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Time-discrete SIR model for COVID-19 in Fiji

Rishal Amar Singh , Rajnesh Lal and Ramanuja Rao Kotti

School of Mathematical and Computing Sciences, Fiji National University, Lautoka, Fiji

Abstract

Using the data provided by Fiji’s ministry of health and medical services, we apply an implicit
time-discrete SIR (susceptible people–infectious people–removed people) model that tracks
the transmission and recovering rate at time, t to predict the trend of the coronavirus disease
2019 (COVID-19) pandemic in Fiji. The model implied time-varying transmission and recov-
ery rates were calculated from 4 May 2021 to 9 October 2021. The estimator functions for
these rates were determined, and a short-term (30 days) forecast was done. The model was
validated with observed values of the active and recovered cases from 11 October 2021 to 9
December 2021. Statistical results reveal a good fit of profiles between model simulated and
the reported COVID-19 data. The gradual decrease of the time-varying basic reproduction
number with values below one towards the end of the study period suggest the government’s
success in controlling the epidemic. The mean reproduction number for the second wave of
COVID-19 in Fiji was estimated as 2.7818. The results from this study can be used by
researchers, the Fijian government, and the relevant health policy makers in making informed
decisions should a third COVID-19 wave occur.

Introduction

A cluster of pneumonia infections was reported in Wuhan, China, in December 2019. Some of
the first cases had regular contact with Wuhan wet markets that predominately traded live sea-
food [1]. Research revealed that the illness was caused by a newly discovered Coronavirus, sub-
sequently named coronavirus disease 2019 (COVID-19) [1, 2]. The virus expanded throughout
China and the rest of the globe, prompting the World Health Organization to designate the
outbreak as a public health emergency of worldwide concern on 30 January 2020, and later,
a global pandemic on 11 March 2020 [3]. Pacific Island countries were not spared of the
spread and wrath of the virus. The first case in the region was discovered in French
Polynesia on 10 March 2021 [4]. Eleven countries (Commonwealth of the Northern
Marianas, Fiji, French Polynesia, Guam, New Caledonia, Papua New Guinea, Republic of
the Marshall Islands, Samoa, Solomon Islands, Vanuatu and Wallis and Futuna) in the
Pacific Island Countries and Territories (PICTs) have since reported cases and deaths.

As of 1 December 2021, the total number of cases in the PICTs stands at 167 695 with 2435
reported COVID deaths [4]. The worst affected nations were Fiji, French Polynesia, Papua
New Guinea, Guam and New Caledonia. Figure 1 shows the cumulative cases from March
2020 to November 2021 of these PICTs. Countries such as American Samoa, Palau,
Solomon Islands, Marshal Islands, Tonga, Vanuatu and Samoa were able to insulate them-
selves from the virus. Their geographical isolation from the rest of the world, combined
with a peremptory response in the earliest periods of the pandemic by the respective govern-
ments through swift and an outright ban on inbound flights and ships helped achieve this.
These total bans on border entry were gradually relaxed for citizens and cases were recorded
from returning citizens who contracted the virus overseas. These citizens were put in strict iso-
lation in quarantine facilities upon return. As of 1 December 2021, these seven PICTs had a
combined COVID-19 population of 49, which constituted less than 0.03% of the total COVID
population in the Pacific region [4].

Fiji, an archipelago of more than 330 islands located at the centre of the South Pacific
region constitutes 7% of the region’s population. However, approximately 40% of the region’s
total cumulative COVID-19 cases, as of 1 December 2021, were identified in Fiji [4]. The first
case of the disease in Fiji was discovered and subsequently announced on 19 March 2020. The
numbers went up slightly, but the spread of the virus was adequately controlled as a result of
immediate travel bans, restricting public movement through targeted curfews, lockdowns, early
investment in testing capacity and immediate closure of schools and non-essential businesses.
No community transmissions were recorded after 18 April 2020. However, repatriation flights
kept bringing in border cases that were kept in strict quarantine facilities before their release
into the communities. It was from a breach in protocol at one of these quarantine facilities
where on the on 19 April 2021, Fiji confirmed its first community case after 365 days of no
community transmission of the virus. A more transmissible variant of the virus had been dis-
covered in Fiji, the Delta variant which is up to 60% more transmissible than the previous
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variant [5]. The COVID-19 infection rate surged in Fiji and as of
1 December 2021 there have been 52 532 cases and 697 deaths in
this second wave of the virus compared to 72 cases and 2 deaths
from the first wave of the pandemic [6].

