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Purpose: Identification of the intracellular signal-transduction pathways activated in retinal ischemia may be important
in revealing novel pharmacological targets. To date, most studies have focused on identifying neuroprotective agents. The
retinal blood vessels are key organs in circulatory failure, and this study was therefore designed to examine the retinal
vasculature separately from the neuroretina.
Methods: Retinal ischemia was induced by elevating the intraocular pressure in porcine eyes, followed by 5, 12, or 20 h
of reperfusion. Protein kinase C (PKC)α, PKCβ1, and PKCβ2 mRNA levels, and protein expression were determined
using real-time PCR, western blot, and immunofluorescence staining techniques.
Results: The retinal arteries could easily be dissected free and studied separately from the neuroretina in this porcine
model. The PKCα, PKCβ1, and PKCβ2 mRNA levels tended to be lower in ischemia-reperfused than in sham-operated
eyes in both the retinal arteries and the neuroretina. This was most prominent after 5 h, and less pronounced after 12 h
and 20 h of reperfusion. Likewise, the protein levels of PKCα, PKCβ1, and PKCβ2 were slightly lower following ischemia-
reperfusion when compared to sham-operated eyes. PKCα, PKCβ1, and PKCβ2 immunostaining were observed in bipolar
cells of the neuroretina and in endothelial cells, and to a low extent in the smooth muscle layer, of the retinal arteries.
Conclusions: Retinal ischemia followed by reperfusion results in lower levels of PKC in both the neuroretina and retinal
arteries. New targets for pharmacological treatment may be found by studying the retinal vasculature so as to identify the
intracellular signal-transduction pathways involved in the development of injury following retinal circulatory failure.

Retinal ischemia due to local circulatory failure in
diabetes, vein thrombosis, and arterial occlusion is a major
cause of sight-threatening complications and blindness [1]. In
retinal ischemia, new blood vessels are formed to meet the
metabolic demands of the ischemic tissue. The newly formed
blood vessels malfunction and are unable to replace the flow
of necessary nutrients. They leak and bleed and are thus no
longer part of the blood–brain barrier. This causes sight-
threatening complications such as tractional retinal
detachment, vitreous hemorrhage, neovascular glaucoma, and
macular edema [1–3]. Retinal ischemia is treated with laser
photocoagulation, which is effective in saving vision, but at
the expense of large portions of the retina and its
photoreceptors. Even though numerous studies, aimed at
limiting the extent of retinal injury after ischemia, have been
performed, there is still no effective pharmacological
treatment for this condition [2,4].

Most studies have focused on identifying neuroprotective
agents for the treatment of retinal ischemia-reperfusion injury
[1]. The blood vessels of the retina are key organs in local
circulation failure, and it may therefore be important not only
to examine the neuroretina but also the retinal vasculature. For
this purpose we set up and evaluated a porcine model of
pressure-induced retinal ischemia in which the retinal arteries
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could be studied separately from the neuroretina. The porcine
eye has previously been proven to be suitable for experimental
analysis of the retinal arteries [5–7].

In the field of cerebral and cardiac ischemia, protein
kinase C (PKC) has been shown to play a central role [8–11].
Pathological changes in the vasculature during stroke and
ischemic heart disease can be reduced by treatment with PKC
inhibitors [12–14]. In the eye, PKC levels are altered in several
ischemic conditions, including diabetic retinopathy and
central vein occlusion [15,16]. However, studies on PKC and
retinal ischemia have thus far mainly involved small animals
and rodents, with a focus on the neuroretina and not the retinal
arteries [1,4]. In these models, conflicting results have been
reported, including upregulation, downregulation, and
unaltered levels of PKC expression following ischemia [17–
22]. We therefore believe that it is of major interest to map
out these different intracellular signal transduction pathways
in retinal ischemia, especially in the retinal arteries. For the
present study, we chose to examine the PKCα, PKCβ1, and
PKCβ2 isoforms in retinal ischemia. There are numerous
isoforms of PKC, but PKCα, PKCβ1, and PKCβ2 are
commonly studied isoforms in blood vessels when it comes
to other ischemic conditions, such as stroke and ischemic heart
disease [11,12]. These isoforms play a major role in regulating
the development of these diseases. Furthermore, specific
antagonists have been developed for these isoforms to hinder
the injury associated with ischemia. PKCα, which is mainly
expressed in the bipolar cells, seems to be the most abundant
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isoform in the retina, [23] while PKCβ has been proven to play
a role in the development of diabetic retinopathy [15].

