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Abstract

Leishmania parasites cycle between sand-fly vectors and mammalian hosts adapting to

alternating environments by stage-differentiation accompanied by changes in the proteome

profiles. Translation regulation plays a central role in driving the differential program of gene

expression since control of gene regulation in Leishmania is mostly post-transcriptional. The

Leishmania genome encodes six eIF4E paralogs, some of which bind a dedicated eIF4G

candidate, and each eIF4E is assumed to have specific functions with perhaps some over-

laps. However, LeishIF4E2 does not bind any known eIF4G ortholog and was previously

shown to comigrate with the polysomal fractions of sucrose gradients in contrast to the other

initiation factors that usually comigrate with pre-initiation and initiation complexes. Here we

deleted one of the two LeishIF4E2 gene copies using the CRISPR-Cas9 methodology. The

deletion caused severe alterations in the morphology of the mutant cells that became round,

small, and equipped with a very short flagellum that did not protrude from its pocket.

Reduced expression of LeishIF4E2 had no global effect on translation and growth, unlike

other LeishIF4Es; however, there was a change in the proteome profile of the LeishIF4E2

(+/-) cells. Upregulated proteins were related mainly to general metabolic processes includ-

ing enzymes involved in fatty acid metabolism, DNA repair and replication, signaling, and

cellular motor activity. The downregulated proteins included flagellar rod and cytoskeletal

proteins, as well as surface antigens involved in virulence. Moreover, the LeishIF4E2(+/-)

cells were impaired in their ability to infect cultured macrophages. Overall, LeishIF4E2 does

not behave like a general translation factor and its function remains elusive. Our results also

suggest that the individual LeishIF4Es perform unique functions.

Author summary

Leishmania parasites cause a broad spectrum of diseases with different pathological symp-

toms. During their life cycle the parasites shuffle between sand-fly vectors and
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Cruz, BRAZIL

Received: May 3, 2020

Accepted: February 15, 2021

Published: March 24, 2021

Copyright: © 2021 Baron et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by grant No

83383 to MS and RZ from the Israel Ministry of

Science and Technology (MOS) and by grant No

333/17 to MS from the Israel Science Foundation

(ISF). The funders had no role in the study design,

data collection and analysis, decision to publish or

preparation of the manuscript.

https://orcid.org/0000-0001-5153-4940
https://orcid.org/0000-0001-6543-0296
https://orcid.org/0000-0002-6164-7874
https://doi.org/10.1371/journal.pntd.0008352
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008352&domain=pdf&date_stamp=2021-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008352&domain=pdf&date_stamp=2021-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008352&domain=pdf&date_stamp=2021-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008352&domain=pdf&date_stamp=2021-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008352&domain=pdf&date_stamp=2021-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0008352&domain=pdf&date_stamp=2021-04-05
https://doi.org/10.1371/journal.pntd.0008352
https://doi.org/10.1371/journal.pntd.0008352
http://creativecommons.org/licenses/by/4.0/


mammalian hosts adapting to the changing environments via a stage specific program of

gene expression that promotes their survival. Translation initiation plays a key role in con-

trol of gene expression and in Leishmania this is exemplified by the presence of multiple

cap-binding complexes that interact with mRNAs. The parasites encode multiple paralogs

of the cap-binding translation initiation factor eIF4E and of its corresponding binding

partner eIF4G forming complexes with different potential functions. The role of

LeishIF4E2 remains elusive: it does not bind any of the LeishIF4G candidate subunits and

associates with polysomes, a feature less common for canonical translation factors. Here

we generated a hemizygous Leishmaniamutant of the least studied cap-binding paralog,

LeishIF4E2, by eliminating one of the two alleles using the CRISPR-Cas9 methodology.

The mutant showed morphological defects with short and rounded cells, and a significant

reduction in their flagellar length. Moreover, the LeishIF4E2(+/-) cells were impaired in

their ability to infect cultured macrophages. The mutants showed differences in their pro-

teome: upregulated proteins were related mainly to general metabolic processes including

enzymes involved in fatty acid metabolism, DNA repair and replication, signaling, and

cellular motor activity. Downregulated proteins included flagellar rod and cytoskeletal

proteins, as well as surface antigens involved in virulence. Overall, LeishIF4E2 does not

behave like a general translation factor and its function remains elusive. It could affect

translation of a particular set of transcripts, causing direct or downstream effects that do

not affect global translation. Our results suggest that individual LeishIF4Es perform spe-

cific functions.

Introduction

Leishmania species are unicellular trypanosomatid protists that display a digenetic life cycle,

migrating between sand flies and mammals [1]. The parasites reside in the alimentary canal of

the sand fly vector as extra-cellular promastigotes attached to the gut wall. Promastigotes are

elongated cells equipped with a flagellum that enables them to attach to the gut wall and to sub-

sequently migrate towards the front parts of the mouth during metacyclogenesis [1]. Metacyc-

lic promastigotes are transmitted into the mammalian host during the females’ blood meal,

where they enter macrophages and differentiate into non-flagellated amastigotes that reside

within phagolysosomal vacuoles. Amastigotes are smaller in size, round and non-motile as

their flagellum does not protrude from the flagellar pocket. During their life cycle Leishmania
parasites are exposed to non-favorable environments and extreme conditions which are

known to induce a developmental program of gene expression [2,3].

Translation in eukaryotes proceeds mostly by cap-dependent mechanisms which are pri-

marily controlled at the level of initiation [4]. As part of this process, an eIF4F complex that

consists of the cap-binding protein (eIF4E), an RNA-helicase (eIF4A) and a scaffold protein

(eIF4G) that holds together the pre-initiation complex (PIC), binds to the mRNA. Assembly of

the cap-binding complex is globally controlled by 4E-binding proteins, such as 4E-BP, a small

(10 KDa) unstructured protein that contains the consensus Y(X4)LF motif for binding to

eIF4E. 4E-BP competes with eIF4G for binding to eIF4E thereby preventing assembly of the

translation initiation complex [5]. Other 4E-binding proteins can control the cap-dependent

translation either globally, or in a transcript-specific manner, when an inhibitory complex that

assembles over the cap-binding protein is stabilized through proteins that interact with ele-

ments in the 3’ UTR [6,7]. Another mode of regulation involves an ortholog of eIF4E, denoted

4E-HP, which binds to the cap-structure, but not to any eIF4G, competing with the canonical

eIF4E to bind the mRNA cap-structure [8].
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There are six paralogs of the cap-binding protein eIF4E in Leishmania, designated

LeishIF4E 1–6. They vary in their cap-binding affinities and were reported to have diverse

functions [9,10]. Three paralogs of eIF4A were reported in Leishmania, [11] and five eIF4G

candidates containing the MIF4G domain (the middle domain of eIF4G) have been identified

[9,11,12]. Among the six LeishIF4Es, only four of the paralogs bind specific LeishIF4Gs,

whereas LeishIF4E1 and LeishIF4E2 have no LeishIF4G binding partners. However, unlike

LeishIF4E1 which is expressed and functional in all life forms, expression of LeishIF4E2 is dra-

matically reduced in axenic amastigotes [13].

LeishIF4E4 was suggested to be a canonical translation factor in promastigotes, forming a

cap-binding complex with LeishIF4G3 and LeishIF4A [14]. LeishIF4E1 is the only cap binding

protein that maintains its high expression and efficient binding to m7GTP in axenic amasti-

gotes [13]. A viable null mutant of LeishIF4E1 generated by CRISPR-Cas9 displayed a reduc-

tion in global translation, suggesting that despite the absence of a functional eIF4G binding

partner, LeishIF4E1 functions in promoting translation [15]. LeishIF4E3 binds LeishIF4G4,

one of the five MIF4G proteins in Leishmania and Trypanosoma [10,16,17]. However, upon

nutritional stress LeishIF4E3 concentrates in cytoplasmic granules that function as storage

sites for inactive mRNAs and ribosomal proteins [18]. Deletion of a single LeishIF4E3 copy by

CRISPR-Cas9 led to changes in cell morphology and infectivity; it was not possible to generate

a null mutant suggesting that LeishIF4E3 is an essential gene [19]. Two additional cap-binding

proteins were identified in T. brucei. TbIF4E5 interacts with TbIF4G1 and TbIF4G2 and has a

role in parasite motility although the role of each individual complex is not yet clear [20].

TbIF4E6 forms a tripartite cytosolic complex with TbIF4G5 and with a hypothetical protein,

TbG5-IP, that has domains typical of capping enzymes. Although the exact role of this com-

plex unknown, it may be involved in recovery of decapped mRNAs [21].

LeishIF4E2 is the least studied paralog in Leishmania. It contains the three conserved tryp-

tophan residues that are part of the cap-binding pocket and binding assays based on recombi-

nant LeishIF4E2 showed that it binds better to cap-4 than to m7GTP [10]. LeishIF4E2 co-

migrated with high MW fractions on sucrose gradients. Treatment of the cell extracts with

mung-bean nuclease shifted the migration of LeishIF4E2 to the top of the gradient suggesting

that it was associated with polysomes [10]. Previous analyses of the canonical translation initia-

tion factors in eukaryotes showed that the preinitiation complexes concentrated mostly in the

43S fractions on sucrose gradients [22]; however, LeishIF4E2 was rather different as it

migrated with the heavy fractions.

The T. brucei ortholog of LeishIF4E2, TbEIF4E2, also fails to bind to any TbEIF4G homolog

[23]. However, it binds mature mRNAs and associates with one of the two histone mRNA

stem-loop binding proteins expressed in T. brucei (SLBP2). Both SLBP2 and TbEIF4E2 are

cytoplasmic proteins which are more abundant in early-log phase cells [23]. However, the role

of TbEIF4E2 in translation remains vague. Here we describe a hemizygous mutant of the

Leishmania ortholog, LeishIF4E2, that was generated by CRISPR-Cas9. Deletion of a single

LeishIF4E2 allele reduced its expression, leading to phenotypic effects that may shed a light on

its functions.

