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The acquisition of a Magnetic Resonance (MR) scan usually takes longer than subjects can remain still. Movement of the subject
such as bulk patient motion or respiratory motion degrades the image quality and its diagnostic value by producing image artefacts
like ghosting, blurring, and smearing. This work focuses on the effect of motion on the reconstructed slices and the detection of
motion artefacts in the reconstruction by using a supervised learning approach based on random decision forests. Both the effects
of bulk patient motion occurring at various time points in the acquisition on head scans and the effects of respiratory motion on
cardiac scans are studied. Evaluation is performed on synthetic images where motion artefacts have been introduced by altering the
𝑘-space data according to amotion trajectory, using the three common 𝑘-space sampling patterns: Cartesian, radial, and spiral.The
results suggest that a machine learning approach is well capable of learning the characteristics of motion artefacts and subsequently
detecting motion artefacts with a confidence that depends on the sampling pattern.

1. Introduction

Despite producing excellent soft tissue contrast images, the
acquisition of an MR scan usually takes longer than subjects,
and in particular patients, can remain still. In fact, the
scanning time is far longer than most types of physiological
motion such as involuntary bulk movements and cardiac and
respiratory motion [1–3], as well as the flow of blood [4].

Motion artefacts occur as effects of motion during the
acquisition and appear as ghosting, blurring, and smearing.
With living subjects it is inevitable to have artefacts to some
degree in the resulting images [5]. Image artefacts degrade
the image quality and can challenge the diagnostic value of
an image, sometimes requiring repeating the scan.

The ability to detect motion artefacts in MR scans could
be employed for a multitude of applications. In a clinical
context, motion artefact detection would allow a clinician to
have real-time feedback onwhether a scan should be repeated
while the patient is still in the scanner, reducing the necessity
to reinvite the patient if the image quality is found to be
insufficient due to motion artefacts. To go one step further,
artefact detection could be integrated into the machine to

automatically decidewhether it is necessary to repeat the scan
without human interaction and without requiring a specialist
to check the quality of the scan. Furthermore, in research,
where advanced reconstructionmethods in development can
take hours or days of time and resources, a method to detect
motion artefacts could be employed to make sure at an early
stage of the reconstruction process that the effort of an expen-
sive reconstruction is worth doing on the acquired data [6].

The goal of this work is to explore the applicability of a
machine learning approach to detect motion artefacts from
MR images.

The contributions of our work are as follows:

(i) We propose a strategy to introduce synthetic motion
artefacts in 𝑘-space.

(ii) We show how a machine learning based approach is
capable of detecting motion artefacts and explain its
limitations on the given data.

While many studies which use images with synthetic
motion artefacts such as [7] focus on the Cartesian acquisi-
tion, we also compare synthetic motion artefacts simulated
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with radial and spiral sampling geometries. As this work is
supposed to be a proof of concept, we favored simulating
motion artefacts in 𝑘-space rather than simulating a motion-
corrupted raw MRI signal using tools such as the Physics-
Oriented Simulated Scanner for Understanding MRI (POS-
SUM) [8].

Most of the patientmovement-related artefacts propagate
over the image and into the background. Hence, previously
proposed methods for automatic quality assessment in 3D
structural MRI such as [9] build on the analysis of the back-
ground intensity distribution. After segmenting artefactual
voxels in the background region, the authors calculate quality
indices in the segmented areas. As a consequence, themethod
is only applicable to scans with large regions of no intensities,
whereas this work’s approach is not limited to specific body
regions and does not make any assumptions on the intensity
distribution in the reconstructed image.

After outlining the MR acquisition and reconstruction,
we present our strategy to introduce synthetic motion arte-
facts in Section 2. In Section 3,we show examples of the effects
of motion on the reconstructed slices and discuss the results
of automatic motion artefact detection. Section 4 concludes
the paper with a summary and outlook.