The aim of the present study was to perform a detailed
delineation of the role of PKCα, PKCβ1, and PKCβ2 in retinal
ischemia. We used a porcine eye model, which has a primate-
like structure, as it is suitable for the separate analysis of the
retinal arteries and the neuroretina. PKCα, PKCβ1, and
PKCβ2 mRNA and protein expression were studied using
real-time polymerase chain reaction (qRT–PCR), western blot
analysis, and immunofluorescence staining.

METHODS
Animals and anesthesia: A total of 28 domestic landrace pigs
of both genders, with a mean bodyweight of 70 kg, were used
for this study (Conventional pig breeder, Lund, Sweden). The
night before the surgical procedure, food was withheld from
the animals, but they were allowed free access to water. A
100 mg/ml intramuscular injection of ketamine (Ketaminol
vet™; Farmaceutici Gellini S.p.A, Aprilia, Italy) per 15 mg/
kg bodyweight, in combination with 20 mg/ml xylazine
(Rompun vet™; Bayer AG, Leverkusen, Germany) per 2 mg/
kg bodyweight, was used for premedication. Anesthesia was
induced by continuous intravenous infusion of 20 mg/ml
propofol (Diprivan™; Astra Zeneca, Södertälje, Sweden) at a
dosage of 0.1–0.2 mg/kg/min in combination with intermittent
fentanyl (Fentanyl B. Braun; B. Braun Melsungen AG,
Melsungen, Germany) at approximately 3.5 μg/kg/h. The pigs
had a mean arterial blood pressure of 92±7 mmHg. After
completion of the experiments, animals were euthanized by a
lethal intravenous injection of potassium 2 mmol/kg (ADDEX
Potassium Chloride, Fresenius KABI SE, Uppsala, Sweden).
All procedures and animal treatment took place in accordance
with the guidelines of the Ethics Committee of Lund
University, the Institute for Laboratory Animal Research
(Guide for the Care and Use of Laboratory Animals), and the
ARVO statement for the Use of Animals in Ophthalmic and
Vision Research. The study was approved by the regional
court under the hospice of the department of agriculture.
Ischemia–reperfusion: During the surgery, ischemia was
induced in one eye of each animal by raising the intraocular
pressure (IOP), while the other eye was allowed to serve as a
control. The posterior chamber of both eyes was cannulated
with a 30 gauge needle. The IOP was raised to 80 mmHg in
one eye by continuous infusion of balanced salt solution for
ophthalmic irrigation (Amo™ Endosol™; AMO Groningen
BV, Groningen, the Netherlands). The pressure was
monitored using a Tono-Pen®XL tonometer (Medtronic,
Jacksonville, FL). The control eye underwent the same
surgical procedure but the pressure was not allowed to elevate.
This eye will be referred to as the “sham-operated eye” in the
text and figures. After 60 min, the cannulation needles were
removed to allow reperfusion of the retinal vasculature.
Ischemia was confirmed by indirect ophthalmoscopic
examination by noting the blanching of retinal arteries. This

