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Abstract

The metabolic responses of bacteria to dynamic extracellular conditions drives not only the

behavior of single species, but also entire communities of microbes. Over the last decade,

genome-scale metabolic network reconstructions have assisted in our appreciation of

important metabolic determinants of bacterial physiology. These network models have been

a powerful force in understanding the metabolic capacity that species may utilize in order to

succeed in an environment. Increasingly, an understanding of context-specific metabolism

is critical for elucidating metabolic drivers of larger phenotypes and disease. However, previ-

ous approaches to use network models in concert with omics data to better characterize

experimental systems have met challenges due to assumptions necessary by the various

integration platforms or due to large input data requirements. With these challenges in mind,

we developed RIPTiDe (Reaction Inclusion by Parsimony and Transcript Distribution) which

uses both transcriptomic abundances and parsimony of overall flux to identify the most cost-

effective usage of metabolism that also best reflects the cell’s investments into transcription.

Additionally, in biological samples where it is difficult to quantify specific growth conditions, it

becomes critical to develop methods that require lower amounts of user intervention in order

to generate accurate metabolic predictions. Utilizing a metabolic network reconstruction for

the model organism Escherichia coli str. K-12 substr. MG1655 (iJO1366), we found that

RIPTiDe correctly identifies context-specific metabolic pathway activity without supervision

or knowledge of specific media conditions. We also assessed the application of RIPTiDe to

in vivo metatranscriptomic data where E. coli was present at high abundances, and found

that our approach also effectively predicts metabolic behaviors of host-associated bacteria.

In the setting of human health, understanding metabolic changes within bacteria in environ-

ments where growth substrate availability is difficult to quantify can have large downstream

impacts on our ability to elucidate molecular drivers of disease-associated dysbiosis across

the microbiota. Our results indicate that RIPTiDe may have potential to provide understand-

ing of context-specific metabolism of bacteria within complex communities.
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Author summary

Transcriptomic analyses of bacteria have become instrumental to our understanding of

their responses to changes in their environment. While traditional analyses have been

informative, leveraging these datasets within genome-scale metabolic network reconstruc-

tions (GENREs) can provide greatly improved context for shifts in pathway utilization

and downstream/upstream ramifications for changes in metabolic regulation. Many pre-

vious techniques for GENRE transcript integration have focused on creating maximum

consensus with input datasets, but these approaches were recently shown to generate less

accurate metabolic predictions than a transcript-agnostic method of flux minimization

(pFBA), which identifies the most efficient/economic patterns of metabolism given certain

growth constraints. Despite this success, growth conditions are not always easily quantifi-

able and highlights the need for novel platforms that build from these findings. Our new

method, RIPTiDe, combines these concepts and utilizes overall minimization of flux

weighted by transcriptomic analysis to identify the most energy efficient pathways to

achieve growth that include more highly transcribed enzymes, without previous insight

into extracellular conditions. Utilizing a well-studied GENRE from Escherichia coli, we

demonstrate that this new approach correctly predicts patterns of metabolism utilizing a

variety of both in vitro and in vivo transcriptomes. This platform could be important for

revealing context-specific bacterial phenotypes in line with governing principles of adap-

tive evolution, that drive disease manifestation or interactions between microbes.

Introduction

Metabolic plasticity is critical for bacterial survival in changing environments, and fundamen-

tal to stable microbial communities [1,2]. In the context of human health, it has been shown

that certain pathogens adapt their metabolism to their current environment to most effectively

colonize a new host [3,4]. Fully understanding these shifts and their implications may provide

opportunities for novel therapeutic strategies. However, describing these situational differ-

ences in overall metabolism of an organism have remained difficult to quantify. While geno-

mic analyses of these species reveal catalogues of metabolic capabilities for a species, they do

not provide information toward the inter-connected networks of metabolism that invariably

occur within the cell. One approach that addresses these limitations is computationally com-

bining genomic data with known biochemical constraints for predicting/modeling cellular

physiology with genome-scale metabolic network reconstructions (GENREs). A GENRE is

composed of the collection of genes and metabolic reactions associated with the species of

interest, representing the totality of known metabolic function that organism is able to employ.

This functionality can then be formalized with a mathematical framework and constrained by

known biological parameters to allow for simulation of metabolic processes. These powerful

discovery platforms have enabled guided genetic engineering efforts, directed hypothesis gen-

eration for downstream laboratory testing, and investigation of metabolic responses of bacteria

to antibiotic stress [5,6].

GENREs have also become strong platforms for providing context to multiple forms of

high-throughput omics data, allowing for the study of whole-network changes in metabolism

due to upstream/downstream shifts in enzyme activity [7]. To this end, advances over the last

decade in RNA-Seq technologies have indeed enabled whole bacterial community metatran-

scriptomic analysis [7]. Conversely, changes identified through other means occasionally can
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be difficult to attribute to a single organism from complex biological samples (e.g. untargeted

metabolomics). However, shotgun transcriptomic analysis followed by strict read mapping

protocols allows for the characterization of individual groups of species within these commu-

nities of organisms [8,9]. These large datasets provide informative possibilities for analyses;

however holistic (top down) analyses are limited in their ability to make any mechanistic

claims outside of correlative results. Against the backdrop of the reductionist (bottom up)

approach of GENREs, their combined informative capacity allows for mechanistic insight into

the metabolic status and ecological interactions within the microbiome [10].

