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Metal oxide-based memristors are promising candidates for breaking through the
limitations in data storage density and transmission efficiency in traditional von
Neumann systems, owing to their great potential in multi-state data storage and
achievement of the in-memory neuromorphic computing paradigm. Currently, the
resistive switching behavior of those is mainly ascribed to the formation and rupture of
conductive filaments or paths formed by the migration of cations from electrodes or
oxygen vacancies in oxides. However, due to the relatively low stability and endurance of
the cations from electrodes, and the highmobility and weak immunity of oxygen vacancies,
intermediate resistance states can be hardly retained for multilevel or synaptic resistive
switching. Herein, we reviewed the memristors based on cationic interstitials which have
been overlooked in achieving digital or analog resistive switching processes. Both
theoretical calculations and experimental works have been surveyed, which may
provide reference and inspiration for the rational design of multifunctional memristors,
and will promote the increments in the memristor fabrications.
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INTRODUCTION

As the memories and CPUs are separated in the current von Neumann computer system, the data
have to be transferred between them through the limited bandwidth buses, which limits the time and
energy efficiencies in the data processing. Such issue could be addressed by achieving an in-memory
computing paradigm, for which the memristor is a suitable device because of its higher data storage
density (Cheng et al., 2017; Chen et al., 2019) and excellent physical characteristics of conditional
switching and physical MAC operation (Yang et al., 2017; Zhou et al., 2019; Xu et al., 2021; Li et al.,
2022). Meanwhile, they can also bridge various electrical devices and be applied in energy storage,
remote sensing, low-power applications, etc. (Chen, 2017; Han et al., 2020; Wang et al., 2020; Zhang
and Sun, 2021) Thus, memristors are crucial for non-volatile memory, logic operations, Internet of
Things, and neuromorphic computing in the big data era (Qin et al., 2020; Xu et al., 2020; Yao et al.,
2020; Huang et al., 2021).

The memristor is a two-terminal electrical device that regulates the flow of electrical current in a
circuit and remembers the amount of charge that has previously flowed through it even after
removing the bias voltage (Fu et al., 2020). The original concept for memristors was proposed by
Leon Chua in 1971, which was described as a nonlinear, passive two-terminal electrical component
that linked electric charge and magnetic flux (Chua, 1971). This conceptual device has been firstly
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linked to a kind of physical resistive switching device (ReRAM)
by HP labs in 2008 (Strukov et al., 2008). Nowadays, the
definition of memristor has been broadened to the arbitrary
form of non-volatile memory with the foundation principle of
resistance switching.

So far, the state transition phenomenon in different material
systems is employed to trigger the resistive switching (RS)
behavior and further construct the different types of
memristors. Except for the well-studied RS behavior in metal-
oxide materials (Illarionov et al., 2020; Liu et al., 2021; Wang
et al., 2021), phase change materials (Hazra et al., 2021), organic
materials (Chen, 2017; Cheng et al., 2017), ferroelectric materials
(Guan et al., 2017), and magnetic materials (Park et al., 2018) are
also reported to exhibit the macroscopic RS behavior because of
the transition of crystalline phase, ferroelectric polarization, and
spin polarization respectively. Among these numerous material
systems, the metal-oxide-based memristors are promising owing
to their low cost, simple process, and high compatibility with
complementary metal-oxide-semiconductor (CMOS) technology
(Mohammad et al., 2016; Illarionov et al., 2020; Nili et al., 2020).

However, compared to the basic metal-oxide-semiconductor
(MOS) transistor which is the foundation device of constructing
the current computing system, the memristor is still suffering from
the relatively low reliability caused by device fluctuation, limited
stability, and durability to maintain the resistance value or to
improve repeated erasable times. Therefore, rational design and
optimization of the memristor active layer through material
engineering for enhancing the performance of memristors are
expected. The works on metal-oxide-based RS have been mainly
focused on the migration or ionization of oxygen vacancies (VO) or
cations from active electrodes (Waser et al., 2009; Chen et al., 2013;
Kamiya et al., 2014; Tang et al., 2015). However, due to the high
mobility of VO and relative low endurance of cation-based resistive
random-access memories (RRAM), it is a challenge to maintain
stable intermediate states, which greatly limited the applications of
memristors in multi-level RS and artificial synapses.

Compared to Vo and cations from electrodes, another
common ionic defect in metal oxides, cationic interstitial (Cint)
can also contribute to the successful RS, which has been less
focused on previously. In the limited reports, Cints have shown
great potential in enhancing the performance of memristors with
better stability and endurance, higher ON/OFF ratio, lower
operation voltage, etc. Multi-level RS and synaptic RS have
also been realized via modulating Cints in memristors. Hence,
in this mini-review, we focused on studying the Cint-induced RS
behaviors from the previous reports. Both theoretical and
experimental works have been investigated, which may
provide reference and inspiration for the rational design of
multifunctional memristors from a new perspective and may
shed some light on the increments in memristors.