was confirmed both directly after elevating the IOP, during
ischemia (after 30 min) and at the end of the ischemic period
(60 min).
Tissue preparation: After 5 h, 12 h, or 20 h of reperfusion
(7/14/22 h of anesthesia), both eyes of the pigs were
enucleated, with the optic nerve included, during anesthesia.
The eyes were dissected; the anterior segment and the vitreous
humor were removed, and the eyecups were divided in half.
One half was used for immunofluorescent staining, while the
retina was dissected free from retinal pigment epithelium in
the other half. Arteries were isolated from the neuroretina by
careful dissection in a buffer solution at  4 °C (balanced salt
solution for ophthalmic irrigation). The arteries were first to
third-order branches. During the dissection of retinal arteries,
blood was gently pushed out of the vessels. Central and
peripheral pieces of each remaining neuroretina, devoid of
major vessels, were collected and stored at −80 °C until used
for qRT–PCR and western blot experiments. In the 12 h
reperfusion group, some samples used in the qRT–PCR
analysis included whole retinas, devoid of major vessels
(n=8).
RNA extraction and real-time polymerase chain reaction:
RNA was extracted in two different ways. Samples from the
sham-operated and the ischemia-reperfusion eyes of the same
pig underwent the same RNA extraction procedure.
Differences in mRNA were calculated in relative changes (the
result from the ischemia-operated eye as a ratio of the sham-
operated eye in the same pig). Taken this together we believe
that the technique chosen for RNA extraction have not
affected our results or conclusions. Using the first technique,
we homogenized the tissue in 1 ml TRIzol (Invitrogen,
Carlsbad, CA) using a metal ball and a TissueLyser (Retsch,
Haan, Germany), according to the manufacturer’s
instructions. Next, 200 µl chloroform was added to separate
RNA from DNA, proteins, and cell debris. The homogenate
was allowed to separate at room temperature before being
centrifuged. The supernatant was transferred to new tubes and
500 μl isopropanol was added; the samples were then
incubated at –20 °C overnight to allow precipitation of the
RNA. Samples were centrifuged to further precipitate the
RNA. The supernatant was removed and the RNA pellet
washed once with 500 μl 75% ethanol. The supernatant was
removed, the pellet dried, and then dissolved in Rnase-free
water. Samples were incubated for 1 h on ice to allow the RNA
pellet to dissolve completely. The light absorbance was
measured at 260 nm and 280 nm using a spectrophotometer,
and the RNA concentration and RNA/DNA ratio were
recorded. The second technique was employed to extract RNA
with an RNeasy Mini-kit (Qiagen, Valencia, CA), which
allows simultaneous extraction of protein. Briefly, the tissue
was homogenized in 600 μl RTL buffer using a metal ball and
a TissueLyser, as described. The lysate was centrifuged to
remove insoluble material, and the supernatant carefully
transferred to a new tube. One volume of 70% ethanol was
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added, and the sample was then applied to an RNeasy mini-
column and centrifuged. The flow-through was saved for
protein extraction (see details as follows). The column was
washed with RW1 buffer and RPE buffer, and the RNA eluted
with 30 μl of Rnase-free water. The light absorbance was
measured with a spectrophotometer, and the RNA
concentration and RNA/DNA ratio recorded. From each eye,
4–8 μg total RNA was extracted from the retinal arteries, and
15–30 μg total RNA was extracted from the neuroretina.

Reverse transcription of total RNA to cDNA was
performed using the GeneAmp RNA polymerase chain
reaction kit in a Perkin-Elmer DNA Thermal Cycler (Perkin-
Elmer Applied Biosystems, Foster City, CA). First-strand
cDNA was synthesized from 1 μg total RNA in a 40 μl reaction
using random hexamers as primers. The reaction was run at
42 °C for 90 min and thereafter at 72 °C for 10 min. qRT–PCR
was performed in a GeneAmp 7300 Real Time PCR System
using the GeneAmp SYBR® Green kit (Perkin-Elmer,
Applied Biosystems) with the previously synthesized cDNA
as template in a 25 μl reaction. A no-template control was
included in all experiments. The GeneAmp 7300 system
monitors the amplification of DNA in real-time using an
optical imaging system, via the binding of a fluorescent dye
to double-stranded DNA. Specific primers for porcine
PKCα, PKCβ1, and PKCβ2 are described in Table 1. The
results were calculated relative to the amount of the
housekeeping genes β-actin and elongation factor-1α
(EF-1α), since these are continuously expressed at constant
amounts in cells [24]. The primer sequences for these
housekeeping genes are given in Table 1.

The primers were dissolved in water according to the
manufacturer’s instructions, and a mixture of reverse and
forward primers was made. qRT–PCR was performed with
the following profile: 1 cycle of 50 °C for 2 min, and 95 °C
for 10 min followed by 40 cycles of 95 °C for 15 s, and 60 °C
for 1 min. This was followed by dissociation, 1 cycle of 95 °C
for 15 s, 60 °C for 30 s and 95 °C for 15 s. To check that the
cDNA levels of β-actin, EF-1α, and PKCs were amplified at
the same efficiency during qRT–PCR, we constructed a

standard curve in which the values of CT were plotted against
the cDNA concentration on the basis of the following
equation:

CT = log(1 + E ) −1 log (concentration),

where E is the amplification efficiency, with the optimal value
of 1. The amount of PKC mRNA in the specimens was
calculated relative to the amount of β-actin and EF-1α mRNA
in the same sample using the relation,