To mitigate the spread of the virus, targeted lockdowns were
placed and movement restricted through curfews. The first
batch of a 2-dose vaccine for arrived in Fiji on the 6th of
March, 2021 and the first groups to receive their first dose of
the vaccines were the frontline workers (airport workers, health
front-liners, sea-ports, quarantine facility staff, hoteliers working
in quarantine facilities, defence forces and some other essential
workers), persons with existing medical conditions and the eld-
erly. It was later administered to the general public and as of 1
December 2021, 601 400 people had already received their first
dose and 560 570 were fully vaccinated. This corresponds to
97.3% and 90.7% of the target population (≥ 18 years old) receiv-
ing the first and second dose respectively [6].

In the global arena, as COVID-19 continuously crippled many
economies and livelihoods, many researchers have published articles
empathising epidemic forecasts that strongly relate to mathematical
models. Epidemiologists have utilised these models to support a
wide spectrum of policy questions globally [7]. Some recent work
on modelling includes using the compartmental models such as
SIR (Susceptible, Infected, Removed (recovered or deceased)) [3,
8, 9] or its extensions such as the SEIR (Susceptible, Exposed,
Infectious, Recovered) [10, 11], SIRD (Susceptible, Infectious,
Recovered, Dead) [12, 13] and the SEIRD (Susceptible, Exposed,
Infected, Recovered, Dead) model [14, 15].

The present investigation utilises the Kermack–Mckendrick
SIR model, one of the basic compartmental models, to evaluate
and forecast the outbreak in Fiji. The compartment models
assume that the population is homogenous, that is, each individ-
ual exhibits similar characteristics [16].

This study aims to:

(i) estimate the time-varying model parameters and to formu-
late a mathematical model to adequately understand the
dynamics of the pandemic in Fiji,

(ii) examine the impact of the control measures currently
employed in Fiji, and

(iii) use the model to validate and forecast the COVID-19 cases
in Fiji.

The paper is structured as follows: In Section ‘Methods and
materials’, the model and methodology are explained. In Section
‘Results’, we present the findings from the method used.
Together with their validating reasons, these results are later
described and conclusions are made in Section ‘Discussion’.

Methods and materials

Several variations of the SIR model exist in the literature [3, 17–19].
Mungkasi [18] proposes a successive approximation method for
solving the explicit SIR model with a constant vaccination strategy.
Moreover, using an appropriate successive approximation method
Mungkasi [17] obtains a superior explicit solution to the SIR
model for dengue fever transmission. Cooper et al. [3] improved
the classical SIR model with the ability to accommodate surges in
the number of susceptible individuals in the population. The clas-
sical SIR model assumes a constant population where the susceptible
population decreases monotonically towards zero. However, the
authors in [3] proposed a model where the susceptible population
is adjusted at various times to account for newly infected individuals.

Various studies [3, 8, 9, 17–21] have mainly investigated con-
tinuous or explicit time-discrete schemes. In contrast, Wacker and
Schlüter [22] have analysed the properties of the implicit time-
discrete SIR model, including nonnegativity and boundedness of
solution, global existence and uniqueness in time, monotonicity
properties and error analysis. We employed the implicit time-
discrete SIR model [22] for short-time prediction and to keep mod-
elling as interpretable as possible. The main reason for choosing the
SIR model in the present study is its expediency and ease of imple-
mentation compared to other compartment models, along with
high robustness in explaining the evolution of the pandemic.

