathways.

The associations are often highly reproducible across cancer types, and while many lncRNAs

are co-expressed with their protein-coding hosts or neighbours, some are intergenic and

independent. We highlight lncRNAs with possible functions downstream of the tumour

suppressor TP53 and the master antioxidant transcription factor NFE2L2. Our study provides

a comprehensive overview of lncRNA transcriptional alterations in relation to key driver

mutational events in human cancers.
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T
ranscriptomic studies have shown that mammalian
genomes encode an abundance of messenger RNA
(mRNA)-like transcripts that are often multiexonic and

polyadenylated, but lack obvious protein-coding capacity1–3.
Increasingly, it is becoming clear that some of these long non-
coding RNAs (lncRNAs) have important regulatory roles in cells,
for example by controlling transcription through recruitment
of histone-modifying complexes to chromatin4,5, regulation
of mRNA translation6,7 or control of mRNA splicing8. Several
studies also implicate dysregulation of lncRNAs as a contributing
factor in human cancer, with early examples such as MALAT1
(ref. 9) now followed by many others10,11.

Notably, an increasing number of studies describe lncRNAs
that act as critical downstream effectors in established
cancer-relevant pathways. Examples include the identification of
lincRNA-p21 as a key target and mediator of the p53 DNA
damage response12,13, as well as other studies of p53-regulated
long non-coding RNAs14–16. Similarly, inhibition of Notch1 in
T-cell acute lymphoblastic leukaemia identified lncRNAs
acting as downstream targets and effectors of Notch
signalling17, and both overexpression and siRNA silencing of
MYC, followed by transcriptomic profiling, has been used
to identify long non-coding RNAs acting downstream of
c-Myc (refs 18,19). Another recent study compared the
transcriptomes of melanocytes with and without expression of
mutant BRAF(V600E), revealing differential expression of several
lncRNAs including BANCR, shown to affect melanoma cell
migration20.

While intriguing, these studies are still limited in number, and
it is likely that lncRNAs have roles also in many other oncogenic
programs. An attractive prospect is therefore to harness the
increasing availability of mutational and transcriptomic data from
tumours, to identify associations between coding oncogenic
drivers and potential effector lncRNAs in a more systematic way.
Recently, this idea was briefly explored in lung cancer using data
from The Cancer Genome Atlas (TCGA), revealing associations
between the mutational status of six key oncogenes and altered
expression of lncRNAs (ref. 21). Although an obvious drawback
to this approach is that it is correlative, that is, does not
involve molecular perturbations, in return it has the potential to
greatly facilitate the exploration of associations between lncRNAs
and a large number of mutational driver events. Importantly,
associations detected in this manner also represent direct
observations from actual human tumours; a distinct advantage

compared with data from cell culture systems. Still, the
principle has not been systematically explored and evaluated in
comprehensive human tumour materials.

Here we make use of molecular data generated by TCGA to
determine expression levels and copy number amplitudes for
GENCODE (refs 22,23) lncRNAs in more than 7,000 tumours
across 19 types of human cancer. We establish a methodology to
systematically search for associations between established key
driver mutations and alterations in the expression of individual
lncRNAs. The approach is evaluated in several ways, including
silencing of the antioxidant transcription factor NFE2L2,
which plays a critical role in lung tumorigenesis24, followed by
transcriptome profiling to confirm predicted NFE2L2-responsive
lncRNAs. We present a catalogue of associations, involving a
broad repertoire of driver events, that are often consistent across
many cancer types and that may serve as a reference and starting
point for experimental studies. Additionally, our study provides
an overview of lncRNA expression in human cancers.

Results
LncRNA molecular profiles across 7,295 human tumours. We
established a framework whereby poly(A)-positive transcriptome
sequencing (RNA-seq) and copy-number data from TCGA were
used to derive lncRNAs expression and copy-number profiles
across 7,295 human tumours. We additionally obtained coding
mutation data for a subset of 4,698 samples (Fig. 1a; Table 1).
The cohort spanned 19 cancer types, although breast cancer
(BRCA) samples were subdivided into the four established
PAM50 (ref. 25) subtypes for a total of 22 types, each represented
by between 49 and 517 tumours (Fig. 1b).

Briefly, expression levels were determined by realignment of
RNA-seq libraries to the human genome and subsequent
quantification of lncRNAs and coding genes in the GENCODE
(ref. 22) annotation (Methods). We choose this lncRNA catalogue
as it has been subjected to extensive manual curation and
evaluation23. We considered 13,307 lncRNAs that were further
subdivided into 7,885 ‘genic’ and 5,422 ‘intergenic’ loci, based on
a 5 kb threshold with respect to the distance to the nearest
coding gene (Fig. 1c). LncRNAs are often expressed at low
levels, and high sequencing depth is therefore essential
for proper quantification26. We consequently included only
RNA-seq libraries generated on the Illumina HiSeq 2000/2500
platform that resulted in at least 25 million fragments mapping to
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Figure 1 | Included tumours samples and genomic data types. (a) Pipeline overview. 7,295 high-coverage RNA-seq libraries from 19 cancers were

realigned to the human genome to allow quantification of GENCODE lncRNAs and coding genes. Copy number amplitudes were derived for the same set of

genes and tumours. Exome-based somatic mutation data were obtained for a subset of 4,698 samples. (b) Numbers of included tumours for each cancer

type. Breast cancer was split into the four PAM50 subtypes. (c) A set of 13,307 lncRNAs were defined for consideration in the study, based on the

GENCODE (v19) annotation with additional filters. LncRNAs were further split into intergenic and coding-proximal based using a distance cutoff. ‘Other’

contains various genes not considered in the study, including microRNAs, snoRNAs and lncRNAs that did not meet filtering criteria for inclusion.
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GENCODE gene loci (average 54.8 million), in the end obtaining
data from 7,295 samples that each represented a unique tumour
and patient (Supplementary Data 1). Finally, lncRNAs and coding
genes were assigned DNA copy number amplitudes by remapping
of segmented data from the Affymetrix SNP6 platform, available
for all 7,295 samples.