Materials and methods

Cells

Leishmania mexicanaM379 cells were routinely cultured at 25 oC in Medium 199 (M199), pH

7.4, supplemented with 10% fetal calf serum (FCS, Biological Industries), 5 μg/mL hemin, 0.1

mM adenine, 40 mM Hepes, 4 mM L-glutamine, 100 U/mL penicillin and 100 μg/mL

streptomycin.
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RAW 264.7 macrophage cells were grown at 37 oC in DMEM supplemented with 10% FCS,

4 mM L-glutamine, 0.1 mM adenine, 40 mM Hepes pH 7.4, 100 U/mL penicillin and 100 μg/

mL streptomycin, in an atmosphere of 5% CO2.

Affinity purification of recombinant LeishIF4E2

The open reading frame (ORF) of LeishIF4E2 was amplified with primers LeishIF4E2-His for-

ward and LeishIF4E2-His reverse (S1 Table) and cloned in pET28 vector and expressed in the

Rossetta strain of E. coli. The bacterial cells were grown to OD600 of 0.5–0.7 and expression

was induced by the addition of 0.3 mM IPTG at 25 oC for 8 hrs. The cells were harvested and

re-suspended in lysis buffer [20 mM HEPES-KOH pH 7.5, 100 mM KCl, 2 mM Tris (2-carbox-

yethyl) phosphine hydrochloride (TCEP), 0.1 mM EDTA, 0.01% Triton X-100, a cocktail of

protease inhibitors (Sigma) and 5 μg/mL DNaseI. Ni-NTA beads (Cube Biotech, 5 mL) were

pre-washed with two column volumes (CVs) of Binding Buffer [20 mM HEPES-KOH pH 7.5,

150 mM KCl, 2 mM TCEP]. The cells were disrupted using a French Press at 1500 psi, followed

by centrifugation at 45,000 rpm (Beckman 70 Ti rotor) for 45 min. The supernatant was fur-

ther incubated with Ni-NTA beads that were washed four times with two CVs of Wash Buffers

(WB) containing 20 mM Hepes-KOH pH 7.5, 2 mM TCEP, 10 mM imidazole, in 2 CVs and

gradually decreasing KCL concentrations (750 mM, 500 mM, 250 mM and 100 mM). Finally,

the beads were eluted with a single CV of PBS containing 300 mM imidazole in 20 mM Hepes-

KOH pH 7.5, 100 mM KCl, 2 mM TCEP. The recombinant protein was dialyzed overnight at

4 oC against the Binding Buffer.

CRISPR-Cas9 mediated deletion of a single allele of LeishIF4E2

Plasmids developed for the CRISPR system in Leishmania were obtained from Dr. Eva Gluenz

(University of Oxford, UK, [24]). The pTB007 plasmid used contained the genes encoding the

Streptococcus pyogenes CRISPR-associated protein 9 endonuclease and the T7 RNA-polymer-

ase (Cas9/T7), along with the hygromycin resistance gene. pTB007 was transfected into L.

mexicana promastigotes and transgenic cells stably expressing the Cas9 and T7 RNA-polymer-

ase were selected for 200 μg/mL hygromycin resistance.

Generation of a LeishIF4E2(+/-) mutant by CRISPR-Cas9

To generate LeishIF4E2(+/-) mutants we used the two 5’ and 3’ sgRNAs designed to create

double-strand breaks (DSBs) upstream and downstream of the LeishIF4E2 coding region and

the LeishIF4E2 repair cassette fragment containing the G418 resistance marker. The three

PCR products (4 μg of each) were transfected into mid-log phase transgenic cells expressing

Cas9 and T7 RNA-polymerase and cells were further selected for resistance to 200 μg/mL

G418 [25].

The sgRNA sequences used to delete the LeishIF4E2 gene were obtained from LeishGEdit.

net [26]. The sgRNAs contained the highest-scoring 20 nt sequence within 105 bp upstream or

downstream of the target gene. The sequences of the sgRNAs were blasted against the L.mexi-
cana genome in TriTrypDB to verify that the sgRNAs were specific for LeishIF4E2 exclusively

(E value = 0.001 and 8e-5). We also ran a BLAST analysis with the drug resistance repair cas-

sette that contained the homology sequence to the UTR of LeishIF4E2 to specifically target the

insertion of the selection marker. The repair cassette showed an E value of 5e-9 suggesting very

high specificity of the system. The sgRNA target sequences and the homology arms on the

repair cassette fully matched the target sequence of LeishIF4E2.
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PCR amplification of sgRNA templates

DNA fragments encoding LeishIF4E2 specific 5’ and 3’ guide RNAs for cleavage upstream and

downstream to the LeishIF4E2 target gene were generated. All primers are listed in S1 Table.

The template for this PCR reaction consisted of two fragments: one contained the common

sgRNA scaffold fragment; the other contained a primer that included the T7 RNA polymerase

promoter (small letters) fused to the gRNA (5’ or 3’), targeting LeishIF4E2 (capital letters) and

a short sequence overlapping with the scaffold fragment (small letters, 5’gRNA

(LmxM.19.1480) or 3’gRNA (LmxM.19.1480, S1 Table). Each of these two fragments (1 μM

each) was annealed to the partially overlapping scaffold fragment and further amplified with

two small primers (2 μM each) derived from the T7 promoter (G00F) and the common scaf-

fold fragment (G00R, S1 Table). The reaction mixture consisted of dNTPs (0.2 mM), HiFi

Polymerase (1 unit, Phusion, NEB) in GC buffer with MgCl2 (NEB), in a total volume of 50 μL.

The PCR conditions included an initial denaturation at 98˚C for 2 min, followed by 35 cycles

of 98˚C for 10 s, annealing at 60˚C for 30 s and extension at 72˚C for 15 s. All PCR products

were gel-purified and heated at 94˚C for 5 min before transfection.

PCR amplification of the LeishIF4E2 replacement fragment

A DNA fragment designed to repair the DSB surrounding the LeishIF4E2 target gene was

amplified by PCR. The LeishIF4E2 specific primers were derived from the 5’ and 3’ endogenous

untranslated regions (UTR) sequences upstream and downstream to the LeishIF4E2 gene based

on the LeishGEdit database (http://www.leishgedit.net/Home.html) and the sequences of the

antibiotic repair cassette, The primers were Upstream Forward (LmxM.19.1480) and Down-

stream reverse (LmxM.19.1480, S1 Table). Capital letters represent the UTR sequences of the

LeishIF4E2 gene and small letters represent the region on the pT plasmid that flanks the UTR

adjacent to the antibiotic resistance gene. The PCR for generating the fragment used for repair

of the DSBs on both sides of the gene targeted for deletion was performed using the pTNeo plas-

mid as a template. The resulting fragments promote the integration of the drug resistance

marker by homologous recombination at the target site. The reaction mixture consisted of

2 μM of each primer, dNTPs (0.2 mM), the template pTNeo (30 ng), 3% (v/v) DMSO, HiFi

Polymerase (1 U of Phusion, NEB) in GC buffer (with MgCl2 to a final concentration of 1.5

mM) in a total volume of 50 μL. PCR conditions included initial denaturation at 98˚C for 4 min

followed by 40 cycles of 98˚C for 30 Seconds (s), annealing at 65˚C for 30 s and extension at

72˚C for 2 min 15 s. The final extension was performed for 7 min at 72˚C. All PCR products

were gel purified and heated at 94˚C for 5 min before transfection.

Diagnostic PCR to confirm the deletion of LeishIF4E2

Genomic DNA from the drug-resistant cells was isolated 14 days post transfection using

DNeasy Blood & Tissue Kit (Qiagen) and analyzed for the presence of the LeishIF4E2 gene,

using specific primers derived from the UTRs of LeishIF4E2. The primers used were

LeishIF4E2 (5’UTR) forward (P1) and LeishIF4E2 (3’UTR) Reverse (P2). A parallel reaction

was performed to detect the presence of the G418 resistance gene with primers derived from

its ORF: G418 Forward (P3) and G418 Reverse G418 Reverse (P4). An additional reaction con-

firming the insertion of the G418 cassette at the target site was performed with primers G418

Forward P3, and LeishIF4E2 (3’UTR) Reverse P2. All primers are listed in S1 Table. Genomic

DNA from Cas9/T7 L.mexicana cells was used to detect the presence of the LeishIF4E2 gene.

The reaction mixture consisted of 2 μM of each primer, gDNA (100 ng), dNTPs (0.2 mM),

HiFi Polymerase (1 U Phusion, NEB) in GC buffer with MgCl2 (NEB) in a total volume of 50

μl. PCR conditions included initial denaturation at 98˚C for 4 min followed by 35 cycles of
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98˚C for 30 s, annealing at 60˚C for 30 s and extension at 72˚C for 2 min 15 s. Final extension

was done for 7 min at 72˚C. PCR products were separated on 1% agarose gels.

Generation of LeishIF4E2 add-back parasites and SBP-tagged LeishIF4E2

expressers

The hemizygous mutant LeishIF4E2(+/-) cells were transfected with an episomal vector that

restored full-length LeishIF4E21-281 expression. The plasmid was derived from pTPuro [24] which

confers resistance to puromycin. The LeishIF4E2 add-back gene from L.mexicanawas tagged with

the Streptavidin binding peptide (SBP, ~4 kDa), enabling its further identification in the transgenic

parasites by antibodies against the SBP tag [13]. The tagged LeishIF4E2 was amplified with primers

LeishIF4E21-281 Forward and LeishIF4E21-281 Reverse, with BamHI and XbaI sites introduced at

the 5’ ends of these primers (S1 Table). The BamHI/XbaI cleaved PCR product of LeishIF4E2 was

cloned into the BamHI and XbaI sites of pTPuro, replacing the pre-existing LeishIF4E1-SBP that

was already cloned in that plasmid between two intergenic regions derived from the HSP83 geno-

mic locus. The resulting pTPuro-LeishIF4E2-SBP expression vector was transfected into the

LeishIF4E2(+/-) mutant, and cells were selected for their resistance to puromycin (100 μg/mL).

To express the full-length LeishIF4E2-SBP1-281 and the C-terminal truncated protein

LeishIF4E2-SBP1-217 in transgenic parasites, the two ORFs were cloned into the BamHI/XbaI
sites of the pX-based vector, designed to tag the proteins at their N-terminus between two

intergenic regions derived from the HSP83 genomic locus (pX-H-N-SBP-H) [13]. The two

resulting vectors, pX-H-N-SBP-LeishIF4E21-281-H and pX-H-N-SBP LeishIF4E21-217-H, were

transfected into WT cells that were selected for resistance to G418 (200 μg/mL G418).