2. Materials and Methods

To simulate motion artefacts on reconstructed MR scans,
we inverted the reconstruction by going back into 𝑘-space,
altering the 𝑘-space samples in a way that simulates sub-
ject movement, and reconstructing the altered 𝑘-space to
create an artefact-corrupted MR scan. All experiments were
conducted in 2D. As we will show in the following, this is
sufficient to get realistic motion artefacts in the images.

2.1. MRI Acquisition. During the acquisition, the object to
be imaged is sampled in frequency space, and the recorded
signals are stored in 𝑘-space. 𝑘-space samples close to the
center of 𝑘-space contribute to low-frequency content and
make up the smooth parts of the reconstructed image,
whereas data samples further away from the center represent
high frequencies and contribute to the edges of the image.

Three commonly used sampling patterns to fill 𝑘-space
are Cartesian sampling, radial sampling, and spiral sampling.
WithCartesian sampling, 𝑘-space is filled line by line.Motion
artefacts typically form in the phase-encoding direction, as
the time span between two phase-encoding steps is signif-
icantly longer than the time span for frequency encoding
[10]. As most of the energy is concentrated in the low
frequencies that are located close to the center of 𝑘-space, the
Cartesian sampling pattern is particularly sensitive to subject
movement during the acquisition of the central lines of 𝑘-
space. Other sampling geometries such as radial sampling
or spiral sampling overcome this sensitivity by recording
both low-frequency content and high-frequency content in
each phase-encoding step such that inconsistencies would
be averaged over the number of steps. Such nonequispaced
sampling geometries can achieve shorter acquisition times

and a better signal-to-noise ratio at the cost of amore difficult
reconstruction.

2.2. Bulk Head Motion. One of the most frequent sources of
artefacts in MRI head imaging is bulk patient motion [3, 11].
Bulk patient motion occurs when a patient moves suddenly.
We simulated bulk head motion on a set of T2-weighted MR
scans taken from the IXI dataset consisting of 578 volumes
from normal, healthy subjects [12]. Each volume contains 130
axial slices of a brain surrounded by background of almost no
intensities.

Bulk movement was simulated as rigid motion with six
degrees of freedom, comprising three rotation angles and a
3D translation vector.

Themethod to introducemotion artefacts frombulk head
motion is shown in Figure 1:

(1) Transform the original volume rigidly.
(2) Extract the central slice of both the original volume

and the rigidly transformed volume. The subsequent
steps are all working on 2D images.

(3) Transform both original and rigidly transformed
images into 𝑘-space. With a Cartesian trajectory,
this transform is the fast Fourier transform (FFT).
With a radial or spiral trajectory, this transform
is implemented in the nonequispaced fast Fourier
transform’s (NFFT) forward operation.

(4) Merge the 𝑘-space of the original volume and the 𝑘-
space of the rigidly transformed volume by exchang-
ing specific data samples from the original 𝑘-space
with the corresponding data samples of the rigidly
transformed 𝑘-space, producing the “joint” 𝑘-space.

(5) Reconstruct the final image from the joint 𝑘-space.
Due to the inconsistencies that were created in 𝑘-
space, the resulting image is expected to show image
artefacts. In case of a Cartesian trajectory, this step is
implemented by the inverse fast Fourier transform;
for nonequidistant sampling patterns, the NFFT’s
adjoint operation can be used.

Note that, in case of a radial or spiral sampling pattern,
a certain number of radial spokes or spirals, respectively,
instead of lines are taken from the 𝑘-space of the rigidly
transformed image. The range for the 3D translation and
the three rotation angles were determined heuristically by
looking at a surface plot of the head volumes and determining
a rotation that seemed natural. The effective values were
then chosen randomly within that range with a uniform
distribution. The origin of the object was translated up to a
maximum of 3.64mm.