Overview of lncRNA expression in human cancer. We next
sought to obtain an overview of the obtained lncRNA profiles, in
part to ensure the overall technical validity. By comparison of
the maximum length-normalized expression value (FPKM) across
all samples we found that lncRNAs were expressed at considerably
lower levels than coding genes in tumours (Fig. 2a), in agreement
with several earlier observations27–29. Notably, only 439,000
fragments were on average mapped to lncRNA loci in
each sample, further reduced to 171,000 for intergenic lncRNAs
and to be compared with 52.8 million for coding genes, again
stressing the need for high sequencing depth in lncRNA
transcriptomic studies.

While lncRNAs in general are weakly expressed, some are
highly abundant and exceed even many coding mRNAs (ref. 30).
We found that a small number of loci contributed a major
fraction of all intergenic lncRNA-derived reads, notably with
the top five constituting more than 50% in many cancers (for
example, XIST (ref. 31) or HULC (ref. 32); Fig. 2b, Supplementary
Table 1). The total fraction lncRNA-derived reads varied between
cancers (Po1e-99, one-way ANOVA), to a large extent explained
by abundant MALAT1 or NEAT1 in some types (Fig. 2b).
This variability was largely mirrored in corresponding normal
samples, and was not explained by MALAT1/NEAT1 copy
number gain (Supplementary Fig. 1). Notably, these lncRNAs
are both processed by RNase P from a poly(A)-positive into a
poly(A)-negative transcript30, and a shift in the ratio between
forms33 or, alternatively, increased detection of polyA-negative
RNA in some of the cancers, could conceivably contribute to the

observed variability. Among top expressed loci in all cancers was
also LINC00657, previously shown to be conserved between
human and mouse and highly expressed in endothelium34.

We next investigated genome-wide correlations between DNA
copy number amplitudes and expression levels. While these were
generally much lower for lncRNAs compared with coding genes,
this was largely explained by the overall low abundance of lncRNAs
(Supplementary Fig. 2), and correlations approached that of coding
genes when considering only highly expressed loci (Fig. 2c).
The results support the overall validity of the data, as positive
DNA-to-RNA correlations depend on proper lncRNA
quantification.

Principal components analysis was applied to investigate whether
cancer types were distinguishable based on their repertoires of
expressed intergenic lncRNAs (Fig. 2d). We found that tumours
from the same or related cancer types typically clustered closely
together, supporting earlier results that many cancers have distinct
lncRNA signatures29. In the principal components analysis,
glioblastoma and low-grade glioma samples were similar yet
different from other cancers, suggesting a distinct lncRNA profile in
neural tumours. Likewise, there was co-occurrence between breast
(BRCA) and ovarian (OV) carcinomas, known to have several
commonalities including copy number alterations35. The results
show that tumour types are clearly distinguishable by their
lncRNA expression profiles, a likely reflection of the high degree
of tissue specificity shown by many lncRNAs36.

Associations between driver mutations and mRNA changes.
We next explored the relationship between somatic driver
mutations and transcriptional changes in tumours, with the
ultimate goal of associating key mutational events with alterations
in lncRNA expression. The principle has so far only seen limited
use and the feasibility has not been evaluated21,37, and we
therefore wanted to first assess and establish our methodology on
the protein-coding transcriptome.

Table 1 | Overview of included tumours and data types.

Abbrevation Description RNA-seq (Illumina HiSeq) Copy number
(Affy SNP6)

Mutations (exome)

Samples Avg. fragments* (million) Total fragments (million)

ACC Adrenocortial carcinoma 73 46 3,391 73 71
BLCA Bladder carcinoma 390 48 18,603 390 123
BRCA Basal Breast carcinoma (basal) 189 58 10,951 189 168
BRCA Her2 Breast carcinoma (Her2) 127 56 7,161 127 115
BRCA LumA Breast carcinoma (luminal A) 435 57 24,805 435 391
BRCA LumB Breast carcinoma (luminal B) 319 60 19,120 319 281
CESC Cervical carcinoma 286 53 15,036 286 188
GBM Glioblastoma multiforme 134 42 5,605 134 124
HNSC Head & neck carcinoma 495 53 26,029 495 278
KICH Chromophobe renal carcinoma 66 63 4,170 66 66
KIRC Clear cell renal carcinoma 517 58 30,095 517 408
KIRP Papillary renal carcinoma 277 51 14,219 277 153
LGG Low-grade glioma 511 55 28,191 511 278
LIHC Hepatocellular carcinoma 358 49 17,503 358 189
LUAD Lung adenocarcinoma 467 49 22,927 467 202
LUSC Lung squamus cell carcinoma 484 52 25,389 484 171
OV Serous ovarian carcinoma 409 61 24,835 409 190
PRAD Prostate carcinoma 482 51 24,793 482 414
SKCM Melanoma 360 57 20,369 360 272
STAD Stomach carcinoma 364 63 22,797 364 169
THCA Thyroid carcinoma 503 62 31,086 503 398
UCS Uterine carcinosarcoma 49 48 2,334 49 49

S 7295 55 399,409 7295 4698

*Fragments (read pairs) mapped to GENCODE annotated genes.
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We defined a set of 68 key driver genes commonly mutated in
cancer, all established cancer genes38 and with significant
recurrence39,40 in the present material (Supplementary Table 2,
Methods). We next used non-parametric statistics (two-sided
Wilcoxon rank sum test) to test for associations between
mutations in these genes (exome data) and changes in mRNA
levels, individually in each cancer type. As a first step, we applied
an inclusive significance threshold (Po0.001 uncorrected) in
combination with a minimum requirement on the expression
level change (two-fold), which produced a large number of
associations (22,613; Supplementary Fig. 3). Although
randomization of sample labels showed that most of the
associations were statistically true (Supplementary Fig. 3), many
may represent indirect effects, for example due to transcriptional
subtypes that differ with respect to the frequency of important
driver mutations35. This was suggested, for example, by a large
number of TP53-related associations.