Growth analysis

L.mexicanaM379 WT, Cas9/T7 expressing cells, the LeishIF4E2(+/-) mutant, the LeishIF4E2

add-back, LeishIF4E2-SBP1-281 and LeishIF4E2-SBP1-217 cells were cultured as promastigotes

at 25 oC in M199 medium with supplements (above). Cells were seeded at a concentration of 5

X 105 cells/mL, and counted daily during 5 consecutive days. The curves were obtained from

three independent repeats.

Western analysis

Cells in the mid-log phase of growth (10 mL) were harvested and washed twice with phosphate

buffered saline (PBS). The cell pellet was resuspended in 300 μl of PBS supplemented with a 2

X cocktail of protease inhibitors (Sigma) and 4 mM iodoacetamide (Sigma) with (+) phospha-

tase inhibitors: 25 mM sodium fluoride, 55 mM β-glycerophosphate and 5 mM sodium ortho-

vanadate. Cells were lysed by the addition of 65 μl of 5 X Laemmli sample buffer and heated at

95˚C for 5 min. Cell extracts (40 μL) were resolved over 10% SDS-PAGE, blotted and probed

using specific primary and secondary antibodies.

Antibodies against LeishIF4E2 (rabbit polyclonal, 1:2,000, Adar Biotech) and against the

SBP tag (mouse monoclonal, 1:10,000, Millipore), were used to detect the endogenous and

tagged LeishIF4E2 proteins, respectively. The blots were developed by incubation with specific

peroxidase-labelled secondary antibodies against rabbit (KPL, 1:10,000 for LeishIF4E2) and

mouse (KPL, 1:10,000 for SBP).

Translation assay

Global translation levels were monitored using the non-radioactive SUnSET (Surface SEnsing

of Translation) assay. This assay is based on the incorporation of puromycin, an amino-acyl
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tRNA analog, into the A site of translating ribosomes [27]. Cells were incubated with puromy-

cin (1 μg/mL, Sigma) for 1 hr and then washed twice with PBS. Cell pellets were resuspended

in 300 μl of PBS, denatured in Laemmli sample buffer and boiled for 5 min. Cells treated with

cycloheximide (100 μg/mL) prior to the addition of puromycin served as a negative control.

Samples were resolved over 10% SDS-Polyacrylamide gel electrophoresis (SDS-PAGE). The

gels were blotted and subjected to western analysis using monoclonal mouse anti-puromycin

antibodies (DSHB, 1:1,000) and secondary peroxidase labeled anti-mouse antibodies (KPL,

1:10,000).

Phase contrast microscopy of Leishmania promastigotes

Late log-phase cells from different lines were harvested, washed in cold PBS, fixed in 2% para-

formaldehyde in PBS and mounted on glass slides. Phase contrast microscope images were

captured at X100 magnification with a Zeiss Axiovert 200M microscope equipped with an

AxioCam HRm CCD camera.

Flow cytometry analysis of Leishmania
Cell viability was verified by incubation of the cells with 20 μg/mL propidium iodide (PI) for

30 min. The stained cells were analyzed using the ImageStream X Mark II Imaging flow

cytometer (Millipore) with an X60/0.9 objective. Data from channels representing bright field,

and fluorescence (PI) emission at 488 nm (to evaluate cell viability) were recorded for 20,000

cells for each analyzed sample. IDEAS software [28] generated the quantitative measurements

of the focused, single live cells for all four examined cell strains. Cell shape was quantified

using circularity and length features applied to the bright field image processed by an Adaptive

Erode mask. Representative scatter plots are shown for single cells and for circularity (cell

shape). Recorded emission of the PI in the gated population evaluated cell viability.

Measurements of flagellar length

Changes in the flagellar length for each cell were recorded using IDEAS software. A custom-

ized mask based on subtraction of the Adaptive Erode mask from the skeleton mask was cre-

ated for measuring only the flagella without the cell soma. Based on this mask we created a

length feature on the Brightfield Image and used it to compare flagella length between different

samples (S2 Table).

Data analysis

IDEAS software [28] was used to generate the quantitative measurements of images recorded

for the examined cell population. The focus quality of each cell was first determined by mea-

suring the gradient root mean square (RMS) value. The cells with high RMS value in the histo-

gram were gated to select cells in focus. Next, single cell populations were gated from the

scatter plot of aspect ratio/area to exclude cell aggregates; the intensity of PI staining was used

to exclude dead cells. The remaining living single cells in focus were subjected to image analy-

sis to determine cell morphology. To obtain cell shape a customized Adaptive Erode mask was

used on the bright field channel, with a coefficient of 78. We further customized this mask to

exclude the flagellum from the cell shape analysis, to measure, circularity and elongation fea-

tures. A predetermined threshold value of 4 was set to define circularity. Elongation values rep-

resent the ratio between cell length and width. Representative scatter plots are presented for

focused single cells and for circularity. All data shown are from a minimum of three biological

replicates.
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In vitro macrophage infection assay

L.mexicana LeishIF4E2(+/-) mutants and add-back cells, WT and transgenic parasites

expressing Cas9/T7, were seeded at a concentration of 5 X 105 cells/ mL and allowed to grow

for 5 days to reach stationary growth phase. WT, Cas9/T7 expressers, LeishIF4E2(+/-) and

add-back cells were washed with DMEM (Dulbecco’s Modified Eagle Medium) and labeled by

incubation with 10 μM carboxyfluorescein succinimidyl ester (CFSE) in DMEM at 25˚C for 10

min. The cells were washed with DMEM, counted and used to infect RAW 264.7 macrophages.

The macrophages (5 X 105) were pre-seeded a day in advance in chambered slides (Ibidi) and

incubated with the parasites at a ratio of 10:1 for 1 h in 300 μl medium. The cells were washed

three times with PBS and once in DMEM to remove extracellular parasites. The infected mac-

rophages were either fixed immediately for further analysis by confocal microscopy, or incu-

bated for a further 24 h at 37˚C in an atmosphere containing 5% CO2. The infected

macrophages were then processed for confocal microscopy. A single representative section of

Z-projections (maximum intensity) produced by Image J software is presented in all the fig-

ures. The infectivity values were determined using the cell counting plugin in ImageJ. We first

counted the number of infected cells in a total of 100 macrophages, and then counted the num-

ber of internalized parasites within the infected cells, 1 or 24 hr following infection. Statistical

analysis was performed using GraphPad Prism 5. We used the non-parametric Kruskal-Wallis

test to determine significant differences in the infectivity and in the average number of para-

sites per infected macrophage.

Confocal microscopy of Leishmania promastigotes

Infected macrophages, following 1 or 24 hr of infection were washed with PBS, fixed in 2%

paraformaldehyde for 30 min, washed once with PBS and permeabilized with 0.1% Triton X-

100 in PBS for 10 min. Nucleic acids were stained with 40,6-diamidino-2-phenylindole (1 μg/

mL DAPI, Sigma) and the cells were washed three times with PBS. The slides were observed

using an inverted Zeiss LSM 880 Axio-observer Z1 confocal laser scanning microscope with

Airyscan detector. Cells were visualized using Zeiss Plan-Apochromat oil objective lens of X

63 and numerical aperture of 1.4. Z-stacked images were acquired with a digital zoom of X

5.58 (X 1.8 for broad fields), using the Zen lite software (Carl Zeiss microscopy). Images were

processed using Image J software package. A single representative section of the compiled Z-

projections produced by Image J software is presented in all the figures.

Mass spectrometry analysis

To characterize the proteomic differences between the LeishIF4E2(+/-) mutant and the Cas9/

T7 control cells we performed mass spectrometry (MS) analysis of total cell lysates. Total cell

lysates from mid log stage promastigotes of Cas9/T7 and LeishIF4E2(+/-) were resuspended in

a buffer containing 100 mM Tris HCl pH 7.4, 10 mM DTT, 5% SDS, 2 mM iodoacetamide and

a cocktail of protease inhibitors (Sigma). Cell lysates were precipitated using 10% trichloro-

acetic acid (TCA) and the pellets were washed with 80% acetone. The mass spectrometric anal-

ysis was performed by the Smoler Proteomics Center at the Technion, Israel.

Mass spectrometry (MS)

Proteins were reduced using 3 mM DTT (60˚C for 30 min), followed by modification with 10

mM iodoacetamide in 100 mM ammonium bicarbonate for 30 min at room temperature. This

was followed by overnight digestion in 10 mM ammonium bicarbonate in trypsin (Promega)

at 37˚C. Trypsin-digested peptides were desalted, dried, resuspended in 0.1% formic acid and
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resolved by reverse phase chromatography over a 30 min linear gradient with 5% to 35% aceto-

nitrile and 0.1% formic acid in water, a 15 min gradient with 35% to 95% acetonitrile and 0.1%

formic acid in water and a 15 min gradient at 95% acetonitrile and 0.1% formic acid in water

at a flow rate of 0.15 μl/min. MS was performed using a Q-Exactive Plus Mass Spectrometer

(Thermo) in positive mode set to conduct a repetitively full MS scan followed by high energy

collision dissociation of the 10 dominant ions selected from the first MS scan. A mass tolerance

of 10 ppm for precursor masses and 20 ppm for fragment ions was set.

Statistical analysis for enriched proteins

Raw MS data were analyzed by the MaxQuant software, version 1.5.2.8 [29]. The data were

searched against the annotated L.mexicana proteins from the TriTrypDB [30]. Protein identi-

fication was set at less than a 1% false discovery rate. The MaxQuant settings selected were a

minimum of 1 razor/unique peptide for identification with a minimum peptide length of six

amino acids and a maximum of two mis-cleavages. For protein quantification, summed pep-

tide intensities were used. Missing intensities from the analyses were substituted with values

close to baseline only if the values were present in the corresponding analyzed sample. The

log2 of LFQ intensities [31] were compared between the three biological repeats of each group

on the Perseus software platform [32], using a t-test. The enrichment threshold was set to a

log2 fold change> 0.8 and p< 0.05. The annotated proteins were categorized manually and

by GO annotation (below).