REVIEW OF THEWORKS RELATED TO THE
FIRST-PRINCIPLE STUDIES

First-principles calculations have been always employed to
investigate the mechanism of the RS behavior through some

calculations in terms of formation energy, the density of states,
partial charge densities, etc. For Cints-induced RS, there are twomain
contributions from Cints to realize or enhance the RS: forming a
conductive path and promoting charge transfer in the metal oxides.
Related works have been summarized in Table 1.

Gu et al. have compared the formation possibility of
conductive paths with Cu interstitials (Cuint) and Vo in the
Ta2O5 atomic switch through first-principles studies (Gu et al.,
2010): Figure 1A shows that Cuint can form an effective
conduction channel in the Ta2O5, as the formation of Cuint,
may connect the two adjacent Ta-O planes through the
simulation process, while Vo failed to form such a conductive
channel. But it should be noted that the conductive path formed
by Cints is sensitive to the concentrations of interstitials, which
need to be tuned carefully in the experiments.

The formation of the conductive path with Cints is sensitive to
the valences of the doped cations as well. Li et al. have
systematically calculated the TiO2 and ZrO2 with different
Cints and investigated how Cints with different valence states
may affect the transport coefficients (Li et al., 2015). Figure 1B
illustrates the deformation electron densities for the TiO2 with
Cuint, Tiint, and Zrint, respectively. The blue region around Cuint
indicates that the loss of e− from Cu could form ionic bonds with
nearby O atoms, while such a phenomenon has not been observed
in the situation of Tiint and Zrint. The calculation results indicate
that the transport coefficients of the materials with Tiint and Zrint
are higher than that with Cuint. To optimize the RS behavior, the
doping of metals with +4 or higher valences could be employed as
it may enhance the transport properties.

Similarly, Zrint and Tiint in CeO2 and Taint in Ta2O5 have also
been confirmed to contribute to the formation of conductive
paths in memristor. As it is shown in Figure 1C, Tiint can form a
more obvious conductive path in CeO2 compared to the Ti
substitution (Tisub). And then, Tiint and Zrint have been
introduced in experiments and successfully improved the RS
performance of CeO2 RRAMs (Hussain et al., 2018). Zhu et al.
compared the VO and Taint in the Ta2O5-based RRAM and
confirmed the contribution of Taint in realizing RS under
oxygen-poor conditions (Zhu et al., 2016). Thus, it is
concluded that the Cints can introduce more defect states to
above metal oxides than that of Vo, and the Cint-induced RS can
be enhanced under an electric field.

The synergistic effects of Vo and Cints for achieving RS have
also been identified in memristors. In the Au-doped HfO2, it has
been confirmed that both Vo and Auint are involved in the
formation of conductive filaments (Tan et al., 2018). Similarly,
Abdelouahed et al. compared the TiO2 with Vo and Tiint and
revealed the co-formation of both defects, which induced a net
dipole moment, and enhanced RS behavior under an electric field
(Abdelouahed and Mckenna, 2015).

REVIEW OF EXPERIMENTAL WORKS

Cint-induced or enhanced RS behavior in memristors has also
been confirmed in experimental works (as summarized in
Table 2).
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·The formation of Cints and Cint-induced RS behavior

The Cints can be introduced to metal oxides by modifying the
synthesis parameters, such as the annealing conditions, oxygen

partial pressure, doping concentration, etc. For example, by
changing the annealing temperature and improving the oxygen
concentration during the annealing process, Cuints have been
successfully formed in the CuxO, and the RS can be enhanced by

TABLE 1 | Theoretical works on the Cint-induced RS behavior.

Materials Interstitials Effects Ref

Ta2O5 Cuint Forming conductive path Gu et al. (2010)
TiO2 Tiint or Zrint Promoting charge transfer Li et al. (2015)
CeO2 Tiint or Zrint Forming conductive path Hussain et al. (2018)
Ta2O5 Taint Forming conductive path Zhu et al. (2016)
HfO2 Auint + Vo Forming filaments Tan et al. (2018)
TiO2 Tiint + Vo Forming net dipole moment Abdelouahed and Mckenna, (2015)

FIGURE 1 | (A) Isosurface plot of the partial charge density corresponding to the defect state induced by the interstitial Cuint and Vo in Ta2O5 (reproduced with
permission (Gu et al., 2010). Copyright 2010, American Chemical Society); (B) deformation electron density in [110] for the defected TiO2 with the Cuint, Tiint, and Zrint
(reproduced with permission (Li et al., 2015). Copyright 2015, Lei Li et al.); (C) isosurface plots of Tiint and Tisub (reproduced with permission (Hussain et al., 2018).
Copyright 2018, Springer-Verlag GmbH Germany).