The SIR model is given by three coupled ordinary differential
equations (ODEs) that describe the time evolution of our three
main subpopulations [3]. The encounters between the individuals
infected and susceptible occur at a rate proportional to their
respective numbers in the population. The rate of new infections
can thus be defined as αSI, where α is the effective transmission

Fig. 1. COVID-19 cases in the worst affected nations in the Pacific. The data of these PICTs is taken from [4].
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rate, S(t) is the number of people susceptible to the disease and I
(t) represents the number of people infected, i.e. active cases. The
number Infected (I ) are assumed to recuperate with a constant
probability at any time (t), which translates into a per capita
recovery rate that we denote with β, and thus an overall rate of
recovery βI. The transmission and recovery rate of any epidemic
changes with vaccination and other damping measures such as
lockdowns, compulsory mask usage in public and an increase in
personal cleanliness [23]. Figure 2 shows the structure of the
model based on the above assumptions.

The SIR model is the following system of ODEs [3, 22]:

dS
dt

= −a(t)
N

S(t)I(t)

dI
dt

= a(t)
N

S(t)I(t)− b(t)I(t)

dR
dt

= b(t)I(t),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1)

where R(t) is the number of people who have recovered or had
deceased. α(t) and β(t) are the unknown time-varying model
parameters. The total population under consideration is repre-
sented by N. The ODEs in Eq. (1) are interdependent as a closed
population when a nation-wide disease outbreak is considered [3],
and thus at any given time

N = S(t)+ I(t)+ R(t). (2)

Selection of model

The ODEs in the SIR model are discretised using the finite
difference scheme. There are numerous works with mainly
explicit schemes regarding time-discrete SIR models in literature
[21, 24]; however Allen [20], and Wacker and Schluter [22] pro-
posed an implicit time-discrete edition of this classical SIR model
and showed that this time-discrete variant maintained various
time-continuous properties. In this study, we follow the implicit
numerical algorithm in [22] and discretise the SIR model as

Si+1 − Si
ti+1 − ti

= −ai+1

N
Si+1Ii+1

Ii+1 − Ii
ti+1 − ti

= ai + 1
N

Si+1Ii+1 − bi+1Ii+1

Ri+1 − Ri

ti+1 − ti
= bi+1Ii+1.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(3)

Assuming that our time interval [0, T] can be divided by a strictly
increasing sequence {ti}

M
i=1 with M∈ℕ subintervals, Eq. 3 gives a

fully implicit structure of the time-continuous SIR model for all
i∈ (1, 2, …M− 1) and N = Si+1 + Ii+1 + Ri+1 = Si + Ii + Ri [22].

Selection and pre-treatment of COVID-19 data

The data for COVID-19 was acquired from the Fiji’s Ministry of
Health and Medical Services (MOHFiji) website (www.health.gov.fj)

[6]. The data includes the cumulative number of infected cases
(Î), the cumulative number of recovered cases (R̂) and the
cumulative number of death cases (D̂) in Fiji. Following [22],
we define Ri = R̂i + D̂i and Ii = Îi − Ri. We considered the
COVID-19 data of Fiji for the second wave of the pandemic
from 4 May 2021 (t = 1) to 9 December 2021 (t = 220) of which
the data corresponding to time {ti}

160
i=1 is used for estimating the

parameters of the discrete-time SIR model and the data for
time {ti}

220
i=161 is used to validate the estimated model. Figure 3a

shows the cumulative cases of reported infected people and the
cumulative cases of reported recovered people in Fiji.
Apparently, there are two jumps in the plot of total recoveries
around days 152 and 154. The corresponding jumps are subse-
quently visible in Figure 3b showing the number of the active
cases. Possible explanations for these sudden jumps would be
late testing, identification and recording of recovered patient
numbers.