To circumvent this and enrich for more relevant signals, we
hypothesized that bona fide downstream effectors, such as
direct targets of cancer-relevant transcription factors, would be
likely to show consistent alterations in multiple cancer types, in
relation to a specific mutational event. We thus focused on 30
events for which 1,121 such consistent associations (replicated in
Z2 cancers using the criteria above), involving 978 unique genes,
were detected (Fig. 3a; Supplementary Data 2). In comparison,
randomized data produced only two consistent associations
(corresponding to a false discovery rateo0.005; Supplementary
Fig. 3). The added requirement of cross-cancer replicability thus
adds considerable stringency and removes most initial hits.

We first noted that several canonical direct targets were among
the detected genes. These included the prototypical downstream
effector and positive target of p53 CDKN1A (p21) (ref. 41), which

showed a strong negative association with mutations in TP53,
which are typically inactivating, in multiple cancers (Fig. 3b).
Similarly, among genes consistently associated with activating
mutations in NFE2L2, a master regulator of the oxidative stress
response42, were several well-known direct targets and
downstream effectors including GCLC (Fig. 3c) and GCLM.
Notably, all NFE2L2 associations were positive, compatible with
NFE2L2 being a transcriptional activator43. Importantly, by
comparison with available microarray data from A549 lung
cancer cells treated with siRNA against NFE2L2 (ref. 44) we
found that most NFE2L2-associated mRNAs detected in Z2
cancers, and all detected in Z4 cancers, were repressed 24 h post
transfection (Fig. 3d).

By comparison with the molecular signatures database
(MSigDB)45, we found that gene sets consistently associated
with specific driver genes in our analysis were in several cases
enriched for relevant pathways or direct responders identified by
chemical or molecular perturbation (Supplementary Data 3).
These included, for EGFR, genes repressed after treatment
with the EGFR inhibitor CL-387785 (ref. 46) (q¼ 1.4e-2);
NFE2L2, genes repressed after siRNA silencing of NFE2L2
(ref. 47) (q¼ 1.9e-19); RB1, genes induced on shRNA
silencing of RB1 (ref. 48) (3.5e-11); KRAS, genes induced
by NRAS overexpression49 (q¼ 1e-2), as well as various ERK/
MAPK-related sets; TP53, genes responding differentially to DNA
damage in TP53 null or wild type cells50 (q¼ 9.4e-7). While
limited by available gene sets in molecular signatures database,
these results further support that integration of mutation and
expression data from thousands of tumours is useful to identify
effector transcripts that show altered expression in relation to
specific oncogenic mutational events. Importantly, while some
associations may be indirect and more difficult to interpret, it
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Figure 2 | Overview of lncRNA expression in 7,295 human tumours. (a) Expression level distribution plots, showing lower levels for lncRNAs compared

with coding genes. (b) A small number of loci contribute a large fraction of intergenic lncRNAs-derived reads. The bars show, for each cancer, the fraction

of reads derived from intergenic lncRNA loci, with contributions from the top five loci indicated. Known/named lncRNAs are indicated by unique colours,
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(Pearson’s coefficient) between copy number amplitudes and expression levels for highly expressed lncRNAs and coding genes (mean FPKM45). Each

cancer type is shown separately using colour codes from Fig. 1b. (d) Principal component analysis of intergenic lncRNA expression profiles shows clustering

of tumours from the same or related cancer types, supporting that many of the cancer types are associated with distinct lncRNA expression patterns. The

analysis was based on 1,814 intergenic lncRNAs expressed at FPKM45 in at least one tumour.
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appears that by considering signals replicated in multiple cancers
we enrich for transcripts that are canonical downstream
responders or direct targets.

LncRNAs are altered in relation to key mutational events.
Having established our methodology on the coding tran-
scriptome, we next used the same principle to uncover associa-
tions between key mutational driver events and altered lncRNA
expression (complete unfiltered result in Supplementary Data 4).
We focus here on a subset of lncRNAs showing clear and con-
sistent associations in multiple cancers, although additional

relevant effects might be present at lower stringencies. Our
analysis identified 189 consistent associations (replicated in Z2
cancers as established above for mRNAs) involving 21 mutational
events and 169 unique lncRNAs (Fig. 4a; Supplementary Data 5),
while none were found using randomized data (Supplementary
Fig. 4).