2.3. Respiratory Motion on Cardiac Scans. Particularly med-
ical screenings of cardiac or abdominal regions have to
deal with periodic motion arising from cardiac activity and
respiration [13]. With cardiovascular diseases being a leading
cause of death [14], many studies focus on cardiac imaging. In
particular 2D imaging sequences can be subject to interslice
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Figure 1: Strategy to introduce bulk motion artefacts with a Cartesian trajectory. The circle-shaped object in the result of the rigid transform
is no artefact but one of the eye balls which is acquired in the central slice after the 3D rotation.

shift caused by different breath-hold positions from one slice
to the next [15].

We synthetically generated artefacts from respiration
based on 145 3D scans that were acquired at Hammersmith
Hospital as part of the UK Digital Heart project. Since 3D
imaging only requires a single breath-hold, the chance that
these images containmotion artefacts from respiration is low.
Since all data was acquired with the same system, it is safe to
assume that the classifier will not learn the characteristics of
the system.

McLeish et al. investigated the effects of respiratory
motion on the heart by quantifying the motion at a number
of points at the right coronary artery, the right atrium, and
the left ventricle at different positions in the breathing cycle
[16]. According to their studies, rigid-body motion of the
heart takes place primarily in the craniocaudal direction with
smaller displacements in the right-left and anterior-posterior
directions. Typical deformations ranged from 3 to 7mm.
Based on this study, respiration was simulated by translating
the heart in the Hammersmith dataset towards the superior
direction by up to 7mm. Segmentations of the ventricular
cavities and the myocardium were available from [17].

To simulate various numbers of breathing cycles, we
chose a sinusoidal model for respiration. To imitate a subject
that completed, for example, four breathing cycles within
one acquisition with 256 phase-encoding steps, we sampled
a sinusoidal curve with four cycles at 256 time points. A
sampled point corresponds to one position in the breathing
cycle; that is, a point at the bottom of the sinusoidal curve
corresponds to the subject at full inhale, whereas a point at the
top of the sinusoidal curve corresponds to the position in the
breathing cycle at full exhale.The strategy to generate motion
artefacts synthetically closely follows the one described for
bulk motion. For periodic motion, however, the subsequent
lines, spokes, or spirals, respectively, in 𝑘-space came from
different images depicting the subject at subsequent positions
in the breathing cycle according to the sinusoidal model.

2.4. Feature Extraction. In total, four types of intensity-
based features were computed on each image as input to the
classification. The region of interest in which features were
extracted from the cardiac data was confined to a rectangular
region around the heart. To make sure that this region had

the same size for all subjects, the maximumwidth and height
required to fit all subjects were determined and enlarged by
10% in horizontal and vertical direction in total.

The types of features included the following.

Box Features. Mean intensity and variance were calculated
inside a patch-shaped region with random edge length and
position.

Line Features. After choosing a line with random starting
point and length within a certain radius, the standard
deviation and the difference betweenmaximum intensity and
minimum intensity along the line profile were taken as two
features.

Histogram Features. The idea to use histogram-based fea-
tures was based on the Autofocus algorithm for automatic
correction of motion artefacts in MR imaging [18]. This
motion correction algorithm minimizes the entropy that can
be calculated from a histogram. For blurring and smearing
into regions of almost no intensities, motion artefacts are
expected to decrease contrast and increase entropy.

Histogram features were computed with a random num-
ber of bins, some on the whole region of interest and some
in patch-shaped regions similar to the box features. From the
histogram, six scalar values were calculated: mean intensity,
variance, skewness, kurtosis, entropy, and energy. Note that
entropy-based features are invariant to rotation when taking
the whole region of interest into account. This property
is ruled out when only considering patch-shaped regions
because of their location.

Texture Features. Haralick features were employed to describe
the texture characteristics of an image. Adjacency can be
defined in four different ways in 2D (horizontal, vertical,
left, and right diagonals); thus these texture features differ
depending on which of the four directions is considered [19].
The first 13 features proposed in [20] were computed for each
of the four directions and the resulting features were averaged
over the four dimensions to achieve rotation invariance.