A 3-day moving average (3MA) and a 5-day moving average
(5MA) filter was employed by Law et al. [9] to smoothen daily
infected data for Malaysia. Cartocci et al. [25] in their study on
analysing gender and age-grouped data for Italy used the 7-day
moving average (7MA) method to remove noise and excess vari-
ability from data. The authors in [9] and [25] also highlighted the
importance of choosing a reasonable smoothing moving average
window as a wider window would allow for a higher degree of
noise filter, but meaningful rapid variations of the pandemic
data would not be obtained. A 7-day window for the moving aver-
age filter is a fair compromise, and widely acceptable for smooth-
ening noisy and erratic for the COVID-19 data as the mean
incubation period of the virus is also 7 days [26]. For this
study, a 7MA was applied to the recovered data, R̂, to eliminate
sudden jumps and thus to obtain a smooth sequential data. The
processed data using 7MA is shown in Figure 4, showing the
improvement in smoothness and continuity in the recovered
and hence the active cases.

Calculation of time-varying α and β from observed data

We follow Wacker and Schlüter [22] and summarise the algo-
rithm used to estimate the time-varying model parameters and
the procedure adopted to forecast the COVID-19 cases in Fiji.
The time-varying transmission and recovery rates are determined
from Eq. (3) using discrete values of I and R observed at time ti for
i = 1, …, M− 1 where M = 160. Assuming Si+1 > 0 and Ii+1 > 0,
the time-varying parameters are computed as

ai+1 = N(Si − Si+1)
Ii+1 · Si+1 · Di+1

(4)

and

bi+1 =
Ri+1 − Ri

Ii+1 · Di+1
, (5)

where Δi+1 = ti+1− ti = 1 for i = 1, ….M− 1.

Fig. 2. Illustration of the SIR model.
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After the time-varying model parameters are computed, the
implicit time-discrete solution of the SIR model is estimated.
Assuming that 0 < αi < 1 and 0 < βi < 1 are known for all i∈ (1, 2,
…M− 1) and that the initial values of S1 > 0, I1 > 0 and R1≥ 0
are known, an implicit solution scheme of Eq. (3) reads

Si+1 = Si

1+ ai+1 · Di+1 · Ii+1

N

Ii+1 = Ii

1+ bi+1 · Di+1 − ai+1 · Di+1 · Si+1

N
Ri+1 = Rj + bi+1 · Di+1 · Ii+1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(6)

Assuming that Si > 0, Ii > 0 and Ri ≥ 0, Eq. 6 is uniquely solv-
able for all i∈ (1, 2, …M− 1) [22]. Here, Ii+1 for i = 1, …, M−
1 is first calculated using

Ii+1 = −Fi+1

Qi+1
+

��������������
F2

i+1

Q2
i+1

+ N · Ii
Qi+1

√
, (7)

where Θ and Φ are defined as

Qi+1 := (1+ bi+1 · Di+1) · (ai+1 · Di+1) (8)

and

Fi+1 := (1+ bi+1 · Di+1) · N − ai+1 · Di+1 · (Si + Ii)
2

. (9)

The solution scheme for Si+1 and Ri+1 follows after computing
Ii+1. Note that αi+1≠ 0, which implies that ΔS(t) = Si+1− Si≠ 0
from (4).

The resulting implicit time-discrete scheme, i.e. Eq. 6, is the
forward difference approximation of the SIR model, i.e. Eq. 3.
The global existence, global uniqueness, non-negativity and
boundedness of the solution, monotonicity properties, and error
analysis of the implicit scheme have been well established. We
refer the readers to [22] for a detailed analysis of the above

properties. Additionally, the numerical solution implicit scheme
is uniquely solvable for all time steps [22]. Moreover, the implicit
time-discrete scheme is a rewritten version of the well-known
implicit Eulerian time-stepping scheme, which is known to be
unconditionally stable [27]. This method was implemented in
[22] to successfully model the spread of COVID-19 in Germany
and Iran.