LncRNAs may be co-expressed with neighbouring or
overlapping coding genes23, suggesting that associations may
arise secondary to mRNA expression changes. Hence, for each of
the 189 associations we compared its strength (lowest P-value
across cancers) to that of its closest up and downstream coding
neighbours, as well as any coding gene within 100 kb
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(Supplementary Data 5). We found that the genic lncRNAs,
which constituted roughly half (98/189) of the associations
(Fig. 4a), were typically hosted by coding genes that likewise were
strongly associated with the same driver events (Fig. 4b).
Expectedly, these lncRNAs-mRNA pairs were normally
co-expressed (indicated by dot size in Fig. 4b). For example,

two out of three genic lncRNAs associated here with mutations in
CTNNB1 (b-catenin) co-localize with NKD1, an established
transcriptional target of b-catenin complexes51 and a marker of
aberrant Wnt/b-catenin signalling52 (Fig. 4c shows RP11-401P9.6,
antisense intronic to NKD1). The intergenic associated lncRNAs
(91/189) were generally more independent and showed less
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co-expression with nearby coding genes (Fig. 4b). Interestingly,
co-expressed coding neighbours would in many cases show
weaker associations, compatible with lncRNAs being primary
targets rather than the opposite.

Known and novel TP53-dependent lncRNAs. We note that, out
of three intergenic lncRNAs highlighted in a recent study as being
the strongest lncRNA responders to DNA damage and direct
targets of p53 (ref. 14), two were among the TP53-associated
lncRNAs identified in our screen, in both cases due to consistent
reduction in TP53 mutated tumours (LINC01021, also known as
LOC643401, and RP3-510D11.2; Fig. 4d). The third, LINC00086
(also known as LED), as well as the recently identified p53 effector
MKLN1-AS1 (also known as PINT )16, showed similar patterns but
did not meet our stringent criteria (Supplementary Fig. 5).
LINC01021 was recently confirmed as a p53 target and a
negative regulator of proliferation in SW480 colorectal cancer
cells53. As some TP53 mutations can have a gain-of-function effect
in addition to disrupting normal TP53 action54, we additionally
performed our association screen using this subset. This identified
one intergenic lncRNAs, RP1-46F2.2, which was activated in
relation to P53 gain-of-function mutations independently from its
coding neighbours (Supplementary Fig. 6).

By re-analysis of nuclear run-on data (GRO-seq) from
HCT116 colon cancer cells treated with the p53-activating agent
Nutlin-3 (ref. 55), we found that lncRNAs negatively associated
with TP53 mutations in our screen typically showed reduced
transcription in TP53 null compared with wild type cells
(Supplementary Fig. 7), supporting the overall validity of the
results. The strongest reduction (139-fold) was seen for
RP11-115D19.1, which was 2.9-fold transcriptionally induced
1 h after Nutlin-3 treatment in wild type cells while being almost
completely blocked in TP53 null cells (Fig. 4e). Prominent
reduction in TP53 mutated compared with wild type tumours was
seen in multiple cancers for this lncRNA, with the strongest
association in the BRCA luminal B subtype (P¼ 4.1e-21,
Wilcoxon rank sum test; Fig. 4e). Confirmatory analyses
using additional available data15,56 showed that RP11-115D19.1
was induced in human fibroblasts treated with the DNA
damaging agent doxorubicin and reduced in response to TP53
siRNA in breast cancer cells exposed to ionizing radiation,
although levels were low in these cells (Supplementary Fig. 8).
While classified here as genic due to its antisense localization near
the SNCA 30 UTR (ref. 57), we found that its primary expressed
isoform resided 30 kb downstream of SNCA and 370 kb upstream
of GPRIN3 (P¼ 0.59 and 0.29, respectively, in BRCA luminal B).

Activation of lncRNAs downstream of NFE2L2. Having
obtained an overview, we next focused on NFE2L2 (encoding the
transcription factor NRF2), a master activator of genes involved in
the cellular antioxidant response. Activating mutations in NFE2L2
can facilitate tumour progression and protect cells from che-
motherapy, and occur frequently in several cancers including
squamous cell lung carcinomas (LUSC)42. Although knowledge
about lncRNAs in the antioxidant response is limited, a recent
study showed that NFE2L2 mediates activation of SCAL1 lncRNA
in response to cigarette smoke58, and SCAL1 and other lncRNAs
were subsequently shown to correlate with NFE2L2 mutations in
lung cancer data from TCGA (ref. 21). Additionally,
NFE2L2 inhibits the pluripotency lncRNAs ROR in embryonic
stem cells59.

Fifteen lncRNAs (10 genic and 5 intergenic) were identified
here as consistently induced in tumours with NFE2L2 gain-of-
function mutations (Fig. 4a; Supplementary Data 5). To confirm
NFE2L2 responsiveness of these lncRNAs, we silenced NFE2L2 in

A549 lung cancer cells that have constitutively high levels of
the NRF2 protein due to a loss-of-function mutation in KEAP1,
the negative regulator of NRF2 (ref. 60). We performed high
coverage total RNA sequencing (450 million reads per library) to
compare three samples transfected with NFE2L2 siRNAs to
four control transfections (Supplementary Data 6). This revealed
a strong transcriptional response (56 lncRNAs and 1069
coding genes at qo0.01 using DESeq2 (ref. 61)) dominated by
genes whose expression was reduced, notably with 5 of the 10 top
repressed lncRNAs being predicted targets from our screen
(Fig. 5a, left panel). Furthermore, out of 11 predicted NFE2L2
activated lncRNAs that were also expressed in A549 cells, 8 were
repressed more than two-fold (Fig. 5a, right panel). Three
repressed lncRNAs were further evaluated with RT-qPCR:
LINC00942, RP11-284F21.7 and RP11-345L23.1. In all cases, this
confirmed responsiveness to NFE2L2 siRNA silencing in A549, as
well as one additional lung cancer cell line, H838, which similarly
harbours a loss-of-function mutation in KEAP1 (Fig. 5b). These
results demonstrate a high degree of accuracy in identifying
NFE2L2-responsive lncRNAs from the tumour data.