2.5. Machine Learning and Evaluation. We used nested cross
validation to train a decision forest on the two classes of
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(a) Cartesian, no motion (b) Cartesian, example 1 (c) Radial, example 1 (d) Spiral, example 1

(e) Radial, no motion (f) Cartesian, example 2 (g) Radial, example 2 (h) Spiral, example 2

Figure 2: Comparison of bulk motion artefacts acquired with different sampling patterns.

motion-corrupted and artefact-free images. It was ensured
that no subject was included more than once to prevent
the classifier from learning characteristics of a particular
subject’s anatomy. For each subject, either the artefact-free or
the artefact-degraded image was picked randomly. Hence, in
total, the two classes were represented in equal proportion.
The classification accuracy was determined by comparing the
predicted labels to the actual labels.

3. Results and Discussion

3.1. Examples of Bulk Motion Artefacts. Bulk patient motion
was simulated as described in Section 2.2 on head scans with
different “levels” of artefacts. These levels vary in the time
point in the acquisition when the subject moved and the time
span in which the subject remained in the other position.
The changes in 𝑘-space can be described by a combination
of the fraction of 𝑘-space exchanged and its offset from
the beginning of the acquisition. In a real-world scenario,
a smaller fraction corresponds to faster movement of the
subject.

Figure 2 shows examples of how bulk motion artefacts
are expressed with different sampling geometries. The scans
in Figures 2(a) and 2(e) were simulated with Cartesian
and radial sampling patterns, respectively, and without any
motion.There are no obvious differences.The same holds for
a spiral acquisition without any motion. This was expected
and demonstrates that changing the acquisition strategy does
not introduce artefacts.

The other images in each row were all acquired with
the same amount of motion. The remaining images in
Figures 2(b), 2(c), and 2(d) simulated a subject that was

moving his head to another position after 20% of 𝑘-space
had already been acquired and moved back to the original
state after filling another 20% of 𝑘-space. With a Cartesian
sampling pattern as seen in Figure 2(b), artefacts formed
in the phase-encoding direction from top to bottom. Small
detail structures like the small dark blob in Figure 2(a)
(red ellipse) were blurred and particularly edges of high
contrast were replicated. In contrast, the scan acquired with a
radial sampling pattern in Figure 2(c) exposes some blurred
streaks in diagonal direction. Note that this artefact is very
similar to CT imaging [21]. The direction of these streaks
depends on which radial spokes in 𝑘-space are affected
by the patient movement and thus the time point in the
acquisition. However, small detail structures remained sharp,
though some became overspread by streaking. The spiral
scan in Figure 2(d) also preserved small detail structures.
Nevertheless, a duplicate of the lateral ventricle can be found
as clear evidence of ghosting artefacts (blue ellipse).

The examples in Figures 2(f), 2(g), and 2(h) simulated
a very sudden movement that lasted 2/256 of the total
acquisition time and occurred after half of the scan had com-
pleted. In case of Cartesian sampling as seen in Figure 2(f),
this movement affects two central lines in 𝑘-space, leading
to low-frequent smearing in the phase-encoding direction.
The scan acquired with a radial trajectory in Figure 2(g)
again shows some streaking in the horizontal direction
which hardly becomes apparent due to the robustness of the
sampling pattern to little movement. The streaking would
become more apparent if more radial spokes in 𝑘-space were
affected. In Figure 2(h), no artefacts can be seen from visual
inspection, demonstrating the forgivingness of the spiral
sampling pattern to few inconsistencies in 𝑘-space.
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Figure 3: Classification accuracy compared to the size and the
position of the fraction that was exchanged in 𝑘-space with a
Cartesian sampling geometry.