Model validation and short term forecast

To validate the model for {ti}
220
i=161 and make a short-term forecast

of COVID-19 cases in Fiji, time-varying model parameters, for ti
(i > 220), are estimated following the approach in [22]. Through
inspection of the time-varying transmission rate as shown in
Figure 5a, it can be inferred that the model follows an exponential
decay function. Similarly, except for a few areas of instability, as
explained later in Section ‘Results’, the recovery rates are mostly
constant for the duration of the study as seen in Figure 5b as
well. Similar observations were made for COVID-19 cases in
Germany and Iran [22], and Bulgaria [28]. Hence, the time-
varying transmission and recovery rate is assumed to take the fol-
lowing form:

a(t) := a1 · e−a2.t (10)

and

b(t) := b, (11)

for t≥ 1. The real constants α1, α2 and β which is are determined
using the time-varying parameters {ai}

M
i=2and {bi}

M
i=2 as defined

by Eqs. (4) and (5).
Since both {ai}

M
i=2 . 0 and {bi}

M
i=2 . 0 for i = 2, … M, it is

assumed that constants α1 > 0 and β > 0. The non linear relation
in Eq. (10) is linearised using the parametric transformation

ln (a(t)) = ln (a1)− a2 · t = d1 + d2 · t, (12)

where α1: = ln(δ1) and α2: = −δ2 as in the case of maximum
log-likelihood estimation (MLE). MLEs draw conclusions about

Fig. 3. Unprocessed (observed) COVID-19 data for Fiji from t1 (4 May 2021) to t160 (10 October 2021). (a) shows the cumulative infection and cumulative recovered
cases (R). (b) shows the daily active cases (I) and cumulative recovered cases (R).
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the population most likely to have generated a sample, especially
the joint probability distribution of the random variables {y1, y2,
y3, …, yn}. This method of parameter estimation’s many optimal
properties and working algorithm have been thoroughly discussed
in [29]. To find suitable estimators â1, â2 and b̂ for α1, α2 and β,
respectively, a cost function ȷ:R3 � [0, 1), is defined as:

ȷ(d1, d2, b) :

=
∑M
i=2

[d1 + d2 · ti − ln (ai)
2]

+
∑M
i=2

(b− bi)
2. (13)

The solution rests in showing that the function ȷ possesses a
unique local minimiser â1, â2 and b̂. The local minimisers are
obtained by setting all the partial derivatives of the cost function
equal to zero. Hence, setting ∂ȷ

∂b (d̂1, d̂2, b̂) = ∂ȷ
∂d1

(d̂1, d̂2, b̂) =
∂ȷ
∂d2

(d̂1, d̂2, b̂) = 0 yields [22]

b̂ = 1
M − 1

∑M
i=2

bi, (14)

d̂2 =
∑M

i=2 ti · ln (ai)− 1
M − 1

∑M

i=2
ln (ai)

[ ]
·
∑M

i=2
ti.∑M

i=2 t
2
i −

1
M − 1

·
∑M

i=2
ti

( )2 , (15)

and

d̂1 = 1
M − 1

∑M
i=2

( ln (ai)− ti · d̂2). (16)

Using the local minimisers (Eqs. (14)–(16)) and the estimated
time-varying model parameters (Eqs. (10) and (11)), the esti-
mated model is validated for {ti}

220
i=161. In the absence of an abso-

lute standard method in forecast verification, the model’s
performance has been done in line with Lal et al. [13] and

Salgotra et al. [30]. The model’s accuracy was evaluated by com-
puting the Relative Mean Absolute Error (RMAE) of the simu-
lated model state as

RMAE = 1
N

∑i=1

N

|y(i)− s(i)|
y(i)

, (17)

where y(i) is the observed state, s(i) is the simulated state using
the modelled parameters, and N is the size of the observed data.
Willmott and Matsuura [31] indicate that RMAE is a more nat-
ural and accurate measure of average error, and (unlike RMSE
or related measures) is unambiguous. It can be further stated
that for a model to be reliable and accurate, the correlation coef-
ficient between the desired and projected values must be strong
[32]. Hence the coefficient of determination, r2, values are calcu-
lated, using [13, 32]

r2 = 1−
∑N

i (y(i)− s(i))2∑N
i (y(i)− �y)2

[ ]
. (18)

Furthermore, short term (30 days) forecast is made for the
cumulative number of infected and recovered COVID-19 cases
in Fiji. In this study, all computations and simulations were per-
formed using MATLAB R2016a software.