TABLE 2 | Experimental works on the Cint-induced RS behavior.

Materials Interstitials Cint forming conditions Effects Ref

CuxO Cuint Annealing in Ar environment Enhanced RS Rehman et al.
(2018)

ZnOx Znint Sputtering under high oxygen partial pressure Change bipolar (with Oint) into unipolar (with Znint) RS Wu et al. (2014)
ZnO/
Al2O3

Znint PLD, rapid thermal annealing Change TCSC conduction (with Vo) into diode-like RS (with Znint) Sekhar et al. (2015)

NiO:SnO2 Ruint + Alint Sol-gel, Ru, and Al co-doping Enhanced RS with a higher ON/OFF ratio Li et al. (2014)
CeO2 Tiint Depositing Ti as a buffer layer in CeO2/Ti/CeO2 Improved stability, endurance, and ON/OFF ratio, lowered SET

voltage
Rana et al. (2017)

SnO2 Mnint Hydrothermally synthesized Mn-doped SnO2 Intrinsic multi-level RS, improved stability and endurance Xu et al. (2018)
TiO2 Tiint + Vo Thermally-induced self-doping and phase

transformation
Improved stability, endurance, and ON/OFF ratio, lowered SET
voltage

Hazra et al. (2021)

MoO3 Moint + Vo Hydrothermally synthesized hexagonal MoO3 Multi-level RS Patil et al. (2021)
ZnO Znint + Vo 2 wt% Cu-doped ZnO Enhanced electric controlled RS and light-modulable RS Saini et al. (2021)
TiO2 Tiint + Ag+ + K+ Fabricate Ag/TiO2-LPE/FTO device Enhanced stability and endurance, lowered SET voltage,

bipolar RS
Abbasi et al. (2020)

LaAlO3 Bint B-doped LaAlO3 Enhanced RS behavior, realized ferromagnetic ionic-electronic
conductor

Park et al. (2018)
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tuning the Cuints in the memristors (Rehman et al., 2018). In the
sputtering process, by adjusting the oxygen partial pressure, the
formation of Oint or Znint could be controlled, and interestingly, it
is found that the bipolar and unipolar RS behavior can be tuned
by forming Oint and Znint in the Al/ZnOx/Al memory device,
respectively (Wu et al., 2014). In the pulsed laser deposition
(PLD), rapid thermal annealing may also change the defects in
ZnO/Al2O3 memristor: the trap-controlled-space-charge (TCSC)
limited conduction mechanism has been observed when Vo
dominates, while, diode-like RS behavior has been identified in
the case of Znint dominating. In the latter, the stability, endurance,
and ON/OFF ratio of the memristor have been significantly
improved as it is shown in Figure 2A (Sekhar et al., 2015).
Such transition is ascribed to the formation of ZnAL2O4 as an
interlayer, which acts as the e− trapping/detrapping area and
achieved successful RS.

In the memristors fabricated from solution-processed, Cints
are usually introduced via doping. In the NiO:SnO2 memristor,
Ruint, and Alint can be achieved through Ru and Al co-doping in
the sol-gel process (Li et al., 2014). Compared to the Vo induced
RS, the RS behavior conducted by Ruint and Alint could be greatly
improved and show a larger ON/OFF ratio. The enhanced RS is
ascribed to the increased trapped states between the equilibrium
Fermi level and conduction band by Ruint and Alint (Li et al.,
2014). Mnints have been achieved in SnO2 by increasing the Mn-
doping level to 12.5 mol% in the liquid-liquid interface
hydrothermal process and compared to the pure SnO2 with
Vo, Mn-doped SnO2 memristor shows more effective and
stable RS with significantly larger ON/OFF ratio and better
intermediate state retention (Xu et al., 2018).

Adding a buffer layer is another method to introduce the
Cints. As it is illustrated in Figure 2B, Tiints have been

introduced by a Ti buffer layer in the TaN/CeO2/Ti/CeO2/
Pt memory device, in which Tiints assisted the formation of
conductive filaments in CeO2. Compared to the device without
the Ti buffer layer, the device’s stability and endurance could
be significantly improved alongside the lower SET voltage and
larger memory window (Rana et al., 2017). Similarly, by
alternately depositing the SnO2 layer with Vo and Mn-
doped SnO2 layer with Mnint, Mnints have been introduced
to the SnO2-based RRAMs, which significantly enhance the RS
behavior with a higher ON/OFF ratio and better stability and
endurance (Xu et al., 2017).