In contrast to the Cartesian acquisition, it becomes
obvious that with radial or spiral sampling patterns the
strength of motion artefacts does not or hardly depends on
the time point in the acquisition at which the subject move-
ment occurs. This was expected, since both nonequispaced
sampling geometries acquire the center of 𝑘-space with each
spoke or spiral, respectively. As an effect, inconsistencies in
the low-frequency content are averaged and both sampling
patterns become more robust to subject motion.

3.2. Classification Results of Bulk Motion Artefacts. Depend-
ing on the portion of 𝑘-space to be replaced, the classification
accuracy ranged from 75.4% to 100% of correctly classified
images. Only box features were used for training and testing.

Figure 3 compares the classification accuracy on images
from a Cartesian acquisition with their level of artefacts. The
results suggest that a classifier is less successful in distinguish-
ing images with and without artefacts after exchanging only
a small fraction at the fringe of 𝑘-space. The bigger the 𝑘-
space fraction to be exchanged becomes, the more accurate
the results of the classification are. The closer the portion to
be exchanged comes to the center of 𝑘-space, where the low
frequencies and the major part of the energy are located, the
better detectable the effects of the inconsistencies become.
The results show that even if only a single 𝑘-space row is
inconsistent with the rest of 𝑘-space and it is located in
the 80% of lines that are closest to the center of 𝑘-space,
a classification accuracy of around 96.9% or more can be
achieved. On the contrary, if a large fraction of 𝑘-space
acquired at the beginning of the scan causes inconsistencies,
a classification accuracy of 95.3% can be achieved.

Figure 4 shows the classification accuracy of motion
artefacts with a radial sampling trajectory. The classification
score usually achieves more than 95% if more than a single
radial spoke is causing inconsistencies. In contrast to the
results from a Cartesian acquisition, exchanging the first two
or more radial spokes of the acquisition can be detected
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Figure 4: Classification accuracy compared to the position in the
acquisition whenmovement began (offset) and the number of radial
spokes (fraction) that were exchanged in 𝑘-space.
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Figure 5: Classification accuracy compared to the position in the
acquisition when movement began (offset) and the number of
spirals (fraction) that were exchanged in 𝑘-space.

reliably—probably due to the radial sampling pattern where
each spoke has an impact on the low frequency content.

However, there is an unexpected valley when inconsisten-
cies occur after 50% of the acquisition has been completed.
One explanation for these surprising measurements might
be that inconsistent spokes at this particular time lead to
smearing in the horizontal direction, whereas inconsistencies
at other times tend to smear into a more diagonal or even
vertical direction. It seems that the classifier learns to give
higher weight to features that are located in the background
region. Most of this background region can be found below
the object in the region of interest, while there is hardly any
background on the left and on the right of the object where
smearing can clearly be seen at this particular time point (see
Figure 6).

In Figure 5, the classification accuracy on images from
a spiral acquisition is compared to the number of spirals
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(a) Reconstruction from spiral acquisition with-
out any motion. Visualization window set to
[0, 365]

(b) Reconstruction from spiral acquisition where
10 spirals (5%) after 50% of the acquisition were
replaced. Visualization window set to [0, 365]

(c) Difference image of the two reconstructions
shown on the left side. Visualization window set
to [0, 50]

Figure 6: If bulk patient motion occurred after 50% of a radial acquisition had completed, the image quality is degraded by smearing in the
horizontal direction. The red frame indicates the region of interest in which features were extracted.

that were exchanged in 𝑘-space and their position in the
acquisition. It is evident that having only a single inconsistent
spiral cannot be detected as reliably as having more than one
inconsistent spiral.Thismight be due to the spiral acquisition
strategy that is more robust to subject movement and can
hence suppress slight inconsistencies by design. Note that the
classification accuracy does not depend on the position of the
spirals to be replaced during the acquisition since each spiral
covers approximately the same amount of energy in 𝑘-space.