We next focused on the three NFE2L2-dependent lncRNAs
confirmed by RT-qPCR. These showed increased expression in
relation to NFE2L2 activating mutations primarily in bladder
(BLCA), cervical (CESC), head and neck (HNSC) and LUSC
carcinomas (Fig. 5c). LINC00942 resides 4.5 kb downstream of
ERC1 (Fig. 5c), but notably was not co-expressed with ERC1 or
other nearby genes (Supplementary Data 5). RP11-284F21.9/.10/.7
is a cluster of three annotated lncRNAs antisense to BCAN
(Fig. 5c), all showing positive NFE2L2 associations most notably in
LUSC, that based on RNA-seq data appears to be part of the same
transcript (RP11-284F21.7 was preferred for RT-qPCR since it is
spliced). BCAN is a proteoglycan linked to invasiveness in
glioma62, which lacked expression in A549/H838 but
interestingly showed an inverse association with NFE2L2
mutations in LUSC (P¼ 4.5e-4, Wilcoxon rank sum test). RP11-
345L23.1 (also called LINC01564) is intergenic but 11 kb upstream
of GCLC (83 kb from the closest RefSeq isoform) in the antisense
orientation (Fig. 5c).

Genes downstream of NFE2L2 should in theory be responsive
also to mutations in KEAP1, which exert their oncogenic activity by
stabilizing the NRF2 protein42. KEAP1 was not considered in our
initial screen due to absence in the Cancer Gene Census38

(Methods), providing an opportunity to further test NFE2L2
responsiveness. We found that all three lncRNAs were induced in
KEAP1-mutated compared with wild type tumours in several
cancers, despite NFE2L2 and KEAP1 mutations being near-mutually
exclusive (co-occurrence in three tumours) (Fig. 5d). This further
reinforces NFE2L2-dependent expression of these lncRNAs.

LINC00942 is a direct target of NFE2L2. One of the validated
NFE2L2-dependent lncRNAs, LINC00942, was selected for further
characterization. BLAST search against known proteins in UniProt
and analysis using the coding potential calculator tool63 supported
its annotated non-coding status. An analysis of 1019 samples in the
Cancer Cell Line Encyclopaedia64 using cBioPortal65 showed that
many canonical NFE2L2 targets were found among top transcripts
co-expressed with LINC00942, including among others GCLM
at rank 6 and TXNRD1 at rank 14, further establishing
NFE2L2-dependent expression of LINC00942. The annotated
transcription initiation site was supported by RNA polymerase II
chromatin immunoprecipitation (ChIP) data from ENCODE, and
an upstream regulatory region was further indicated by DNase I
hypersensitivity and FAIRE signals (Fig. 6a). Notably, we found
that these signals coincided with an element that closely matches
the consensus sequence of the NRF2-binding anti-oxidant
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response element (ARE)66, at B120 bp upstream of the annotated
transcription start site (Fig. 6a).

To assess binding of NRF2 to the LINC00942 promoter, we
performed ChIP analysis in A549 and H838 cells using two
different NRF2 antibodies or control IgG. We evaluated the
predicted ARE site as well as two positive and three negative
control regions using qPCR. This revealed a positive enrichment
relative to IgG with both antibodies in both A549 and H838 cells
(Po0.02 for all comparisons, Student’s t-test), with a stronger
signal in H838 (416-fold enrichment relative IgG), which
contain basally higher levels of LINC00942 (Fig. 6b). These data
confirm direct binding of NRF2 to an ARE element at the
LINC00942 promoter.

To further assess the ability of NRF2 to regulate the expression
of LINC00942 by binding to the ARE, we cloned a 1,000 bp region
encompassing the LINC00942 transcription start and the binding
site into a promoter-less luciferase reporter vector. Luciferase
activity was detected 48 h post transfection in both A549 and H838
cells, furthering supporting the presence of a promoter region
(Fig. 6c). Co-transfections with siRNAs targeting NFE2L2 reduced
the reporter activity in both cell lines (Po1.8e-3, Student’s t-test),
and point mutations in the ARE element further reduced the signal
(Po5.2e-5) while largely abolishing the response to NFE2L2
silencing (Fig. 6c). The luciferase reporter assays in conjunction

with ChIP data demonstrate that NRF2 can activate LINC00942
transcriptionally by directly binding to its promoter. This provides
mechanistic insight into our finding that human tumours with
NFE2L2 gain-of-function mutations display increased expression
of LINC00942.

To assess the role of LINC00942 in cells with NRF2 activation,
we inhibited it in A549 cells using locked nucleic acid (LNA)
antisense oligonucleotides (ASOs). Of three different ASOs
targeting LINC00942, two were highly efficient (83% and 89%
reduction, respectively; Po6.9e-5 using Student’s t-test), while
one was less potent (27% reduction; P¼ 0.015) (Fig. 7a). We next
assayed the expression of three canonical coding components of
the antioxidant programme orchestrated by NFE2L2 to
suppress reactive oxygen species (ROS) accumulation in cells,
all of which were detected as NFE2L2 activated in the tumour
data (Supplementary Data 2): GCLC, crucial for synthesis of the
antioxidant glutathione; NQO1, which prevents production
of ROS from quinones and TXNRD1, which catalyses reduction
of the antioxidant thioredoxin from the oxidized to the reduced
form67. Notably, all three LINC00942 ASOs caused a significant
reduction in GCLC mRNA (Po3.2e-3), importantly with the two
more potent molecules causing stronger mRNA reductions (53%
and 70%, respectively; Fig. 7b), as well as a decrease in GCLC
protein levels (Fig. 7c). No consistent mRNA changes were seen
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panel: volcano plot showing 56 lncRNAs (black dots) altered at qo0.01 (DESeq2), with aggregation of predicted NFE2L2-responsive lncRNAs (red circles)