Categorization of enriched proteins by the gene ontology (GO) annotation

via TriTrypDB

Enriched proteins were classified by the GO Annotation tool in TriTrypDB, based on Biologi-

cal Functions. The threshold for the calculated enrichment of proteins based on their GO

terms was set at 3 fold, with a p<0.05. This threshold eliminated most of the general groups

that represented parental GO terms. GO terms for which only a single protein was annotated

were filtered out as well. In some cases, GO terms that were included in other functional terms

are not shown leaving only the representative terms.

Statistical analysis

Statistical analysis was performed using GraphPad Prism version 5. Each experiment was per-

formed independently at least three times and the individual values were presented as dots. For

experiments with a higher number of repeats results are expressed as Mean ± SD. Statistical sig-

nificance was determined using Wilcoxon paired t-test for matched pairs test or Kruskal-Wallis

with Dunn’s multiple comparison test for comparing three or more groups. Significant P values

were marked with stars (�, ��, ���) representing P<0.05, P<0.01 and P<0.001, respectively.

Results

LeishIF4E2 is a cytoplasmic protein with an extended C-terminal region

Given the multiple eIF4E paralogs in Leishmania, and the assumption that they vary in their

functional assignments, we examined the sequences of the different LeishIF4E paralogs in

search for non-conserved gaps and extensions. We evaluated the homology between

LeishIF4E2 and the mammalian eIF4E, as well as its homology with the other LeishIF4E para-

logs. Fig 1 and S1A show that LeishIF4E2 has a non-conserved C-terminal extension whereas

LeishIF4E3 and LeishIF4E4 contain extended N-terminal regions. These N-terminal exten-

sions have been widely examined for phosphorylation sites [18,33,34] and structural features
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Fig 1. Multiple sequence alignment of the LeishIF4E2. (A)The ORFs of LeishIF4E2 from different Leishmania and

Trypanosoma specis along with mammalian eIF4E1 were aligned using Jalview (2.10.5). The sequences were retrieved

from L.mexicana (L. mex, LmxM.19.1480), L.major (L. maj, LmjF.19.1500); L. donovani, (L. don, LdBPK_191520.1),

T. brucei (T. bruc, Tb927.10.16070) and T. congolense (T. cong, TcIL3000_0_03820). The alignment file was saved in

FASTA format. The final alignment showing the predicted secondary structure of LeishIF4E2 was developed using the

downloaded PDB file (5EHC, DOI: 10.2210/pdb5EHC/pdb) ofHomo sapiens eIF4E1 (https://www.rcsb.org/), along

with the FASTA alignment file, using the online ESPript 3 tool [60]. Secondary structure elements of the aligned

sequences are (α: alpha helices, : 310-helix, β: beta-strands, TT: strict β-turns). White letters over a red background

indicate identical residues and red letters over a white background indicate sequence similarity.

https://doi.org/10.1371/journal.pntd.0008352.g001
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[35]. The different LeishIF4Es differ from their mammalian counterpart, showing only 29.4–

40.4% similarity. LeishIF4E2 from different Leishmania and Trypanosoma species are also

diverged from their mammalian ortholog (Human eIF4E) (S1B and S1C Fig) and show a

sequence variability among themselves as well when compared to LeishIF4E1, with 26.4–

30.9% similarity (S1D Fig).

In Fig 1, the ORFs of LeishIF4E2 from different Leishmania and Trypanosoma species were

aligned using Jalview (2.10.5). The final alignment also demonstrates the secondary structure

which was developed using the 3D structure ofHomo sapiens eIF4E1 from PDB (https://www.

rcsb.org/), along with the FASTA alignment file generated using the online ESPript 3 tool.

Despite the partial sequence similarities, the structural core of the eIF4E orthologs (1–217,) is

conserved (Fig 1 and [36]). The predicted secondary structure of LeishIF4E2 is composed of

alpha helices, beta strands and beta turns. LeishIF4E2 from all Leishmania species have an

extended C-terminal region which is absent from the trypanosome orthologs (T. brucei and T.

congolensi in Fig 1). The Leishmania C-terminus appears to be highly disordered as predicted

by the DISOPRED2 server through the XtalPred site [37]. There are four adjacent proline resi-

dues after amino acid 217 which are known to break secondary structures. These appear

within the extended C-terminus (S1A Fig).

We examined the possibility that the disordered region at the C-terminus is subject to pro-

teolytic cleavage both in vivo and in vitro. For monitoring cleavage in vivo, we generated Leish-
mania lines expressing the full length LeishIF4E21-281 and the shorter version devoid of the C-

terminal extension (LeishIF4E21-217), both tagged with SBP at their N-terminus, so that the

protein could be detected with anti-SBP antibodies irrespective of C-terminal cleavage (S2A

and S2B Fig). The transgenic cell lines expressing full length LeishIF4E2 (1–281) and the

shorter version LeishIF4E21-217 were validated by western analysis using antibodies specific for

the SBP tag (S2A Fig). Western blots of the total proteins versus the supernatant of disrupted

cells (S2B Fig), show a reduced reaction with anti-SBP antibodies in both lines. However, the

full-length protein (LeishIF4E21-281) exhibits partial degradation (S2B Fig) a feature not

observed for the shorter version of LIF4E21-217. This reduction is compatible with protein

cleavage, especially given the appearance of a smaller band in the western blots of the full-

length protein. Tagging the protein at its N-terminus enabled us to visualize the bands that

could represent LeishIF4E2 partially degraded from its C-terminus. LeishIF4E21-217 does not

show any degradation like the full-length protein (LeishIF4E21-281), supporting our interpreta-

tion that degradation occurs at the C-terminus.

In addition to in vivo expressed LeishIF4E2, we monitored the potential cleavage of the dis-

ordered C-terminus in vitro. The full length recombinant LeishIF4E2, with an N-terminal his-

tidine tag, was expressed in E. coli and affinity purified over a nickel column. The eluted

fractions were examined by western analysis using an antibody against histidine. The affinity

purified protein migrated as a major band of>25 kDa, and a minor higher band of<35 kDa.

(S2C Fig, Size differences between the in vivo and in vitro assays could be due to the different

tags fused to LeishIF4E2 or to post translational modifications in the different hosts). The

appearance of the 25 kDa band supports our in vivo observation of the inherent instability of

the C-terminal disordered region.

We further investigated the localization of LeishIF4E2 within Leishmania cells by examin-

ing transgenic parasite cells expressing the SBP-tagged LeishIF4E2 by immunohistochemical

confocal microscopy. Mid-log cells (1.2 x 107 cells/mL) were harvested, washed and fixed with

paraformaldehyde. The fixed cells were incubated with the primary anti-SBP antibody fol-

lowed by a secondary anti-mouse antibody labeled with a fluorophore (Alexa Fluor 488 green).

Nuclear and kinetoplast DNA were stained with DAPI. S3 Fig shows that LeishIF4E2 is non-

uniformly distributed occurring mostly in the cytoplasm.
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Deletion of a single copy of LeishIF4E2 by CRISPR-Cas9

LeishIF4E2 is the least studied cap-binding protein paralog and we therefore attempted to

delete its two alleles and examine how this deletion affects the parasite phenotype. Specific

sgRNAs that targeted LeishIF4E2 at its 5’ and 3’ UTRs were transfected into the L.mexicana
Cas9/T7 expressing line [19, 24]. The sgRNAs were designed to cleave around the target gene

promoting its replacement with the G418 or Blasticidin repair fragments. The LeishIF4E2

deletion cell line was selected in the presence of G418 (200 μg/mL) and a diagnostic PCR anal-

ysis indicated that a single allele was eliminated. Attempts to delete the other copy of LIF4E2

with the Blasticidin replacement cassette did not result in viable cells.

Diagnostic PCR was performed with genomic DNA of the mutant using several primer

pairs. Primers derived from the 5’ and 3’ UTRs of the LeishIF4E2 transcript were used to mon-

itor the presence of the LeishIF4E2 gene (primers P1/P2, Fig 2A, left panel). The reaction gen-

erated two products: a 1.2 Kb product representing the endogenous LeishIF4E2 gene, and a

second product of ~2.1 Kb corresponding to the integrated G418 resistance gene flanked by

the 5’ and 3’ LeishIF4E2 UTRs that replaced the LeishIF4E2 gene. A similar PCR control reac-

tion using the Cas9/T7 control gDNA as a template yielded only a single product (~1.2 Kb),

representing the endogenous LeishIF4E2 gene (Fig 2A left panel). The presence of the G418

selection marker in the genome was verified by primers P3/P4 that were derived from the

G418 gene and gave a 450 bp product only in the mutant of LeishIF4E2 and not in the Cas9/

T7 control (Fig 2A middle panel). To validate that the G418 selection marker replaced the

LeishIF4E2 gene, the integration site was amplified using primers P2/P3, P3 was derived from

the G418 ORF and P2 was derived from the 3’ UTR of LeishIF4E2. This PCR product (1.4 kb)

was observed only in the mutant and not in the Cas9/T7 control DNA (Fig 2A right panel). Fig

2B shows the positions of different primers used for the diagnosis PCR. The different PCR

reactions confirmed the deletion of a single copy of the LeishIF4E2 gene from the genome of

Leishmania cells expressing Cas9/T7.

The effect of the LeishIF4E2 hemizygous deletion on target protein expression was exam-

ined by western analysis of cell extracts obtained from the LeishIF4E2(+/-) mutant, as com-

pared to control cells expressing Cas9/T7. The blots were reacted with LeishIF4E2 specific

antibodies (Fig 2C upper panel). Antibodies against LeishIF4A served as a loading control (Fig

2C lower panel). Fig 2D shows a densitometry analysis of the LeishIF4E2 expression in the

deletion mutant as compared to the Cas9/T7 control. The LeishIF4E2(+/-) mutant shows a

40% reduction in the protein levels as compared to control Cas9/T7 cells. We observed two

bands in the western analysis using antibodies specific for LeishIF4E2, one at ~31 kDa and

another above 25 kDa. A pattern that could fit protein cleavage was also observed with the

recombinant LeishIF4E2 tagged at its N-terminus (S2C Fig) most probably due to cleavage at

the C-terminus.