Unfortunately, it is hard to compare the results to the
study by Mortamet et al. [9]. Since the scans for their study
were acquired at various sites with varying hardware, these
scans might show apparent differences, for example, different
intensity ranges, and unapparent differences, for example,
different noise distributions, due to the scanner hardware. A
machine learning algorithm would need to be trained very
carefully on this dataset in order not to unintentionally learn
the characteristics of different scanner systems.

3.3. Examples of Respiratory Motion Artefacts. In addition
to bulk motion, the effects of periodic motion were investi-
gated on cardiac data. Motion artefacts were introduced as
described in Section 2.3.

In the scans displayed in Figure 7, the synthetic subjects
completed different numbers of breathing cycles in a single
acquisition as indicated by the captions. Figure 7(a) was
acquired without anymotion and shows the left ventricle and
the right ventricle.When the subject completed one breathing
cycle during the acquisition as seen in Figure 7(b), small
structures already started to deform. With more motion, the
boundary of the moving region starts to show up as waves of
lines around the heart.These streaks also start to decrease the
visibility of both ventricles, eventually looking like a layer of
noise. Small structures become hard to recognize with more
movement.

The scans displayed in Figures 7(e), 7(f), 7(g), and 7(h)
simulate the same movement but were acquired with a radial

sampling pattern. Compared to the scan without motion, in
Figure 7(f), the small dark structures on the left of the right
ventricle and on the right of the left ventricle have changed
in shape (green ellipse). Then streaking artefacts started to
form, showing up as tangential streaks on the edges of both
ventricles. These streaks seem to be prominent in regions of
high intensities.

In contrast to the two other sampling patterns, movement
in a spiral acquisition results in heavy blurring of the moving
region. Nevertheless, the amount of blurring seems to remain
similar despite of the increasing amount of movement.

3.4. Classification Results of RespiratoryMotionArtefacts. The
evaluation comprised all four types of features, including
box-, line-, histogram-, and texture-based features. A classi-
fier was trained for all types of features individually and on
feature spaces concatenating histogram and texture features
only as well as all four feature types.

Figure 8 shows the classification accuracy for images from
aCartesian acquisitionwith different levels of artefacts, which
refer to the number of breathing cycles that were squeezed
into one acquisition.

The classification accuracy of box features ranges between
48.9% for artefact level 3 and 64.8% for artefact level 4. In
general, they do not seem to produce reliable results, firstly
because of the low classification accuracy and secondly since
there is no obvious relation to the level of artefacts, as one
would expect the classification accuracy to rise with higher
strength of artefacts. One reason for the modest success rate
with box features might be that they are not invariant to rota-
tion, while the subjects were scanned from different angles
and therefore their heart appears from different orientations.
Similar considerations apply to the line features.

In contrast to box and line features, histogram features
achieved a classification accuracy between 95.9% and 97.3%.
A part of these histogram-based features was computed
on the whole region of interest and is therefore invariant
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(a) 0 (b) 1 (c) 3 (d) 8

(e) 0 (f) 1 (g) 3 (h) 8

(i) 0 (j) 1 (k) 3 (l) 8

Figure 7: Effects of respiratory motion on the heart. (a), (b), (c), and (d) show scans from a Cartesian acquisition, (e), (f), (g), and (h) from
a radial acquisition, and (i), (j), (k), and (l) from a spiral acquisition. The captions indicate the number of breathing cycles that the subjects
completed during the acquisition, exposing different levels of artefacts.

to rotation. The classification accuracy for texture features
increased from 77.1% for the lowest level of artefacts to 91.8%
for the highest level. A combination of histogram and texture
feature spaces as well as a combination of all feature spaces
achieved similar results to the histogram features.

The detection rate drops for images acquired with a radial
sampling pattern (see Figure 9). The fact that no feature is
capable of achieving more than 61.1% (histogram features)
for the first level of artefacts is probably the fault of the
sampling pattern that is suppressing artefacts by design. As
soon as the motion becomes more dominant, particularly
histogram-based features seem to detect the increasing level
of streaking artefacts that the radial sampling pattern exposes.
Combining histogram and texture features outperforms the
classification accuracy of a single feature type, achieving an
accuracy of 68.8% of correctly classified images at artefact
level 2 up to 90.9% at artefact level 8.