X0 / R0 = 2CTR-CTX

where X0 equals the original amount of PKC mRNA, R0 equals
the original amount of β-actin mRNA, CTR is the CT value for
β-actin, and CTX is the CT value for PKC.
Protein extraction and protein content determination: The
flow-through was collected from RNA extraction and
incubated with 4 volumes of ice-cold acetone at −20 °C for
30 min. The samples were then centrifuged for 10 min at
16,000 xg, at 4 °C and the supernatant discarded. The protein
pellet was air-dried and resuspended in 8 M urea. The total
protein concentration was determined using a BioRad DC kit
(BioRad, Hercules, CA) and measurement of the absorbance
at 750 nm on a microplate photometer (Thermo, Waltham,
MA). Protein samples were used immediately for western blot
analysis or stored at −80 °C until use. From each eye, 100–
200 μg protein was extracted from the retinal arteries, and 1–
2 mg protein was extracted from the neuroretina.
Western blot: Proteins of interest were evaluated in the
neuroretina and retinal arteries separately. Protein samples
were mixed with NuPAGE LDS sample buffer (Invitrogen)
and boiled for 5 min. Equal amounts of protein (30 μg/lane
for neuroretina and 20 μg/lane for retinal arteries) were loaded
onto a NuPAGE 4%–12% Bis-Tris Gel (Invitrogen) and
separated by SDS–PAGE. A molecular weight marker
(SeeBlue® Plus2; Invitrogen) was loaded onto each gel for
protein band identification. After separation, the proteins were
transferred to a nitrocellulose membrane (GE Osmonics,

TABLE 1. REAL-TIME PCR PRIMERS.

Gene name GenBank number                                           Sequence (5′-3′)
PKCα AY093442 F: AACAAGGCTTCCAGTGCCAA

R: GAACTCATGGCACCTCTTGTGA
PKCβ1 AY093443 F: ACGAATTTGCTGGCTTCTCC

R: TGGCCTGAAGTCTTACACTCCA-3′
PKCβ2 AY093444 F: GCTGTGTAGATCTCCGTCCTTCAT

R: AGGTCACCACAATAGCTGTCGA
β-actin U07786 F: CCTTCAACTCGATCATGAAGTGC

R: CGTAGAGGTCCTTCCTGATGTCC
EF-1α AM040195 F: GCTGACTGTGCTGTCCTGATTG

R: TGTAGGCCAGAAGAGCATGCT

Gene name, GenBank number and primer sequence for primers used in real-time PCR experiments.
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Minnetonka, MN). The membrane was subsequently blocked
with 6.5% nonfat milk in PBS (0.14 M NaCI, 0.01 M PO4

Buffer, 0.003 M KCI, pH 7.45) overnight at 4 °C and washed
for three times with 0.1% Tween-PBS (T-PBS) for 15 min
each time. The membranes were then incubated overnight at
4 °C with the primary antibodies of interest: 1:1,000 mouse
anti-PKCα (Nordic BioSite, Täby, Sweden), 1:500 rabbit
polyclonal anti-PKCβ1 (Nordic BioSite), 1:500 rabbit
monoclonal anti-PKCβ2 (Nordic BioSite), 1:1,000 rabbit
polyclonal phosphospecific anti-PKCα (Biosource,
Camarillo, CA), 1:1,000 rabbit polyclonal phosphospecific
anti-PKCβ2 (Biosource), or 1:5,000 mouse monoclonal β-
actin (Santa Cruz Biotechnology, Santa Cruz, CA). Incubation
was followed by washing three times with T-PBS for 15 min
each time. The membranes were then incubated for 4 h at room
temperature with the appropriate secondary antibody: 1:500
swine polyclonal anti-rabbit IgG-horseradish peroxidase or
1:500 rabbit polyclonal anti-mouse IgG-horseradish
peroxidase (Dako, Glostrup, Denmark). Membranes were
then washed three times with T-PBS for 15 min each time.
Levels of β-actin were used to confirm equal loading of the
lanes. The membranes were developed using Amersham ECL
Plus Western Blotting Detection Reagents (GE Healthcare,
Buckinghamshire, UK) and visualized using a Fujifilm
LAS-1000 Luminescent Image Analyzer (Fujifilm, Stamford,
CT).
Immunofluorescence staining: Each half of both eyes were
fixed in 4% paraformaldehyde for 5 h. After fixation, the
tissue was rinsed in 0.1 M Sørensen’s phosphate buffer
(28 mM NaH2PO4 and 72 mM Na2HPO4; pH 7.2), and
thereafter washed in the same solution with increasing
concentrations of sucrose (5% to 25%). The specimens were
embedded in 30% egg albumin and 3% gelatin and were stored
at –80 °C until sectioning. They were serially sectioned at
12 µm in a cryostat (Microm HM500M; Thermo Scientific,
Walldorf, Germany) and placed on microscope slides
(Menzel, Braunschweig, Germany), three sections on each
slide. The slides were allowed to dry at room temperature for
30 to 60 min, and were then stored at –20 °C until further use.