Expression of LeishIF4E2 was recovered in an add-back line. The LeishIF4E2(+/-) cells

were transfected with a pTPuro-derived plasmid that contained the SBP-LeishIF4E2 gene

flanked by HSP83 intergenic regions. The cells were selected for their resistance to puromycin,

and expression of the newly introduced gene was verified by western analysis using antibodies

against the SBP-tag (S4 Fig).

The LeishIF4E2(+/-) mutant shows altered promastigote morphology

Mid log phase (Day 2) promastigotes of LeishIF4E2(+/-), Cas9/T7 expressers, WT cells, and

LeishIF4E2 add-back parasites were grown at 25 o, washed with PBS and fixed with 2% para-

formaldehyde. The slides were visualized by phase contrast microscopy at 100 X magnification.

The LeishIF4E2(+/-) mutant showed a defective morphology; the cells had become round,
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Fig 2. CRISPR-Cas9 mediated hemizygous deletion of LeishIF4E2. (A) Diagnostic PCR was performed to confirm the deletion of single allele of LeishIF4E2.

Genomic DNA was extracted from L.mexicana Cas9/T7 cells and from the LeishIF4E2(+/-) mutant. PCR was performed using different combinations of

primers derived from the LeishIF4E2 5’ UTR (Forward) and 3’ UTR (Reverse) (P1/P2 –left panel); G418 ORF (Forward) and Reverse (P3/P4, middle panel);

and a primer set derived from the G418 resistance gene, forward and the 3’ UTR (Reverse) (P3/P2). (B) Schematic representation of LeishIF4E2 locus and

primers (represented by arrows). The PCR was applied to test the presence or absence of the LeishIF4E2 gene and the G418 resistance marker. Primers derived

from the LeishIF4E2 UTRs are shown in blue and primers derived from the ORF of G418 are shown in red. (C) Western analysis monitoring the protein level

of LeishIF4E2 in the LeishIF4E2(+/-) mutant and in Cas9/T7 control was performed using LeishIF4E2 specific antibodies. LeishIF4A-1 served as a loading

control. (D) Dot plot representing the densitometry analysis of the LeishIF4E2 protein levels in the LeishIF4E2(+/-) mutant and in the Cas9/T7 controls.

https://doi.org/10.1371/journal.pntd.0008352.g002
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flagellum length was reduced and deviated from the typical promastigote form. Control WT

and Cas9/T7 expressing cells exhibited normal promastigote features with a typical elongated

shape and a long protruding flagellum. Normal promastigote morphology of elongated cells

and flagellum growth were restored when expression of LeishIF4E2(+/-) was recovered in the

add-back cells by episomal transfection of SBP tagged-LeishIF4E2 with pT-Puro-

H-LeishIF4E21-281-SBP-H. Restoration of LeishIF4E2 expression led to recovery of promasti-

gote-like cell morphology and flagellum growth nearly similar to control WT and Cas9/T7

cells (Fig 3A right panel and S5 Fig for the broad field, S6 and S7 Figs).

We further used flow cytometry imaging to analyze the cell shape and viability of the cell

populations as previously described [28, 38] (S6 Fig). The circularity parameter is calculated

for each cell as the average radius divided by the radial variance. Typical round cells exhibit

low radial variance, whereas ruffled or elongated cells have high variance of radii that results in

lower circularity parameter. Cells were gated on the basis of being viable, single (non-aggre-

gated) and focused (S6A and S6B Fig), with 20,000 cells from each group analyzed. We mea-

sured cell viability by incubating with Propidium Iodide (PI) for 30 min. The viability of the

LeishIF4E2(+/-) mutant was similar to that of control cells and cell viability was comparable

between all the groups tested (Fig 3B and S6A). In parallel we analyzed and quantified the

changes in cell shape. In the LeishIF4E2(+/-) mutant, ~83% cells were deviated from their nor-

mal promastigote morphology being round and with a reduced and shortened flagellum. In

control WT and Cas9/T7 expressing cells, only 5.14% and 11.8% were round, respectively. As

expression of LeishIF4E2 was restored in the add-back cells, we noticed a recovery from their

mutant phenotype, with only 35% round cells (Fig 3C and S6C Fig).

Changes in the flagellar length for each cell were also recorded using the acquisition soft-

ware that was then analyzed by the IDEAS software (S7 Fig). We created the custom mask

based on subtraction of the Adaptive Erode mask from the skeleton mask, thus measuring

only the flagella without the cell soma. Based on this custom mask we created a length feature

on the Brightfield Image and used it to compare flagella length between different samples. In

WT and CAS9/T7 expressers we could identify a flagellum in 91.8–93.1% of focused cells com-

pared with only 40.6% of the LeishIF4E2(+/-) mutants. S2 Table shows that 81.2% of the add-

back cells had restored flagella. For cells in which we could identify a flagellum there was a sub-

stantial difference in the flagellum length between the LeishIF4E2(+/-) (5.50 micrometer) and

the WT or Cas9/T7 control cells (12.72 and 10.19 micrometers, respectively). The flagellar

length of the add-back cells recovered and attained 9.93 micrometer S2 Table.

Global translation and growth are not affected by the deletion of a single

LeishIF4E2 allele

To investigate how the reduced level of LeishIF4E2 expression in the hemizygous mutant

affected overall translation we used the SUnSET assay which is based on the incorporation of

puromycin into the growing polypeptide chains. Puromycin is a structural analogue of amino

acyl tRNA that occupies the ribosomal A site. Its integration into the polypeptide chains blocks

their elongation and results in translation termination. Mid-log LeishIF4E2(+/-) mutant, con-

trol WT and Cas9/T7 expressing cells, LeishIF4E2-SBP1-281 and LeishIF4E2-SBP1-217 trans-

genic cells were incubated with puromycin (1μg/mL) for 1 hr. The cells were then harvested,

extracted and resolved on SDS-PAGE. Puromycin incorporation was monitored by western

analysis using anti-puromycin antibodies. A cycloheximide treated sample served as a negative

control with no active puromycin incorporation.

Global translation in the LeishIF4E2(+/-) mutants was hardly affected by the hemizygous

deletion as compared to control Cas9/T7 expressing cells (Fig 4A). Densitometry analysis was
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normalized to the total protein load (Fig 4B) and showed that translation levels in Cas9/T7 and

LeishIF4E2(+/-) mutants were 48% and 44.7%, respectively, as compared to WT (100%, Fig

4C). Translation of the transgenic parasites expressing the full length and truncated proteins

(1–281 and 1–217, respectively) did not alter their translation efficiency of 53.6 and 55.7%,

respectively. Reduced translation in the control Cas9/T7 as compared to WT has been previ-

ously reported [15] and could be due to the competition over the use of the translation

machinery between the overexpressed and endogenous proteins. S8 Fig demonstrates that the

Fig 3. The LeishIF4E2(+/-) mutant shows altered promastigote morphology. (A) Mid-log phase (Day 2) promastigotes of WT, Cas9/T7 expressers, LeishIF4E2(+/-)

cells, and LeishIF4E2 add-back cells were fixed with 2% paraformaldehyde and visualized by phase contrast microscopy at 100x magnification. WT, Cas9/T7 expressing

cells showed normal promastigote morphology while LeishIF4E2(+/-) were round with reduced flagellar length. (B) All the cell lines were stained with 20 μg/mL

propidium iodide (PI) for 30 min and cell viability was analyzed using the ImageStream X Mark II Imaging flow cytometer (Millipore). 20,000 cells were analyzed for

each sample and percent viable cells were determined. (C). The circularity of single, viable and focused cells from each of the cell lines was quantified using flow

cytometry, and is shown as percentage of the total number of cells measured. Data from three independent experiments are shown.

https://doi.org/10.1371/journal.pntd.0008352.g003
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global translation in cells expressing the non-related Chloramphenicol acetyltransferase

(CAT) reporter was reduced (68.8%).

We further monitored the growth rates of the LeishIF4E2(+/-) mutant, control WT and

Cas9/T7 expressing cells, LeishIF4E2-SBP1-281 and LeishIF4E2-SBP1-217 transgenic cells. All

lines were cultured at 25 oC in M199 containing essential nutrients, seeded at an initial con-

centration of 4 X 105 cells/mL and counted on a daily basis during four consecutive days. The

growth curves (Fig 4D) showed no difference between the proliferation of the LeishIF4E2(+/-)

mutant cells and control lines (WT and Cas9/T7) or the transgenic lines expressing

LeishIF4E21-281 or LeishIF4E21-217. This observation was in line with the results obtained in

the SUnSET assay demonstrating that global translation in the LeishIF4E2(+/-) mutant cells

was the same as in control cells. Overexpression of the two versions of LeishIF4E2 did not

affect global translation indicating that the presumable C-terminal cleavage of LeishIF4E2

does not interfere with translation. Although additional analysis of translated transcripts is

required, such a profile could be explained if LeishIF4E2 was involved in regulation of specific

transcripts rather than global translation per sei.