Time-varying basic reproduction number

The basic reproduction number <0 of an infectious disease is the
number of people who contract the disease from an infected per-
son assuming the whole population is susceptible [20, 33]. In the
SIR model, the time-varying basic reproduction number is com-
puted as

<0(tc) := a(tc)
b(tc)

(19)

for arbitrary c ∈ (1, 2, …M ) and assuming β(tc) > 0 [33].

Fig. 4. (a) Smoothening the recovery (R) curve with a 7MA filter, and (b) subsequently improving the curve for active cases (I).
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Fig. 5. Time-varying transmission and recovery rates from processed data for Fiji. Superimposed are the estimator functions. (a) The estimated parameters are α1≈
0.2144 and α2≈ 0.0210. (b) The estimated recovery rate is β≈ 0.0403 (the mean value on the full interval).

Fig. 6. Time-varying, and average effective reproduction number
from processed data for Fiji from t1 = 1 (4 May 2021) to tM = 160 (10
October 2021).

Fig. 7. The 7MA processed data and implicit time-discrete SIR solution scheme for {Ii }
160
i=1 shown in (a) and {Ri }

160
i=1 in (b).
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Results

The time-varying COVID-19 transmission (α) and recovery rate
(β) for Fiji is presented in Figure 5. Clearly, the transmission
rate decreased due to corrective measures such as localised lock-
downs, initial bans and restrictions on social gatherings, compul-
sory cladding of proper masks in public, and a gradual increase in
vaccination rates. However, the transmission rates are volatile at
the beginning but gradually stabilise after t80. A significant
cause for this instability could be attributed to untimely COVID
testing and analysis. Test samples are sent from health facilities
around the country to Fiji Centre for Disease Control (Fiji
CDC) in the capital city for testing, and results are obtained
within 48 h after the swab tests. This non-decentralising of the
COVID testing results in delays, backlogs and placement of the
positive results in incorrect time bins. In late May 2021, 11 000
swab samples were sent to Australia as testing facilities in Fiji
were inundated with testing samples and were severely backlogged
[6]. Moreover, there are unknown cases of transmission as people
with a mild course of the disease or asymptomatic infections may
not have come forward for testing.

Recovery rates being stagnant for certain days and abruptly ris-
ing on certain days in the beginning of the pandemic in Fiji sug-
gests batch testing for recovered patients. This may explain the
volatility in the recovery rates at the start of the second wave of
the virus. The rate seems to be constant, thereafter with moderate
deviations due to increases in test capacity and regularity.

The time-dependent reproduction number <0(ti) is shown in
Figure 6. The computations produce high numerical <0s in the
beginning as there were only a few recovered cases at the start of
the disease outbreak. The reproduction number further increased
from early June 2021 to mid-July 2021. This increase can be
attributed to rapid numbers of active cases as a result of the
discovery and formation of COVID-19 clusters in many informal
settlements in Suva and Nadi, such as Kinoya, Navosai, Nawaka,
Tramline-Nadi, Waila and Grantham Road [6]. Although these
areas were cordoned off when transmissions were discovered, the
close proximity of dwellings in this area resulted in surges of
infected cases within the area. Transmissions were also discovered
in a few highly populous government institutions such as the navy
headquarters, the Nasinu police barracks and the Suva’s Colonial
War Memorial Hospital [6]. The number of active cases peaked

in mid-August and regressed thereafter, translating to monotonic-
ally lower values of <0.

Using the transmission and recovery rates from Eqs. (4) and (5),
the time-discrete implicit SIR solution scheme in Eq. (6) is applied
to the treated data for I and R for the considered period. The simu-
lated active and recovered cases are illustrated in Figure 7.