As it can be seen in Figure 10, the histogram features,
which worked as themost reliable type of features, fall behind
on classifying artefacts from images acquired with a spiral
sampling pattern. The classification accuracy of histogram
features ranges between 53.2% and 62.2% close to a success
rate of pure guessing and they are surpassed by box and
line features. However, the texture features succeeded by
far, achieving between 88.3% on images of artefact level 8
and 93.8% on images of artefact level 1. Combining texture
features with histogram features and the other feature types
yields similar detection rates.There is no obvious reason why
the performance on fewer artefacts is slightly better than that
on more obvious artefacts.

Although the spiral sampling pattern has been developed
to bemore robust tomovement similar to the radial sampling
pattern, it is not surprising that already the lowest level of
motion can be detected with a success rate of more than
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Figure 8: Classification accuracy for different levels of artefacts
with a Cartesian acquisition strategy. The artefact levels refer to
the number of breathing cycles that a subject completed during the
acquisition.
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Figure 9: Classification accuracy for different levels of artefacts with
a radial acquisition strategy.

90% after looking at the examples in Figures 7(i), 7(j), 7(k),
and 7(l). The spiral sampling pattern starts blurring the
region of interest already after little motion occurred. From
a visual impression, the amount of blurring does not change
much if more than one breathing cycle occurs during one
acquisition, supporting the mostly constant detection rate
over the different levels of artefacts.
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Figure 10: Classification accuracy for different levels of artefacts
with a spiral acquisition strategy.

4. Conclusion

This work evaluated the automatic detection of motion
artefacts using decision forests based on features that have
been employed in several MRI studies before. Being able
to detect motion from the acquired data would allow a
clinician to have real-time feedback on whether the scan
should be repeated due to insufficient image quality while the
patient is still in the scanner. With the presented approach
to simulate realistic motion in 𝑘-space, we showed how
the effects of motion manifest themselves in ghosting and
blurring artefacts. Both effects could be found in images from
a Cartesian acquisition. With a radial acquisition, the image
structures were found to be much sharper, though streaking
artefacts became apparent. The radial sampling pattern also
showed its robustness to little motion inconsistencies. The
effects of motion on images from a spiral acquisition turned
up as blurring in the moving regions.

In case of Cartesian sampling, the detectability of incon-
sistencies was clearly found to be related to the number
of lines affected and the time during the acquisition when
motion occurred. Artefacts become better detectable when
more lines are affected by motion and the closer these lines
are to the center of 𝑘-space, where the low frequencies and
most of the energy are located. On scans acquired with
a radial and spiral acquisition bulk motion artefacts were
found to be detectable with high confidence unless only a
very small number of radial spokes or interleaved spirals
were affected. It is worth noting that, in case of a radial or
spiral sampling pattern, the time point at which the motion
occurs in the acquisition does not have an impact on the
classification accuracy, since each radial spoke or spiral covers
approximately the same amount of energy in 𝑘-space.

The effects of respiratory motion were evaluated on
cardiac scans. In particular histogram-based features led to
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decent results on images acquired with a radial sampling
geometry, and texture features performed well on images
acquired with a spiral sampling geometry. Combining the
feature spaces of histogram and texture features yielded
encouraging results as well.

For future work, to overcome problems with recordings
from different orientations, one could use SIFT to produce
features that are invariant to image scaling, translation, and
rotation and robust to illumination changes [22]. While large
key points were shown to perform well on images that had
been degraded by blurring and noise, it is not clear how
ghosting might affect the matching.

Of course it would be beneficial to evaluate the perfor-
mance of the machine learning approach developed in this
work on real, annotated data to support the conclusions of
this paper.
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