The LeishIF4E2(+/-) mutant cells show reduced infectivity in cultured

macrophages

Since the LeishIF4E2(+/-) mutant cells showed a defective morphology having short flagella

and round body structure, we examined their ability to infect cultured murine macrophages

using the RAW 267.4 line. Leishmania parasites from respective cell lines were pre-stained

with carboxyfluorescein succinimidyl ester (CFSE), and used to infect the macrophages at a

multiplicity of 10:1 parasites per macrophage. Infection lasted for 1 hr at 37˚C. The macro-

phages were washed to remove unbound parasites and the cells were fixed with paraformalde-

hyde (2%) and processed for confocal analysis. DAPI staining was used to visualize the large

macrophage nuclei. The infected macrophage cultures were examined by confocal microscopy

either immediately (1 hr), or 24 hr post infection. These two time points allowed us to keep

track of the initial entry of Leishmania and their subsequent multiplication inside the host

macrophages. Infectivity of the LeishIF4E2(+/-) mutant cells was compared to that of WT and

control Cas9/T7 expressing cells. We counted 100 macrophages from different fields to deter-

mine the infectivity index. The results, shown in Figs 5A and 5B, S9 Fig (for a broad field

view), S10A and S10B Figs, indicate that infectivity of the LeishIF4E2(+/-) mutant was

impaired, as observed at both 1 hr and 24 hrs post infection. Quantitation of the infection

fields (S9 and S10 Figs and S3 Table) showed that the LeishIF4E2 mutant cells were able to

infect only 48.5% of the macrophages after 1hr, with an average of 2.2 parasites per cell

whereas WT and Cas9/T7 controls infected 87.8 and 91.5% of the cells, with 2.8 and 2.2 para-

sites per cell, respectively. The infectivity of the add-back cells was restored with 89.4% of the

Fig 4. Global translation and growth are not altered in the LeishIF4E2(+/-) mutant cells. (A) LeishIF4E2(+/-) cells,

WT, Cas9/T7 expressing cells and transgenic parasites expressing the full length LeishIF4E21-281 and its truncated form

devoid of the C-terminus, LeishIF4E21-217 were incubated with 1 μg/mL puromycin for 1 hr. Cycloheximide treated

cells were used as a negative control for complete inhibition of translation. Puromycin treated cells were lysed and

resolved over 12% SDS-PAGE and subjected to western analysis using antibodies against puromycin. (B) Ponceau

staining was used to indicate comparable protein loads. (C) Densitometry analysis of puromycin incorporation in the

different cells lines, was compared to WT cells (considered as 100%). Data from all three independent experiments are

represented. (D) All cells were cultured at 25 oC in M199 containing essential nutrients. Cell counts were monitored

daily during 4 consecutive days. The curves were obtained from three independent assays, error bars are also marked.

Growth curves of WT cells are shown in yellow, Cas9/T7 are in brown, the LeishIF4E2(+/-) mutant cells are in green,

cells expressing the full length LeishIF4E2 1–281 are in purple, and the truncated LeishIF4E21-217 cells are in blue.

https://doi.org/10.1371/journal.pntd.0008352.g004
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Fig 5. The LeishIF4E2(+/-) mutant cells show reduced infectivity to macrophages. Stationary phase (Day 5) L.

mexicanaWT, Cas9/T7 expressing cells, LeishIF4E2(+/-) mutant cells and the add-back LeishIF4E2 line were pre-

stained with CFSE (green), counted, washed and used to infected RAW 264.7 macrophages, at a ratio of 10:1 for one

hour. The cells were then washed to remove unattached parasites, and the macrophages were cultured for 1h (A) or 24h

(B) at 37˚C. Macrophage nuclei were stained with DAPI and the infected macrophage slides were processed for confocal

microscopy, showing a Z-projection produced by Image J software. Fields containing 100 cells were further evaluated to

quantify the infection. The scale bar represents 5 μm.

https://doi.org/10.1371/journal.pntd.0008352.g005
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cells infected after 1 hr with an average of 3 parasites per macrophage (Figs 5A and 5B and S9

and S3 Table).

A more pronounced difference was observed after 24 hr of infection. WT and Cas9/T7 con-

trols infected 95–99% of the macrophages with 5.4 and 5 parasites per cell respectively,

whereas the LeishIF4E2(+/-) mutant infected only 65% of the macrophages, with an average

number of 1.8 parasites per cell, indicating that they did not multiply within the macrophages

as in the control cells. The add-back parasites recovered their ability to infect the macrophages

(97.8%) with an average of 4.8 parasites per cell showing that they recovered their ability to

multiply within the macrophages. Thus, the original impaired infectivity of the mutant LIF4E2

(+/-) was due to the reduced expression of the protein and once expression was restored infec-

tivity recovered (Figs 5, S9 and S10 and S3 Table). Parasites per macrophage are represented

after normalization to 1 hr uptake. This was achieved by dividing parasites per macrophages at

the 24 hr time point with parasites per macrophages at 1 hr time point (S3 Table).

Proteomic analysis of the LeishIF4E2(+/-) mutant cells shows up- and

down-regulation of proteins involved in specific cellular processes

To examine potential differences in the proteomic profile of LeishIF4E2(+/-) mutant we per-

formed a MS analysis of the total cell extracts of the LeishIF4E2(+/-) mutant cells, as compared

to Cas9/T7 control cells. Three independent cultures of mid-log cells were used for the prote-

ome analysis and all samples were analyzed in the same run. The L.mexicana genome in Tri-

trypDB was used to assign the peptides to their source proteins which were later quantified by

the MaxQuant software. The proteomic comparison identified proteins that were increased

relative to the Cas9/T7 control proteome (Fig 6) or decreased (S4 Table), using a threshold

change of at least 1.7 fold, with p<0.05. Perseus software platform was used for the statistical

analysis ([32] and S4 Table). The statistical analysis showed that 142 proteins were upregulated

and 95 proteins were downregulated in LeishIF4E2(+/-) compared with Cas9/T7 control cells.

Fig 6A and S4 Table describe the manually categorized groups of the up- and down-regu-

lated proteins compared to Cas9/T7 control cells. The upregulated proteins related to various

cellular processes involved in cell metabolism, DNA repair and replication, signaling and

microtubule-based movement. The amastin-like surface antigen was also upregulated; this

protein family is known to increase in amastigotes. Signaling proteins that included various

kinases and phosphatases were also upregulated.

The upregulated proteins were also evaluated by the Gene Ontology (GO) enrichment anal-

ysis through the TriTrypDB platform based on their biological functions. Enrichment thresh-

old was set at 3 fold. Fig 6B and S4 Table highlight the GO enrichment of the upregulated

protein groups, each containing at least 2 proteins. In line with the manually categorized pro-

teins, the GO enrichment analysis also show that the upregulated proteins relate to general cel-

lular and DNA metabolism and to microtubule-based movement. We note a strong increase

in proteins involved in gluconeogenesis, which are typical of amastigotes.

The manually categorized proteins that were downregulated in the LeishIF4E2(+/) mutant

as compared to the Cas9/T7 control cells (S4 Table) mostly related to the flagellar rod, the cyto-

skeleton dyneins and a few ribosomal proteins (L22, L18, S15 and S10). Other downregulated

proteins in the LeishIF4E2(+/-) proteome included signaling and metabolic proteins. A num-

ber of proteins known to be involved in parasite virulence [39–42] such as surface proteins like

GP46/PSA and hydrophilic acetylated surface proteins, cysteine and metallo-peptidases were

also reduced. The GO enrichment analysis for the downregulated genes highlighted cellular

amino acid biosynthetic processes and cyclic nucleotide biosynthetic processes, both know to

decrease in amastigotes.
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Fig 6. The categorized proteome of the upregulated proteins in LeishIF4E2(+/-) mutant cells as compared to Cas9/T7 control

cells. The proteomic content of LeishIF4E2(+/-) and Cas9/T7 cells was determined by LC-MS/MS analysis, in triplicates. Raw mass

spectrometric data were analyzed and quantified using the MaxQuant software and the peptide data were searched against the

annotated L.mexicana proteins listed in TriTrypDB. The summed intensities of the peptides that served to identify the individual

proteins were used to quantify changes in the proteomic content of specific proteins. Statistical analysis was done using the Perseus

software. Proteins that were upregulated in the LeishIF4E2(+/-) mutant by 1.7 fold as compared to Cas9/T7 cell extracts, with p<0.05

are shown. (A) Proteins in LeishIF4E2(+/-) that were upregulated (>1.7 fold) as compared to Cas9/T7 extracts were clustered

manually into functional categories. The pie chart represents the summed intensities of upregulated proteins in each category, in the
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The LeishIF4E2(+/-) morphology resembles axenic amastigotes

The LeishIF4E2(+/-) mutant promastigotes were small and round and had a very short flagel-

lum (Figs 7A and S7). This morphology resembles the changes observed during differentiation

to axenic-like amastigotes under normal growth conditions. We therefore examined how the

mutant cells responded to conditions known to generate axenic amastigotes. L.mexicana
LeishIF4E2(+/-) promastigotes along with control WT and Cas9/T7 cells were grown to late

log phase and transferred to conditions that induce differentiation to axenic amastigotes in
vitro (pH 5.5, 33˚C) for four days. The differentiated LeishIF4E2(+/-) cells maintained a simi-

lar morphology, except that they became smaller, resembling axenic amastigote structure (Fig

7B).

We compared the repertoire of proteins that were enriched in the LeishIF4E2(+/-) mutant

promastigotes with the published proteome specific to amastigotes [43,44]. This comparison

highlighted eight overlaps between the proteins that were upregulated in the LeishIF4E2(+/-)

mutant and in amastigotes (Fig 7C and S5 Table), as reported previously [45,46]. The shared

proteins included enzymes required for gluconeogenesis, such as the phosphoenolpyruvate

carboxykinase and pyruvate phosphate dikinase. These two enzymes are key players in the glu-

coneogenesis pathways which are active in the amastigote stage of Leishmania and are required

for the intracellular survival of the parasite within mammalian host cells [47]. We also noticed

that the aldo-keto reductase was upregulated in LeishIF4E2(+/-). Aldo-keto reductase is sug-

gested to have a role in the removal of the ketoaldehyde metabolites derived from lipids and

trioses [46]. Other proteins upregulated in LeishIF4E2(+/-) included cystathionine beta-lyase

(methionine biosynthesis) and signaling kinases like mitogen-activated protein kinase.

Enzymes involved in lipid metabolism pathways were shown to increase in Leishmania amasti-

gotes, as these change their energy source on entering mammalian macrophages [48]. Fewer

overlaps were observed for down-regulated proteins. These included the peptidyl-prolyl cis-

trans isomerase, putative, a protein implicated in protein folding [49]. Downregulation of a

poly zinc finger protein 2 of unknown function was also shared.

Discussion

The current study aims to understand one of the least studied Leishmania cap-binding para-

logs, LeishIF4E2, using CRISPR-Cas9 mediated gene knock-out. We successfully deleted one

of the two LeishIF4E2 alleles and studied the effect of this deletion on various cellular pro-

cesses, including growth, morphology, metabolism, infectivity to macrophages, and overall

proteome.