The model forecast for the active cases and total recovered
cases for {ti}

220
i=161 is compared against observed values in

Figure 8. We observe a good fit between the anticipated and actual
data. Table 1 shows the model-forecast active and recovered case
numbers for the next 30 days i.e. from t221 = 10 December 2021 to
t250 = 8 January 2022. Table 2 lists the RMAE and r2 values of the
model states simulated using the estimated parameters. The per-
formance of a proposed model in any scientific domain is excep-
tional if the RMAE is less than 0.05, good if the RMAE is between
0.05 and 0.1, and reasonable if the RMAE is between 0.1 and 0.2
[34]. The model forecast for the active cases, I and the recovered
cases, R is good. This is also highlighted in the respective values of
r2. The RMAE and the r2 values validate the quality of the
proposed models and hence increase the chances of reliable
predictions.

Discussion

A time-discrete SIR model is utilised for the modelling and fore-
casting the spread of the COVID-19 epidemic in Fiji by consider-
ing publicly available data from 4 May 2021 to 9 December 2021.
The choice of the data selection dates corresponds to the second
wave of COVID-19 cases in Fiji. We assumed an exponential
decay model for transmission rates as observed in our experimen-
tal findings for time-varying α rates. However, the model for
recovery rates was less evident from the calculated time-varying
β values. The calculated recovery rates are volatile in Figure 5b
at the beginning and towards the end (the reasons for which is
mentioned in Section ‘Results’), the rates were primarily constant.

In this study, we have used a constant recovery rate, but in real-
ity, recovery rates vary. Factors such as changes in socioeconomic
factors, spending levels in medical infrastructure, the proportion
of infected elderlies have effects on rates of recoveries [35].
As patients of different degrees of symptoms present themselves
to medical authorities, the recovery rates of these cases will vary

Fig. 8. (a) Using the â and b̂ functions together with initial conditions S160 and I160 to validate the active cases, {Ii }
220
i=161. (b) The estimator functions and initial

conditions R160, I161 are used to validate the recovered cases, {Ri }
220
i=161. The model forecast is shown for the next 30 days i.e. {ti }

250
i=221.
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as well. Other studies, e.g. Lal et al. [13] and Hong and Li [36]
used time-varying recovery rates. This is an obvious limitation
of our study. A more accurate and reflective recovery rate
model would in turn, produce far more improved results.

These estimated functions for the transmission and recovery
rates were used to validate the active and recovered cases for
October to mid-December 2021 and the forecast done for the
next 30 days. The statistical results show that the proposed time-
discrete SIR model is reliable, and new predictions can be derived
based on this model.

The time-varying basic reproduction number, <0 serves as the
best proxy for disease progression [37]. Computing the reproduc-
tion number regularly and frequently is vital to comprehend the
epidemic’s trajectory and make real-time assessments of its
scale. Furthermore, it is a critical criterion for evaluating the effi-
cacy of current public health measures and planning future

actions as needed [37, 38]. A value of <0 above 1 implies expo-
nential growth in the number of cases of the disease in the popu-
lation, the higher the value of <0 the harder it is to stop the
outbreak. A value of <0 below 1 means that the outbreak is
under control and will eventually stop [38]. The variations in
<0 for Fiji is similar to the trend in transmission rates. The values
are generally below one after 11 August 2021.

Behavioural changes (e.g. regular hand-washing, wearing of
masks, social distancing) and control interventions (e.g. school
closures, market closures) seem to dampen disease transmission
rates. Still, the most significant attribution to reduced disease
transmissions is by increasing herd immunity through timely vac-
cinations [39]. Figure 9 illustrates the COVID-19 vaccination levels
in Fiji [6]. As of 10 December 2021, 565 181 adults (of age ≥ 18)
had been fully vaccinated with two doses. This corresponds to
91.4% of the adult population. The rollout of vaccinations for chil-
dren aged 15–17 years started on 16 September 2021 and later
made accessible for children aged 12–14 years on 15 November
2021 [6]. Booster doses of the vaccine for the target population
who had been fully vaccinated for five months and above was
administered from 29 November 2021 [6]. Vaccination rates for
Fiji are high relative to neighbouring PICTs. Papua New Guinea
had 5%, French Polynesia had 67% and New Caledonia had
75% vaccine coverage in the same period [4].