Anti-PKC sections were permeabilized in a mixture of
PBS and 0.25% Triton X-100 for 15 min then blocked in PBS,
1% BSA, and 5% normal serum for 1 h at room temperature.
Specimens were incubated overnight at 4 °C with 1% BSA
and 2% normal serum and the primary antibody of interest:
1:200 rabbit polyclonal phosphospecific anti-PKCα
(Biosource), 1:100 rabbit polyclonal phosphospecific anti-
PKCβ1 (Biosource), 1:200 rabbit polyclonal phosphospecific
anti-PKCβ2 (Biosource), 1:10 mouse monoclonal anti-CD31
(AbD Serotec, Oxford, UK), and 1:200 mouse monoclonal
antismooth muscle actin (Santa Cruz Biotechnology). CD31,
also known as PECAM-1, is expressed by various cell types,
but particularly by endothelial cells [25]. Smooth muscle actin
is commonly used for detection of smooth muscle tissue.
Sections were washed with PBS buffer and incubated with the

appropriate secondary antibody, 1:200 fluorescein
isothiocyanate goat anti-rabbit (Cayman Chemicals, Ann
Arbor, MI) for localization of phosphospecific anti-PKCβ1
and PKCβ2 in the neuroretina and 1:50 fluorescein
isothiocyanate swine anti-rabbit (Dako) as well as 1:200
Texas Red donkey anti-mouse (Jackson ImmunoResearch,
West Grove, PA) on all other samples for 1 h at room
temperature. After an additional wash with PBS buffer, the
slides were mounted in anti-fading mounting medium
(Vectashield; Vector Laboratories Inc., Burlingame, CA). In
the present study, the immunofluorescence technique for
localization of protein expression was only used for
examining the phosphorylated forms of PKC. The non-
phosphorylated forms of specific PKC isoenzymes were
expected to be expressed in the same cells as the
phosphorylated forms of the same PKC isoenzyme.
Quantification of both phosphorylated and total PKC was
performed using western blot.

Vertical sections including the optic nerve head were
examined at the central part of the retina from four pigs in the
group subjected to ischemia and 20 h of reperfusion.
Costaining with PKC and CD31 or smooth muscle actin was
done in sections from one to two pigs. The staining intensity
was viewed with a light microscope equipped for fluorescence
microscopy (Zeiss Axiophoto; Carl Zeiss, Oberkochen,
Germany), and photographs were taken with an attached
digital camera (Zeiss AxioCam). For the purpose of staining
intensity comparisons, sections from ischemia-reperfusion
eyes and corresponding controls were processed at the same
time to minimize variability.
Statistical analysis: Statistical analysis was performed using
paired Student’s ratio t-test and GraphPad 5.0 software.
Correction for multiple comparisons was performed manually
using Bonferroni correction, which is calculated by
multiplying the p-values with the number of performed
analysis. Different primers and antibodies were considered
separate analysis, and no correction was made between them.
Exact p-values (after Bonferroni correction) are given in the
text and figures. Values are presented as means±the standard
error of the mean (SEM).
Limitations: The amount of protein and mRNA that can be
extracted from the retinal arteries is less than what can be
extracted from the neuroretina. Since the amount of material
was limited, we focused on analyzing the phosphorylated
forms of PKC in both the retinal arteries and the neuroretina,
while the total PKC were only analyzed in the neuroretinal
samples. For technical reasons, we were unable to obtain any
results from the protein analysis of samples from eyes exposed
to ischemia and 5 h of reperfusion. For ethical reasons, we
chose not to sacrifice another six pigs for these experiments
only.