LeishIF4E2 does not associate with any eIF4G partner and co-migrates with polysomes on

sucrose gradients [10], however, this profile does not indicate its biological role. The inability

to bind an LeishIF4G partner is similar to the translation repressor 4E-HP [8], however, the

absence of LIF4G binding does not necessarily indicate that the protein is a repressor. We

recently showed that LeishIF4E1, which also does not pair with any LeishIF4G does not appear

to function as a translation repressor [15].

The ortholog of LeishIF4E2 from T. brucei, TbEIF4E2, associates with a stem-loop binding

protein that binds to histone mRNA, but its role in translation activation or repression

LeishIF4E2(+/-) mutant. Numbers in brackets indicate the number of proteins in each category, % represent their summed relative

intensity in the analysis. (B) Enriched proteins were classified by the GO enrichment tool in TriTrypDB, based on Biological

Function. The threshold for the calculated enrichment of proteins based on their GO terms was set for 2.5 fold, with p<0.05. This

threshold eliminated most of the general groups that represented parental GO terms. GO terms for which only a single protein was

annotated were filtered out as well.

https://doi.org/10.1371/journal.pntd.0008352.g006

PLOS NEGLECTED TROPICAL DISEASES Deletion of a single LeishIF4E2 allele by CRISPR-Cas9

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008352 March 24, 2021 21 / 31

https://doi.org/10.1371/journal.pntd.0008352.g006
https://doi.org/10.1371/journal.pntd.0008352


remained elusive. Here, generation of a hemizygous mutant of LeishIF4E2 by CRISPR-Cas9

gene knockout enables us to explore the potential role of LeishIF4E2 in translation in Leish-
mania and how this deletion affects the proteomic profile. Our attempts to delete both alleles

of LeishIF4E2 were unsuccessful, although we were able to obtain a null mutation of another

cap-binding protein, LeishIF4E1, by the same approach [15] supporting that LeishIF4E2 per-

forms an essential function. Although the deletion of the single allele of LeishIF4E2 reduced its

Fig 7. LeishIF4E2(+/-) mutant cells easily transform to axenic amastigote-like cells. (A) Promastigotes of the LeishIF4E2(+/-) mutant, control

WT, and Cas9/T7 expressing cells grown under normal conditions are shown. (B) Morphology of cells transferred to conditions that induce

differentiation to axenic-amastigotes (33˚C/pH 5.5) during four days. Images were captured at 100x magnification with a Zeiss Axiovert 200M

microscope equipped with AxioCam HRm CCD camera. The scale bar is 10 μm. (C) Shared upregulated proteins in the mutant LeishIF4E2(+/-)

promastigotes (compared to Cas9/T7 cells) and in published amastigotes proteome. The total protein of the LeishIF4E2(+/-) mutant promastigotes

was compared to the proteome of Cas9/T7 cells. The list of upregulated proteins was further compared with the proteins enriched in the amastigote

proteome of the virulent L. amazonensis PH8 strain (de Rezende et al, PLOS NTD 2017) and of L.mexicana amastigotes (Paape et al, Mol Cell Prot

2008). L amazonensis gene IDs were converted to L.mexicana, for the sake of comparison.

https://doi.org/10.1371/journal.pntd.0008352.g007
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expression, it did not affect global translation and growth rates of the mutant cells. However,

the hemizygous mutant had an altered proteome profile. MS analysis and GO enrichment

analysis demonstrated that the protein families with decreased expression are categorized as

flagellar rod and cytoskeletal proteins; this is compatible with the observed defects in

LeishIF4E2(+/-) mutant cellular morphology. On the other hand, proteins involved in cyto-

skeletal movement were upregulated, conferring a minimal movement capacity to the round

mutant cells. The fact that global translation appears unaffected may be due to a downstream

effect. If LeishIF4E2 is responsible for transcript specific translation, only specific subsets of

genes would be affected, and this would not be reflected in global translation assays. A down-

stream protein involved in protein stability could also affect the changes in the proteomic pro-

file of the mutant cells.

The LeishIF4E2 sequences are highly conserved among the Leishmania species and less

with trypanosomes. LeishIF4E2 possesses an extended C-terminal domain predicted to be dis-

ordered. This extended C-terminus is absent from all other LeishIF4Es emphasizing that it is

unique to LeishIF4E2. It is also absent from the T. brucei and T. congolensi orthologs of

LeishIF4E2 making this C-terminus is specific to the Leishmania. We find that the disordered

C-terminus is subject to proteolytic cleavage, both in vivo and in vitro. In cell extracts antibod-

ies against the SBP tag could recognize LeishIF4E2 tagged at its N-terminus. These antibodies

recognized both the full-length protein (LeishIF4E21-281) and its C-terminal truncated product

(LeishIF4E21-217) when LeishIF4E2 was tagged at its N-terminus. In LeishIF4E21-281, cleavage

of the C-terminus generated the shorter version of the protein that could be identified by the

antibodies to the N-terminal tag. A similar approach using recombinant LeishIF4E2 purified

from bacterial extracts showed both the presumable full-length and cleaved protein lacking the

disordered C-terminus. Here too antibodies against the His tag interacted with the recombi-

nant LeishIF4E2 only when it was tagged at its N-terminus. Since we did not observe any dif-

ference in total translation or growth rates between cell lines expressing the full length or the

shorter version the biological role of this cleavage and its products remains elusive.

Complete or partial deletion of other LeishIF4E paralogs has resulted in similar effects on

cell morphology giving rise to mutant cells that were small, non-flagellated and impaired in

their ability to infect macrophages. We note that this was also the case with the null mutant of

LeishIF4E1 [15] and the hemizygous mutant of LeishIF4E3 [19]. We show here that the hemi-

zygous deletion of LeishIF4E2 generates morphologically defective cells. In all these cases, we

observed a similar pattern of behavior, namely that perturbation of individual LeishIF4Es

results in altered morphology, defects in cytoskeletal motility proteins, flagellar growth and

impaired infectivity. The different LeishIF4Es may fulfill each other’s role to a certain extent,

allowing viability, but they may be responsible for translation of different sets of transcripts,

since we expect that many genes are required to maintain a proper cytoskeleton and a func-

tional flagellum. Impaired expression of discrete transcript groups could result in impaired

shape and motility in the different mutants with different transcripts being affected. Based on

previous reports in the field it is also expected that the flagellum is required for the entry of

promastigotes into macrophages after transmission to the mammalian host, [50–53]. Apart

from the defective morphology, the downregulation of important virulence factors such as dis-

crete surface proteins, promastigote surface antigens (PSA/GP46), could result in the impaired

infectivity we observed. Expression of the GP46/PSA surface antigen was previously shown to

be involved in parasite virulence by protecting the parasite from complement mediated lysis

[42]. We note that despite the morphological changes and the relative changes in the prote-

ome, promastigote viability was not affected as compared to control cells, indicating that inhi-

bition of cell motility, or changes in cell size do not necessarily affect cell viability. Analysis of

the proteomic changes in the LeishIF4E2(+/-) mutant shows that along with the reduced
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expression of specific proteins, we observed an upregulation of proteins involved in DNA rep-

lication and repair, that could contribute to cell proliferation of the mutant cells, as compared

to the controls. These could assist in maintain cell proliferation.

Genome wide tethering screens for identifying regulatory proteins that affect gene expres-

sion in T. brucei suggested that TbEIF4E2 acts as a translation repressor [54]. From our study

we cannot conclude that LeishIF4E2 is a general translation repressor, since the translation

assays monitoring de novo translation in the LeishIF4E2(+/-) mutant cells did not demonstrate

any increase in protein synthesis activity or even cell growth. In addition, parasites expressing

SBP tagged LeishIF4E2 did not show any decrease in global translation, ruling out the general

translation repressive ability of LeishIF4E2. However, as indicated above, if LeishIF4E2 could

function in a transcript-specific manner, it could possibly repress translation of specific tran-

scripts without affecting global translation. Alternatively, LeishIF4E2 could serve as a tran-

script-specific translation factor that a reduction in its expression could lead to impaired

translation of specific transcripts. Both alternatives rule out a role for LeishIF4E2 as a global

translation repressor. We also cannot exclude the option that reduced expression of

LeishIF4E2 had an indirect effect on the proteomic profile, through modulation of a small

number of downstream proteins involved in translation. Contrasting roles for a specific cap-

binding protein have been reported for the 4E-HP ortholog in higher eukaryotes, as 4E-HP

fails to bind any eIF4G partner, and functions as a translation repressor during embryogenesis

[55]. However, it also functions as a translation inducing factor for a specific set of transcripts

translated under conditions of hypoxia [56].

We further considered the possibility that LeishIF4E2 is associated with stage differentia-

tion. Our former publication [13] indicated that LeishIF4E2 expression was almost undetect-

able in axenic amastigotes. Expression of other cap-binding proteins was also reduced with

only LeishIF4E1 maintaining its expression level at both life stages. LeishIF4E4 changed its

modification profile, and LeishIF4E3 was reduced in axenic amastigotes. The complete

absence of LeishIF4E2 expression in axenic amastigotes could indicate that stage transforma-

tion requires its suppression during differentiation. Indeed, we noticed that LeishIF4E2(+/-)

mutants are easily differentiated into axenic amastigotes. We now see that reduction of

LeishIF4E2(+/-) expression lead to upregulation of important enzymes involved in gluconeo-

genesis, as compared to Cas9/T7 expressers. This group of proteins was also reported to

increase in amastigotes [43, 57]. Another protein that was upregulated when expression of

LeishIF4E2 was reduced is the mitogen-activated protein kinase-kinase (LmxM.19.0150), a

protein reported to increase in axenic amastigotes [57]. The T. brucei ortholog, TbEIF4E2, was

shown to bind the stem-loop binding protein 2, SLBP2, a protein that associates specifically

with histone mRNAs. In higher eukaryotes SLBP associates with polyribosomes as a result of

continued synthesis and transport of the histone mRNP to the cytoplasm [58]. LeishIF4E2 is

the only cap-binding protein that clearly associates with polysomal fractions that were sepa-

rated over sucrose gradients; the other LeishIF4Es tested co-migrated with lower MW fractions

of the sucrose gradient [10]. The repertoire of upregulated genes in the LeishIF4E2 (+/-)

mutant shows enrichment of DNA repair and DNA binding proteins, some of which are also

involved in DNA replication. Therefore, LeishIF4E2 could be directly or indirectly involved in

maintaining DNA integrity and structure. However there is a need to do further investigation

on this aspect. For comparison, proteins that relate to these groups were not upregulated in

the LeishIF4E1(-/-) null mutant cells [15] suggesting unique roles for the different cap-binding

proteins.