among top repressed transcripts. Right panel: predicted NFE2L2-responsive lncRNAs are repressed 48 h post NFE2L2 inhibition. The x-axis shows
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treated with NFE2L2 siRNAs or control siRNA as described in a, with additional results from H838 lung cancer cells. Values were normalized to ACTB, and
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for the other two genes or NFE2L2 itself (Fig. 7b). Similar
reductions in GCLC mRNA were observed in H838 lung cancer
cells upon treatment with LINC00942 ASOs (Supplementary
Fig. 9). GCLC mRNA stability was not affected, showing that the
effect was due to reduced transcription rather than a
posttranscriptional mechanism (Supplementary Fig. 10).
Consistent with a reduction in GCLC, its enzymatic product,
glutathione, was reduced (Fig. 7d; Po1.3e-3). Reduced levels of
the antioxidant glutathione might lead to accumulation of cellular
ROS. We observed that LINC00942 ASOs led to a notable
increase in ROS (Fig. 7ePo2.6e-3), in particular in cells treated
with the more potent ASOs. These effects on glutathione and
ROS levels are similar to what has been observed during NFE2L2
silencing68. Collectively, our results suggest a role for LINC00942
in the antioxidant response downstream of NFE2L2.

Discussion
By systematically investigating patterns of altered lncRNA
expression in relation to key mutational events, enabled by
a wealth of molecular data provided by TCGA, we provide a
comprehensive catalogue of candidate non-coding RNAs that
may play a functional role as part of oncogenic programs in
cancer. We first found that a naı̈ve approach, based on association
tests in individual cancer types, often produces an excessive
number of mRNA and lncRNAs hits of questionable relevance,
likely explained by strong expression subtypes that may differ

with respect to driver mutation frequencies35. Instead, by
focusing on effects that are replicated across cancer types, more
informative results are obtained, often enriched for known
downstream responder mRNAs. Applying this strategy to
lncRNAs recapitulated known biology in relation to TP53 and
also provided numerous new predictions, some of which were
further highlighted. It should be noted that we focus here on
strong consistent associations, using a stringent false discovery
rate cut off, and that many additional relevant effects are likely
identifiable by applying less strict filtering criteria to the full
results (provided as Supplementary Data 4). These results should
form a valuable complement to studies that directly manipulate
factors of interest in cell culture systems, in that they describe
effects clearly visible in human tumour materials.

P53-dependent regulation of lncRNAs has been the focus of
several studies12,14–16, but the role of lncRNAs in most other
cancer-related pathways remains elusive. Here, we highlight
lncRNAs consistently induced in tumours with activation of
the transcription factor NFE2L2 (encoding NRF2), which is critical
for the oxidative stress response. We demonstrate by RNA-seq that
predicted NFE2L2-dependent lncRNAs typically show immediate
responsiveness to NFE2L2 silencing in A549 cells, where NRF2 is
constitutively active60. Although some detected associations
may be due to indirect effects, these results suggest that
many represent immediate downstream consequences. In
particular, for LINC00942, we confirmed that NRF2 directly
binds to an upstream regulatory element in its promoter to
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induce its transcription. Additionally, transfection with ASOs
complementary to LINC00942 suggested a functional role in the
NFE2L2 antioxidant pathway by altering levels of GCLC, which is
required for synthesis of the key antioxidant glutathione and a
known target of NRF2. Compatible with a reduction in GCLC,
reductions in glutathione levels and a marked increase in ROS
were observed. However, additional mechanisms are likely
involved and further work is needed to validate and extend these
results. By using orthogonal methods such as CRISPR/Cas9
targeted mutagenesis and CRISPR/Cas9-based transcriptional
repression/activation, future studies will be able to establish the
function and mechanism of action for LINC00942 or other
lncRNAs downstream of NFE2L2.

In summary, we have systematically investigated alterations in
lncRNA expression in relation to key mutational driver events in
human cancers. Although earlier studies have been able to tie
lncRNAs to individual oncogenic pathways, we provide a broader
catalogue that may serve as a reference and starting point for
future experimental studies.

Methods
LncRNA annotation and RNA-seq-based quantification. Unaligned RNA-seq
data were downloaded from the cgHub repository (detailed sample information is
available in Supplementary Data 1). Libraries from non-embargoed tumours available

on 28 April 2015, that met several additional criteria, were included. For
consistency, we only considered libraries produced on Illumina HiSeq 2000/2500
machines and excluded all FFPE samples. Only primary tumours (TCGA type 1)
were included, except for SKCM were metastasis samples (type 6) were instead
considered. In cases where multiple libraries were available for a given tumour, we
included the largest. Finally, only tumours with available copy number data were
included. Sequences were aligned to the human hg19 assembly (excluding alternative
haplotype regions) using HiSat (ref. 69) (options --no-mixed --no-discordant --no-unal
--known-splicesite-infile) using known splice junctions from the GENCODE (v19)
annotation. A total of 650 billion reads were aligned at an average alignment rate of
90.5%, using a 3328-core linux cluster at the UPPMAX HPC Centre (Uppsala,
Sweden).