RESULTS
Real-time PCR: PKCα, PKCβ1, and PKCβ2 mRNA levels
tended to be lower in the retinal arteries and in the neuroretinas
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from the eyes exposed to ischemia followed by 5 h, 12 h, and
20 h of reperfusion compared to sham-operated eyes (Figures
1A,B); however these differences did not reach statistical
significance (for exact p-values, see Figures 1A,B).

Similar patterns of PKCα, PKCβ1, and PKCβ2 mRNA
expression were seen when using β-actin as the reference gene
or when compared to EF-1α (data not shown), indicating that
these genes were reliable references. The standard curves for
each primer pair had similar slopes (3.4 for PKCα, 3.3 for
PKCβ1, 3.3 for PKCβ2, and 3.3 for β-actin), suggesting that
the PKCα, PKCβ1, PKCβ2, and β-actin cDNA were amplified
with similar efficiency. The value of each slope was close to
3.3, and the amplification efficiencies were close to 1.0, which
is optimal.
Western blot: The protein levels of phosphorylated PKCα and
PKCβ2 tended to be lower in the retinal arteries from the eyes
subjected to ischemia followed by 12 h and 20 h reperfusion,
compared to the sham-operated eyes (Figure 2A). These
differences did not reach statistical significance. Similar
patterns of change were also seen for the neuroretina (Figure
2B). The total PKCα, PKCβ1, and PKCβ2 in the neuroretina
were slightly lower following ischemia-reperfusion (Figure
2B). Phosphorylated PKCβ1 only gave weak bands on
western blot and were not sufficient for reliable quantitative
analysis.
Immunofluorescence: In the retinal arteries,
immunofluorescence staining for phosphorylated PKCα,

PKCβ1, or PKCβ2 was primarily localized to the endothelial
cells (Figure 3A). The endothelium was visualized by staining
with the endothelial cell marker, CD31. Weak staining was
also seen at a lower degree in the smooth muscle layer of the
blood vessels, this was most apparent for phosphorylated
PKCα (Figure 4).

In the neuroretina the staining was localized to the bipolar
cells (Figure 3B). Lower phosphorylated PKCα and PKCβ2
staining intensity was observed in the neuroretina in the
ischemia-reperfusion eyes compared to the control eyes.
Furthermore, the phosphorylated PKCβ1 staining showed
fewer labeled bipolar cells bodies in the eyes subject to
ischemia-reperfusion compared to sham-operated eyes (see
insert in the p-PKCβ1 picture).

DISCUSSION
Retinal ischemia is due to circulatory failure, which has its
origin in the vasculature. Most studies performed so far have
focused on identifying neuroprotective agents for the
treatment of retinal ischemia-reperfusion injury. The retinal
blood vessels are key organs in circulatory failure. Therefore,
our aim was to study the retinal vasculature separately from
the neuroretina, to identify the intracellular signal-
transduction pathways, specifically PKC, involved in the
development of injury following retinal circulatory failure.

Immunofluorescence staining verified the presence of
phosphorylated PKCα, PKCβ1, and PKCβ2 in retinal arteries.

Figure 1. PKC mRNA levels in the retinal arteries and neuroretina. PKCα, PKCβ1, and PKCβ2 mRNA expression levels assessed by real-
time PCR in (A) the retinal arteries and (B) in the neuroretina in eyes subjected to ischemia and 5 (n=6), 12 (n=14), or 20 (n=6) hours of
reperfusion versus sham-operated eyes. Values are presented as mean±SEM. Statistical comparison was performed using Student’s paired ratio
t-test (ischemia–reperfusion versus sham-operated) with Bonferroni correction. Exact p-values are given in the figure. Note that the levels for
PKCα, PKCβ1, and PKCβ2 show similar patterns of change in the retinal arteries and the neuroretina.
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The staining was primarily localized to the endothelial cells.
This is, to the best of our knowledge, the first analysis of PKC
localization in the retinal vasculature following ischemia-
reperfusion injury. The mRNA levels for PKCα, PKCβ1, and
PKCβ2 were clearly lower in the retinal arteries from the
ischemia-reperfusion eyes than from the sham-operated
fellow eyes. Also, the protein levels for phosphorylated
PKCα and PKCβ2 tended to be lower following ischemia-
reperfusion, although these results did not reach statistical

significance. Unlike the retinal blood vessels, the vasculature
has been thoroughly analyzed with regard to ischemic
conditions in other organs. The level of PKC is changed in the
vasculature of the brain during stroke, in coronary arteries
during ischemic heart disease, and in several tissues due to
diabetes [12,26,27]. Indeed, PKC inhibitors have been shown
to prevent the development of pathological receptor
expression in the vascular wall and decrease the extent of
stroke injury following middle cerebral artery occlusion and