This study further emphasizes the complex nature of the network that regulates translation

in trypanosomatids with potentially overlapping functions of the different cap-binding pro-

teins. This is further emphasized when one considers the involvement of additional 4E-
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interacting proteins, such as Leish4E-IP1 [13] and Leish4E-IP2 [59] in modulating protein

synthesis in this group of fascinating organisms that diverged early in the evolution of eukary-

otes. The presence of multiple cap-binding proteins in this unicellular organism is intriguing

as it appears that recruitment of this important group of proteins to perform specific functions

is part of the successful machinery of adaptation to the changing environments that the para-

sites experience during their complex life cycle, transiting between insect vector and mamma-

lian host.

Supporting information

S1 Fig. A Sequence alignment of the cap-binding protein paralogs of Leishmania mexicana
indicating the N- and C-termini extensions. (A) Sequences were retrieved from L.mexicana
parasites annotated in TriTrypDB. Alignment was generated using Jalview (2.10.5). The

aligned sequences were derived from L.mexicana genome sequences from TritrypDB. The

sequences used were LeishIF4E1 (4E1, LmxM.27.1620); LeishIF4E2, (4E2, LmxM.19.1480);

LeishIF4E3 (4E3, LmxM.28.2500); LeishIF4E4 (4E4, LmxM.29.0450); LeishIF4E5 (4E5,

LmxM.36.0590); LeishIF4E6 (4E6, LmxM.26.0240). N-terminal extensions are observed in

LeishIF4E3 and LeishIF4E4, as previously reported. A C-terminal extension is observed only

in LeishIF4E2. (B) The table shows percent similarities between the different Leishmania
LeishIF4Es and theMus musculus eIF4E. (C) The tables show the percent similarities between

the different trypanosomatid orthologs of LeishIF4E2 with theHomo sapiens eIF4E. (D) The

table shows % similarities between the different LeishIF4Es, and LeishIF4E1. Percent similari-

ties were generated by EMBOSS needle (https://www.ebi.ac.uk/Tools/psa/emboss_needle/).

(TIF)

S2 Fig. LeishIF4E2 is susceptible to C-terminal cleavage. L.mexicana cells expressing the N-

terminally tagged full length SBP-LeishIF4E21-281, the truncated version of LeishIF4E21-217

and WT cells, were grown under normal conditions. (A) Cells were rapidly lysed in

SDS-PAGE gel loading buffer, showing the total extracts. The blot was developed with anti-

bodies against the SBP tag. (B) Lanes marked as Total were obtained from rapid lysis as in (A),

and lanes marked as Supernatant were obtained from cell lysis with Triton X-100 incubated

on ice for 10 min, followed by centrifugation to remove the insoluble fractions of the cell. The

blot was developed with antibodies against the SBP tag. (C) Bacterial cells expressing the

recombinant LeishIF4E21-281 tagged with Histidine at its N-terminus were disrupted in a

French Press, and the protein was affinity purified over a nickel column. The blot was devel-

oped using antibodies against the His tag.

(TIF)

S3 Fig. LeishIF4E2 is localized in the cytoplasm. L. amazonensis cells expressing LeishI-

F4E2-SBP were grown under normal conditions. The cells were washed, fixed in paraformal-

dehyde and further processed for confocal microscopy. LeishIF4E2 was detected using

monoclonal anti-SBP primary antibody and a secondary goat anti-mouse fluorescent antibody

labeled with a green fluorophore (Alexafluore, 488 nM). The nuclear and kinetoplast DNA

was stained using DAPI (blue). Images were taken using confocal microscopy showing a Z-

projection that was produced by the Image J software. Scale bar: 10 μm. The digital zoom in

(A) is 5.5 and in (B) is 1.8, giving a broader field.

(TIF)

S4 Fig. Confirmation of add-back LeishIF4E2 expression. (A) Cell lysates of L.mexicana
LeishIF4E2 add-back and WT cells were resolved over 10% SDS-PAGE followed by western

analysis with antibodies directed against the SBP tag. (B) Ponceau staining of the blot served as
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a loading control.

(TIF)

S5 Fig. Morphological changes of LeishIF4E2(+/-) and their recovery in the add-back cells

(broad field). The mutant LeishIF4E2(+/-) mutant, the add-back cells along with WT and

Cas9/T7 expresser cells were grown under normal conditions. The cells were fixed, and images

were captured at X100 magnification with a Zeiss Axiovert 200M microscope equipped with

AxioCam HRm CCD camera.

(TIF)

S6 Fig. Flow cytometry for viability, gating of focused single cell population and cell shape

quantification. L.mexicanaWT, Cas9/T7 expressing control cells, LeishIF4E2(+/-) mutant

and add-back promastigotes were subjected to Flow cytometry analysis. (A) Cell viability is

represented for focused, single gated cells for all the different cell lines (B) Scatter plots repre-

senting gated focused single cell populations for different cell lines. (C) Cell shapes are being

represented in terms of circularity or elongatedness as scatter plots for gated cell population.

(TIF)

S7 Fig. Shortening of the flagella in the LeishIF4E2(+/-) hemizygous mutant and its recov-

ery in the add-back cells. Data were acquired for WT, Cas9/T7, 4E2(+/-) and add-back cells

in the assay using ImageStreamX mkII, Objective 60X/0.9NA. (A) An assay containing

~15,000 cells shows the percentage of cells with identifiable flagella (>0 um) as a dot plot. (B)

The mean flagellum length of ~15,000 cells is shown as a dot plot. (C) Shows the normalized

frequency of flagellar length (D) Representative Brightfield images of cells with various flagella

length. Red lines show the mask used to identify the flagellum, numbers in dark blue show fla-

gella length in micrometer for individual images.

(TIF)

S8 Fig. Global translation in cells expressing the CAT reporter is reduced as compared to

WT. (A) WT and transgenic cells expressing the CAT reporter (iCATi, I represents the HSP83

intergenic region that provides RNA processing signals) were incubated with 1 μg/mL puro-

mycin for 1 hr. Cycloheximide treated cells were used as a negative control for complete inhi-

bition of translation. Puromycin treated cells were lysed and resolved over 12% SDS-PAGE

and subjected to western analysis using antibodies against puromycin. (B) Ponceau staining

was used to indicate comparable protein loads. (C) Densitometry analysis of puromycin incor-

poration in the iCATi expressing cell line was compared to wild type (WT) cells (100%). Data

from all three independent experiments are represented.

(TIF)

S9 Fig. The LeishIF4E2(+/-) mutant cells show reduced infectivity to cultured macrophages

(broad field). Stationary phase L.mexicana LeishIF4E2(+/-) mutant, WT, Cas9/T7 expressers

and add-back cells, were pre-stained with the CFSE dye and used to infect RAW 264.7 macro-

phages at a ratio of 10:1 for one hour. The cells were then washed to remove excess parasites,

and the macrophages were cultured for 1 hr (A) or 24 hr (B) post infection at 37˚C. Macro-

phage nuclei were stained with DAPI and the infected macrophages were processed for confo-

cal microscopy. A representative section of Z-projections (maximum intensity) produced by

Image J software is shown. Fields of 200 cells were further evaluated to quantify the infection.

(TIF)

S10 Fig. Statistical analysis of LeishIF4E2(+/-) mutant infectivity compared to controls.

Parasite infectivity of cultured RAW 264.7 macrophages was estimated in vitro using Image J

software. (A) The percentage of infected macrophages was determined by counting a total of
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100 macrophages from three independent experiments. (B) The average number of parasites

per infected cell is shown. Kruskal Wallis test in GraphPad Prism was used to determine the

percentage of infected cells and for calculation of the average parasites per cell along with stan-

dard deviation values (SD). The percentage of infected macrophages (%) and the average num-

ber of parasites per macrophage in the LeishIF4E2(+/-) mutant were compared with each of

the control lines: WT, Cas9/T7 expressing cells, the LeishIF4E2(+/-) mutant and the

LeishIF4E2 add-back cells. P value < 0.001 is represented by ���, P value < 0.01 by �� and P

value < 0.05 by �. The data for 1hr and 24 hr macrophage infections are shown in separate

panels.

(TIF)

S1 Table. List of primers.

(XLSX)

S2 Table. Measurements of flagellar length in the different parasite lines. Changes in the

flagellar length for each cell taken by the acquisition software were calculated using IDEAS

software. A customized mask was created for measuring only the flagella without the cell

soma. Based on this mask, a length feature on the Brightfield Image was created and used to

compare flagellum length between different samples, shown as A and B for the 1 and 24 hr

infections.

(XLSX)

S3 Table. Reduced infectivity of the LeishIF4E2(+/-) mutant cells as compared to WT and

Cas9/T7 controls and to add-back cells. Parasite infectivity of cultured RAW 264.7 macro-

phages was estimated in vitro, using the Image J software. The percentage of infected macro-

phages was determined by counting a total of 100 macrophages from three independent

experiments. The average number of parasites per infected cell is shown.

(XLSX)

S4 Table. List of up- and down-regulated proteins in total extracts of the LeishIF4E2(+/-)

mutant as compared to Cas9/T7 control cells. Raw MS data were analyzed and quantified

using the MaxQuant software and the peptide data were searched against the annotated L.

mexicana proteins listed in TriTrypDB. The proteomic content of 4E2(+/-) and Cas9/T7 cells

was determined by LC-MS/MS analysis, in triplicates.

(XLSX)

S5 Table. Comparison of the LeishIF4E2(+/-) proteome with published amastigote prote-

omes. The proteome of upregulated LeishIF4E2(+/-) mutant promastigotes was compared

with the proteins enriched in the amastigote proteome of virulent L. amazonensis PH8 strain,

as compared to the less virulent LV79 [44]. The up- and down-regulated proteins in

LeishIF4E2(+/-) mutant promastigotes were also compared with the L.mexicana amastigote

proteome [43].

(XLSX)
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