To quantify lncRNAs we used the GENCODE (ref. 22) (v19) catalogue, and
considered 13,307 loci that had no transcript types other than antisense, lincRNA,
processed_transcript, sense_intronic, sense_overlapping and miRNA, additionally
requiring a minimum mature length of 200 bp for the longest isoform. These were
subdivided into a ‘genic’ (n¼ 7,885) and an ‘intergenic’ set (n¼ 5,422) based on
proximity to the nearest coding gene, here also including coding RefSeq genes in
addition to GENCODE. LncRNAs and coding genes were quantified using HTSeq-
count70 (option –intersection-strict) and FPKM expression values were determined
while normalizing each library using robust size factors as described71. LncRNA
expression profiles are available as Supplementary Data 7.

Copy number analyses. Copy number amplitudes for GENCODE genes were
determined from segmented copy-number data (Affymetrix SNP6 platform, minus
germline) downloaded from the Broad Institute on 4 February 2015, excluding
small segmentso10 kb and for each gene considering the minimum amplitude of
all overlapping segments.
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Figure 7 | Silencing of LINC00942 using LNA antisense oligonucleotides in A549 cells. (a) Cells were treated with three different antisense oligos

(ASOs) targeting LINC00942 (942-ASO1-3, n¼ 2 transfections each), control LNA oligos (Ctrl-ASO1-2, n¼ 2 transfections each), or vehicle only

(Mock, n¼ 3 transfections) during 36 h. RT-qPCR-based expression values were normalized to ACTB, and are shown relative to the mean of the control

samples. P-values from Student’s t-test using the four control ASOs transfections as reference. (b) Transfection with ASOs complementary to LINC00942

led to reduced expression of GCLC, required for glutathione synthesis. (c) GCLC western blot with GAPDH shown as control (36 h post transfection).

(d) Reduced glutathione (GSH) levels 72 h post transfection with LINC00942 ASOs in A549 cells, as determined by the GSH-Glo assay (n¼ 3 transfections

per group). P-values from Student’s t-test using the six control ASO transfections as reference. (e) Increased levels of reactive oxygen species 72 h post

transfection with LINC00942 ASOs in A549 cells, as determined by flow cytometric 20,70-dichlorodihydrofluorescein (DCF) assays (n¼ 3 transfections per

group). P-values from Student’s t-test using the six control ASO transfections as reference. Error bars indicate s.e.m.
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Inclusion criteria for mutational events. A set of 68 mutational events were
defined, representing relatively frequently mutated and established cancer genes
(Supplementary Table 2). Genes were required to be detected as significantly
mutated in at least one cancer type at qo0.05 by either MutSigCV (ref. 39) or
Sominaclust (ref. 40) and mutated at a frequency above 5% in at least one cancer
type, in addition to being listed as known cancer genes in the Cancer Gene Census
list of known cancer genes38.

Associations between mutational subtypes and RNA levels. RNA levels for
lncRNAs and coding genes were evaluated for associations with driver mutations
subtypes, separately in each cancer type. BRCA samples were subdivided based on
similarity (Pearson’s r) to the mean expression profile of each of the PAM50
subtypes, determined from samples with available PAM50 classifications from
TCGA. Exome data in maf format were obtained from the Broad Institute
(latest releases available on 24 February 2015). Genes were considered as mutated
when having indels, missense or nonsense mutations in the coding sequence, or
splice site mutations or indels. The Wilcoxon rank sum test (as implemented in
Matlab, Mathworks Inc.; approximate method) was used to assess differential
expression in mutated compared with non-mutated samples, while requiring
genes/lncRNAs to be detectable in at least 10% of samples in both groups (scripts
available from the authors on request). A pseudo value of 0.1 FPKM was added to
each element before calculation of mean values and log2 expression ratios between
groups, to avoid division by zero. Rather than applying a strict cutoff in each cancer
type, we used a more inclusive threshold (Po0.001 and absolute log2 change41),
while instead requiring these criteria to be reached in more than
one cancer. Random permutation of sample labels within each cancer showed that
such consistent associations were highly unlikely to occur by chance (zero detec-
tion for the lncRNA set; Supplementary Fig. 4). Results for coding mRNAs were
evaluated for gene set enrichments using the Molecular Signatures Database online
tool45, considering the ‘chemical and genetic perturbations’ and ‘canonical
pathways’ sets.

siRNA and ASO transfections and assays. A549 and H838 cells were acquired
from American type culture collection and cultured as previously described72. For
experiments related to Fig. 7 and its supplement, A549 cells were independently
acquired from American type culture collection and H838 cells were a kind gift
from Dr Richard Possemato. The cells were not authenticated and not tested for
mycoplasma contamination for this study. 250,000 cells were transfected with
5 nmol siRNA particles (Silencer Select, Life Technologies), using Lipofectamine
RNAiMAX reagent (Life technologies) in a six-well plate according the to
manufacturer’s instructions, and RNA was harvested after 48 h. In each cell line, we
performed three transfections with siRNAs targeting NFE2L2 using three different
duplexes, while four control transfections were done using two different control
duplexes. 250,000 cells were transfected with 5 nmol LNA GapmeR ASOs (Exiqon),
using Lipofectamine RNAiMAX (Life technologies) in a six-well plate, and RNA
was harvested after 36 h. Six transfections with ASOs targeting LINC00942 were
performed using three different oligos, and four control transfections were done
using two different control oligos, in addition to three mock transfections
(Lipofectamine only). RNA was prepared using the RNeasy Mini kit (Qiagen), and
cDNA synthesized with DyNAmo cDNA Synthesis kit (Thermo Scientific) and
gene expression levels determined using TaqMan assays (Life Technologies; ACTB,
Hs01060665_g1; NFE2L2, Hs00975961_g1; LINC00942, Hs03669859_m1;
RP11-284F21.7, custom assay targeting exon 1–2 junction; RP11-345L23.1,
custom assay targeting exon 2–3 junction; GCLC, Hs00155249_m1; TXNRD1,
Hs00917067_m1; NQO1, Hs00168547_m1; BCAN, Hs00222607_m1) as previously
described72. Expression values were linearized using the 2�Ct method. Total
protein extracts from cells were analysed as described previously73 using antibodies
from Santa Cruz Biotechnology recognizing GCLC (H-338, 1:100) and GAPDH
(sc-25778, 1:2000). Secondary antibodies were anti-mouse IRDye 680RD (926–
68072, Li-Cor) and anti-rabbit 680RD (926–68071, Li-Cor). Protein bands were
detected on a Li-Cor Odyssey Imager with Odyssey Software (version 3.0,
Li-Cor). Global contrast was adjusted using Photoshop CS6 (Adobe). Uncropped
scans are provided as Supplementary Fig. 11. Levels of reactive oxygen species
were measured using the cell-permeant 20 ,70-dichlorodihydrofluorescein dictate
(CM-H2DCFDA) assay (Molecular Probes, Life Technologies #C6827) on a Attune
NxT flow cytometer (Life Technologies), and glutathione levels were determined
using the GSH-Glo (Promega) on a SpectraMax M3 (Molecular Devices), 72 h post
transfection.