Figure 2. PKC protein levels in the retinal arteries and neuroretina. Phosphorylated and total PKCα, PKCβ1, and PKCβ2 protein expression
levels, assessed by western blot, in (A) retinal arteries and (B) neuroretina, in eyes subjected to ischemia and 12 (n=7) or 20 (n=5) hours of
reperfusion versus sham-operated eyes. The right panels are representative examples of western blots of neuroretina and retinal arteries from
animals in the 20 h of reperfusion group. Values are presented as mean values±SEM. Statistical comparison was performed using Student’s
paired ratio t-test (ischemia–reperfusion versus sham) with Bonferroni correction. Exact p-values are given in the figure.
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subarachnoidal hemorrhage in the rat [12,13]. The
development of pathological receptor expressions in coronary
arteries has also been found to be inhibited by PKC
antagonists [14].

The staining intensity for phosphorylated PKCα,
PKCβ1, and PKCβ2 was especially prominent in bipolar cells
in the neuroretina. The occurrence of PKC isoforms has been
thoroughly investigated in a variety of animal species, and
studies in mammals verify the presence of
immunofluorescence staining for PKCα and PKCβ in bipolar
rod cells of the neuroretina [28]. In the present study, the levels
of PKCα, PKCβ1, and PKCβ2 mRNA, and protein expression
in the neuroretina were lower in eyes subjected to ischemia-
reperfusion than in sham-operated eyes. Previous studies,

using a variety of ischemic models, have reported conflicting
results concerning the effects of retinal ischemia on PKC
expression in the neuroretina [20–22]. The reason for this
discrepancy may be due to the type and severity of ischemic
insult, as well as the animal model studied. Similar
downregulation of the immunoreactivity of PKCα after
ischemia, as observed in the present study, has been reported
in the rabbit retina [21].

It cannot be deduced from the present study whether it is
the ischemia alone or the reperfusion that triggers the PKC
alterations. However, it is generally believed that it is both the
ischemia and the following reperfusion that trigger changes
seen after ischemia-reperfusion injury [1]. The mechanism
underlying the lower PKC mRNA and protein levels is not

Figure 3. PKC immunoreactivity in the retinal arteries and neuroretina. Representative examples showing phosphorylated PKCα, PKCβ1, and
PKCβ2 immunoreactivity in the retinal arteries and retina following ischemia and 20 h of reperfusion. A: Double staining with CD31 (also
called PECAM-1), an endothelial cell marker, showed co-localization of phosphorylated PKC in the endothelium (arrows). Weak
phosphorylated PKC staining could also be seen in the smooth muscle layer. B: The lower levels of PKCα, PKCβ1, and PKCβ2 observed in
the neuroretina after ischemia–reperfusion, according to western blot, were reflected in the immunofluorescence staining results, showing less
staining for phosphorylated PKCα and PKCβ2 in the ischemia–reperfusion eyes compared to sham-operated eyes. Furthermore, the
phosphorylated PKCβ1 staining showed fewer labeled bipolar cells bodies in the eyes subject to ischemia-reperfusion compared to sham-
operated eyes (see insert in the p-PKCβ1 picture). Similar results were seen in all pigs studied. Abbreviations: outer nuclear layer (ONL),
outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL), ganglion cell layer (GCL), and nerve fiber layer (NFL).
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known, but it may be related to decreased transcription and
translation of PKC, triggered by humoral factors that are
changed during ischemia. It is believed that calpain, a Ca2+-
dependent protease, may be responsible for the proteolysis of
certain PKC isoforms including PKCβ following ischemia-
reperfusion in the brain [29]. Also, dephosphorylation of the
PKC protein may render PKC more sensitive to proteolysis.
PKC inhibitors have been shown to prevent the development
of injury in the heart and brain in animal models following an
ischemic event [10,12]. However, the effect of the PKCβ-
specific inhibitor, LY333531, has been investigated in
experimental research and clinical trials for the treatment of

retinal vascular diseases, including retinal vein occlusion and
diabetic retinopathy, but the results have not been as
promising as hoped [16,30,31]. Knowledge of the role of PKC
in retinal ischemia is still fairly limited, and whether the
function of the PKC signaling pathway is impaired or
amplified during ischemic injury is remains unknown due to
conflicting reports.