·Cint-induced Multi-level RS

Multilevel RS has also been investigated in Cint-induced
memristors. Intrinsic multi-state RS behavior with good
endurance and stability has been observed in Mn-doped SnO2-
based memristor by increasing the Mn-doping concentration, as
it is illustrated in Figure 2C (Xu et al., 2018). By comparing the RS
behavior of Mn-doping, Al-doping, and In-doping in SnO2

together with the XPS results and the calculated defect
formation energies, the multi-level RS has been ascribed to
Mnint instead of Vo. Iodine interstitials induced multi-level RS
has also been achieved in the Ag/CH3NH3PbI3/Pt cells as shown
in Figure 2D (Choi et al., 2016). Owing to the relatively low
activation energies, the migration of Iint enables filament
formation and annihilation at a relative operation voltage.

·Synergistic RS induced by Cint and other defects

Furthermore, the synergistic effect of Cints with other ionic
defects in memristor has been confirmed in experiments more

FIGURE 2 | Enhanced RS performance and the cross-section images of the device based on (A) Al2O3/ZnO/Al2O3 memristors (reproduced with permission
(Sekhar et al., 2015). Copyright 2015, Elsevier B.V.) and (B)CeO2/Ti/CeO2 (reproduced with permission (Rana et al., 2017). Copyright 2017, Anwar Manzoor Rana et al.);
the multilevel RS and the cross-section images of the device based on (C)Mn-doped SnO2 (reproduced with permission (Xu et al., 2018). Copyright 2018, Elsevier Ltd.)
and (D) CH3NH3PbI3 thin films (reproduced with permission (Choi et al., 2016). Copyright 2016, John Wiley & Sons, Inc.).
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than the theoretical results above (Lee et al., 2021). The
synergistic effect of Tiint with Vo has been confirmed in the
Au/TiO2 nanotube/Ti memory (Hazra et al., 2021). In the Ti/
MoO3/FTO memory cell, it is identified that Moint, surface
defects, and Vo have contributed together to the multilevel RS
behavior (Patil et al., 2021). Znint together with Vo enables the
formation and rupture of conducting filaments in the Cu-doped
ZnO, and both electric controlled and white light modulated RS
has been achieved (Saini et al., 2021). Similarly, Vo and Iint
assisted RS via a Schottky barrier tuning has also been verified in
the Au/CH3NH3PbI3/TiO2/FTO memory device (Lee et al.,
2021).

In addition, Cint can act as assistance or a game-changer in metal
oxides. Figure 3A illustrates the defect-abundant memory device of
Ag/TiO2-LPE (known as lime peel extract)/FTO, in which Tiint from
TiO2, Ag

+ oxidized from the Ag electrode, and K+ from the LPE
synergistically contribute to the RS behavior. Tiints provide active
paths for cation migrations, which enhanced the stability and
endurance of bipolar RS of the memory cell with low operation
voltage and high ON/OFF ratio (Abbasi et al., 2020). In the B-doped
LaAlO3, Bints realized charge injection into the neighboring cations,
which enables remarkable electrical RS and transformed the oxide
into a ferromagnetic ionic-electronic conductor at the same time, as it

is shown inFigure 3B. This extends applications of Cints to contribute
to energy-efficient and spin-based devices (Park et al., 2018).

SUMMARY AND OUTLOOK

In summary, the cationic interstitials induced RS behavior in
metal-oxide-based memories has been summarized. For a defect
that has been less focused, there are very few reports on the
formation, contribution, and mechanism of Cint-induced RS
behavior compared to those on Vo or active electrodes.
However, from both theoretical and experimental aspects, the
Cint-induced or enhanced RS behavior has been confirmed in
recent years. As discussed above, diversified Cints provide more
opportunities to tailor the metal oxides for different electronic
devices. The rational fabrication of memristors with Cints may
give rise to remarkable enhancement in RS performance with
better stability and endurance, lower operation voltage, higher
ON/OFF ratio, faster device speed, etc. However, Cint-based
memristors are sensitive to the concentration and valence state
of Cint, which makes the formation of Cint in metal oxide
synthesis need to be carefully modulated. By adjusting the
Cints, suitable electric structures would be established in the

FIGURE 3 | (A) Enhanced retention and the schematic of Tiint assisted the conductive filament with Ag+ and K+ (reproduced with permission (Abbasi et al., 2020).
Copyright 2020, American Chemical Society); (B) the remarkably enhanced RS and ferromagnetic behavior by Bint in LaAlO3(1-x):LaBO3(x) (reproduced with permission
(Park et al., 2018). Copyright 2018, John Wiley & Sons, Inc.).
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metal oxides, which helps improve the performance of the
electronic devices.
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