Total RNA sequencing. Eight strand-specific total RNA-seq libraries were
generated using the TruSeq Stranded Total RNA Sample Preparation kit with
RiboZero (Illumina) on a Illumina NextSeq 500 sequencer, using RNA from four
negative control siRNA transfections and three siRNAs targeting NFE2L2, as
described above, plus one mock transfection (Lipofectamine only). Between 50.5
and 60.6 million reads were obtained per sample. Reads were aligned and processed
as described above for TCGA data with the added option –s reverse for
HTSeq-count, at an alignment rate exceeding 94.4% for all samples. We
considered the RefSeq annotated version of LINC00942 (NR_028415.1) during
quantification, due to incorrect strand orientation in GENCODE v19. Statistics and

relative expression levels, comparing the four negative control siRNA transfections
to the three NFE2L2 siRNA transfections, were computed using DESeq2 (ref. 61).

ChIP assay. The ChIP experiment was performed using the iDeal ChIP-seq kit for
Transcription Factors (Diagenode, cat. no. C01010055). Briefly, A549 and H838
cell were incubated with 1% formaldehyde for 15 min at room temperature (RT)
for cross-linking the proteins to DNA, followed by 5 min incubation with 125 mM
glysin to stop the fixation. Cells were washed with PBS, and lysed using the Lysis
buffer. Sonication was done using a Bioruptor Pico (Diagenode, cat. no.
B01060001) at 15 cycles (30 s ON, 30 s OFF, maximum power). Chromatin
shearing efficiency was examined by agarose gel electrophoresis. Several sonicated
samples were pooled to gather sufficient sheared DNA for each cell line. The
average fragments size was between 100 and 300 bps. DNA of 250ml was added to
each IP, as well as 25ml of DNA for the input sample. Immunoprecipitation of the
NRF2 protein was done using a rabbit monoclonal antibody targeting the
C-terminus of human NRF2 (Abcam, EP1808Y) and a rabbit polyclonal NRF2
antibody (Diagenode, C15410242). As a negative control, a rabbit IgG antibody was
used (Diagenode, cat. no. C15410206). Three replicate immunoprecipitations was
performed for each antibody in each cell line. The fragmented DNA was incubated
with 1 mg of each antibody conjugated to the magnetic beads overnight at 4 �C.
Next, the un-bound antibodies were removed, followed by de-cross-linking of the
formaldehyde fixed protein–DNA complexes. The chromatin was eluted in both
immunoprecipitated and input samples by incubating the samples at 65 �C
overnight. To purify the DNA, immunoprecipitated and input samples were
incubated with IPure magnetic beads and then washed with 50% isopropanol
(VWR, cat. no. 437423R). The isolated DNA was used for qPCR analysis to test for
enrichment of the predicted NRF2 binding site. Two positive controls (established
NRF2 sites in HMOX1 and NQO1) and three negative control regions lacking
NRF2 binding sites were also considered. Primer sequences are listed in
Supplementary Table 3. PowerUp SYBR Green Master Mix (Life technologies,
cat. no. A25742) was used according to the manufacturer’s instructions.

Luciferase assays. A 1,000 bp region encompassing the NRF2 binding site and
the annotated transcription start of LINC00942 (� 800 to þ 200 bp, chr12:1,608,
855–1,609,854) was cloned into a Gaussia luciferase (GLuc) reporter vector
(pEZX-PG04, Genecopoeia), which also contains a reference reporter gene,
Secreted Alkaline Phosphatase (SEAP). Additionally, a construct containing a
mutated version of the NRF2 binding site was generated (ATGACTCGGCA4
ACGACTCGCGA). A549 and H838 cells were cultured in a 12-well plate 24 h
prior to transfection, and at a confluency of approximately 80% cells were
transfected with the wild type or mutant plasmid together with one of two different
control siRNAs or two siRNAs targeting NFE2L2. Each siRNA/plasmid
combination was transfected in triplicates, using Lipofectamin 2,000 (Life
technologies, cat. no. 11668027). The activities of GLuc, adjacent to LINC00942
promoter, and SEAP were quantified with the Secrete-Pair Dual Luminescence
Assay Kit (Genecopoeia, cat. no. SPDA-D010) 48 h after transfection.

Data availability. The NFE2L2 siRNA RNA-seq data have been deposited in GEO
using the accession number GSE75452 (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE75452). All remaining data are contained within the Article and
Supplementary Information files or is available from the authors upon request.
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