We wanted to monitor the changes in intracellular signal-
transduction pathways, in this case PKC, during the
development of tissue injury following retinal ischemia.
Therefore, the retina was examined following different
durations of reperfusion after the ischemic event. Studying

Figure 4. PKC immunoreactivity in the smooth muscle layer of the retinal arteries. Representative examples showing phosphorylated
PKCα, PKCβ1, and PKCβ2 immunoreactivity in the retinal arteries following ischemia and 20 h of reperfusion. Double staining with smooth
muscle actin, a smooth muscle marker, showed colocalization with phosphorylated PKC in the smooth muscle layer (arrows). Note that the
colocalization was most apparent for phosphorylated PKCα.

Molecular Vision 2009; 15:737-746 <http://www.molvis.org/molvis/v15/a76> © 2009 Molecular Vision

744

http://www.molvis.org/molvis/v15/a76


different durations of reperfusion may provide insight into
both the initial molecular intracellular events and the ensuing
tissue injury. The present study focused on the initial events.
At 5 h of reperfusion, PKCα, PKCβ1, and PKCβ2 expression
levels were lower in the ischemia-reperfusion eyes than in the
sham-operated eyes. After longer duration of reperfusion (12
and 20 h) there was no apparent difference in the expression
of PKC levels between the ischemia-reperfusion and sham-
operated eyes. This pattern of change may reflect initial injury
to the tissue and recovery, with PKC levels returning to
baseline. Nevertheless, it cannot be deduced from the present
study whether a downregulation of PKC is protective, or is
part of the detrimental process of tissue injury.

The porcine eye has a typical primate-like architecture,
including retinal blood vessels, which are useful for
experimental analysis [5–7]. Retinal ischemia was induced by
raising the IOP for 60 min. This time period is commonly used
for inducing high IOP ischemia-reperfusion. High IOP
ischemia-reperfusion is a frequent model for experimental
retinal ischemia research [1] and has been described in several
species including rats and rabbits. High IOP produces global
ischemia, with obstruction of both the retinal and uveal
circulation, whitening of the fundus, and iris pallor. The
method is known to produce pathological features similar to
that seen after central retinal artery occlusion [1]. Siliprandi
et al. [32,33] showed in cats that the retinal injury after
elevating the IOP is caused by ischemic insult and is not the
result of increasing the pressure per se. In the present study,
blanching of the arteries and a pale retina were noted by
indirect ophthalmoscopy using an IOP of 80 mmHg, which
would suggest that this level of IOP was sufficient to cease
blood flow. One limitation of the present study was that the
oxygen tension was not measured in the retina. It has been
shown that retinal oxygen tension may be retained also at high
IOP in the pig retina [34] as a consequence of autoregulation.
In the present study there were some variations in the results.
It cannot be ruled out that this autoregulation accounts for at
least some of the variability seen in our results. Also,
interindividual variations in the resistance to an ischemic
insult have been reported before and may account for some of
the variance of the results [1].

In the present study, the retinal arteries were dissected
free from the neuroretina and analyzed separately. It is
possible there may have been some slight contamination of
the retinal arteries with neuroretina and vice versa.
Unfortunately, this cannot be prevented. Contaminants from
the neuroretina may be removed from the retinal arteries by
using digestive enzymes (e.g., trypsin) or osmotic shock (e.g.,
distilled water) [35]. However, osmotic shock is primarily a
method in which arteries and veins are extracted together.
Furthermore, trypsin-treated samples cannot be used for real-
time PCR and western blot experiments.

In conclusion, the blood vessels of the retina are key in
circulatory failure, and we therefore analyzed the retinal

arteries separately from the neuroretina. The levels of PKC
mRNA and protein were lower in both the retinal arteries and
the neuroretina from eyes subjected to ischemia-reperfusion
than in sham-operated eyes. It remains unclear whether PKC
is involved in cell-survival signaling or mediates detrimental
processes. The present study adds to the knowledge about the
signal-transduction pathways involved in the development of
retinal injury following ischemia. This information may aid
in the identification of new targets for pharmacological
treatment.
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