At this point, we note that the SIR model did not take into
account many factors that play an essential role in the dynamics
of viral diseases, such as the effect of the incubation period in
the transmission dynamics, the impact of the measures already
taken to combat the epidemic and the characteristics of the popu-
lation (e.g. the effect of the age, gender, existing health conditions
of people). Also, a subset of actual infected cases, which recorded
mild or no symptoms of the virus, may not have presented

Table 1. Forecast for COVID-19 active (I) and recovered cases (R) in Fiji from
t221 = 10 December 2021 to t250 = 8 January 2022

Date i Isimulated Rsimulated

10/12/2021 221 481 50 710

11/12/2021 222 465 50 726

12/12/2021 223 450 50 742

13/12/2021 224 436 50 758

14/12/2021 225 422 50 772

15/12/2021 226 408 50 787

16/12/2021 227 395 50 801

17/12/2021 228 382 50 814

18/12/2021 229 369 50 827

19/12/2021 230 357 50 840

20/12/2021 231 346 50 852

21/12/2021 232 334 50 864

22/12/2021 233 324 50 875

23/12/2021 234 313 50 886

24/12/2021 235 303 50 897

25/12/2021 236 293 50 907

26/12/2021 237 283 50 917

27/12/2021 238 274 50 927

28/12/2021 239 265 50 936

29/12/2021 240 256 50 945

30/12/2021 241 248 50 954

31/12/2021 242 240 50 963

01/01/2022 243 232 50 971

02/01/2022 244 224 50 979

03/01/2022 245 217 50 986

04/01/2022 246 210 50 994

05/01/2022 247 203 51 001

06/01/2022 248 196 51 008

07/01/2022 249 189 51 014

08/01/2022 250 183 51 021

Table 2. Model validation

Active cases (I) Recovered cases (R)

RMAE 0.1026 0.0019

r2 0.9626 0.9875

RMAE and r2 values of the simulated states.

Fig. 9. Numbers vaccinated in Fiji from t1 = 4 May 2021 to t220 = 9 December 2021.
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themselves in local health centres for proper diagnosis, and thus
their numbers do not appear in governmental statistics. This
under-reporting of COVID-19 cases is much more prevalent dur-
ing the localised influenza seasons as mild symptoms of
COVID-19 and flu are generally similar [40]. This under-
discovery and under-reporting of the total active COVID-19
cases inevitably distort epidemiologic reality, primarily for nations
with low population values like Fiji. Also, compartmental models
in epidemiology assume a homogeneous and closed population
set. This will change when international borders are opened,
and there is an influx of visitors. Fiji is a popular tourist destin-
ation for global travellers, with yearly visitor arrivals exceeding
the nations local population. This will significantly change the
model’s dynamics. The presence of future variants of the virus
may also substantially change rates of transmission and recovery.

Given the immense impact COVID-19 has had on small devel-
oping nations like Fiji, the relevant authorities must take the
necessary decisive and collective action to mitigate risks and
exposure to the virus. The outputs of the model employed in
this study can help determine the need, or success of existing
COVID countermeasures employed. The progress of infection
spread can also be predicted based on real-time infectious disease
data. The results from this study can be used by researchers, the
Fijian government, and the relevant health policy makers in mak-
ing informed decisions should a third COVID-19 wave occur.

Our research cannot predict when another COVID-19 out-
break will occur. However, when a new wave emerges, the
model may be used to forecast the outbreak’s size and severity.
This is based on the model’s ability to fit existing data. The pro-
gress of infection spread can also be predicted based on real-time
infectious disease data. Finally, since the model overlooks the
exact impact of vaccination on disease transmission in Fiji, further
study is warranted to investigate how the vaccine deployment
affects transmission rates and the appearance of future waves.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268822000590.
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