Numerous approaches to integrating transcriptomic data into GENREs primarily focus on

identifying reactions associated with defined cutoffs of gene transcription or change, then

maximizing flux through those reactions with many transcripts and minimizing flux through

those reactions associated with genes with fewer transcripts [11–21]. While these techniques

have produced insights into the influence of transcription on the metabolic state of cells, the

largely arbitrary thresholds dividing genes and associated reactions into categories of activity

or probability deviates from the continuous nature of mRNA abundance data and can skew

results. Several alternative platforms collectively rely on identifying core sets of metabolic func-

tionalities that define the cell-type or condition of interest utilizing omic data, then selecting

the most likely pathways or network topology for including these tasks and pruning unused

sections of the models [22,23]. While these approaches have been shown to create models that

contain increased amounts of known tissue-specific metabolic pathways, they do not inher-

ently generate fully functional models of metabolism nor are they necessarily reflective of

momentary metabolic trends that would be active under specific conditions. Overall, very few

platforms have integrated continuous weights to reactions based on transcriptomic data as

well as applying these constraints to fully functional metabolism [24–26], but such methods

ultimately require high degrees of input data (e.g. fluxomics or differential expression analysis)

and rely on placing new bounds on metabolic reactions in relation to the input transcriptome.

Of these methods, some have found a measure of success through maximizing correlation

between reaction flux and associated transcript abundances [27,28], yet as previously stated

may be a less biologically valid approach as transcript levels are not always predictive of corre-

sponding protein concentrations. Even fewer studies have incorporated this concept that tran-

scription does not necessarily equate with functional enzyme by examining its implications in

flux analysis [28], highlighting an opportunity for novel approaches to analyze context-specific

metabolic models in relation to continuously assigned reaction weights and stand-alone tran-

scriptomic datasets.

Recently, parsimonious Flux Balance Analysis (pFBA) was developed, which seeks to mini-

mize the flux associated with each reaction in the model while maintaining optimum flux

through the objective function [29]. In essence, this approach identifies the least biologically

“expensive” usage of an organism’s metabolism to achieve high growth rates. This method is

in line with the concept that evolutionary pressures have selected for metabolic states in

microbes with minimized cellular cost that maximize growth rate under a variety of environ-

mental conditions [30]. Surprisingly, with a model of Saccharomyces metabolism, pFBA alone

with constraints on metabolic inputs was found to be able to largely outperform several other

methods in predicting metabolic network behavior under various growth conditions despite

not utilizing any transcriptomic data for these predictions [31]. Recently, our laboratory has

also demonstrated that parsimonious flux analysis, in conjunction with differential expression,

can augment predictions of metabolite output with both rat and human GENREs [32]. These

studies demonstrate that contextualizing data in a truly biologically meaningful way has

proven difficult, highlighting large gaps in our understanding of metabolic regulatory mecha-

nisms. Additionally, recent studies on Escherichia coli grown in defined in vitro conditions
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have shown that levels of transcript were only predictive for roughly half of the concentrations

of the corresponding enzymes in the cell [33,34]. In reality, reaction flux is determined by a

complex combination of local substrate and enzyme concentrations as well as the kinetics of

the reaction itself. Despite this shortcoming, transcript abundances remain an indication of

cellular investment into a given metabolic strategy. Furthermore, as the expression of a func-

tional enzyme is not as simple as an on-or-off scenario, we have also implemented an unsuper-

vised procedure to assign weights to reactions based on the distribution inherent to RNA-Seq

data [35]. As arbitrary thresholds have been demonstrated to be biased [36], and absolute

mRNA abundances were shown to improve GENRE flux predictions when their correlation

with reaction activity is maximized [28], we chose to calculate continuous values along the

transcript abundance distribution for the coefficient associated with each gene. This approach

is unbiased by depth of sequencing across datasets, and it restricts the utility of low-transcrip-

tion reactions to an optimal pFBA solution yet does not entirely prohibit it. With both of these

concepts in mind, we have leveraged the insights gained by pFBA, integrating transcript abun-

dance as a weighting metric to direct the most parsimonious flux solutions toward a state of

higher fidelity to in situ biology.

We call this combined method RIPTiDe, or Reaction Inclusion by Parsimony and Tran-

script Distribution. RIPTiDe was then tested on the most well curated GENRE of the highly

studied model organism E. coli str. K-12 substr. MG1655. Transcriptomic data from multiple

distinct in vitro growth conditions were compared against each other as well as the base imple-

mentation of pFBA. RIPTiDe was able to accurately discern context-specific phenotypes

including growth rates that closely match experimentally measured values under the same con-

ditions, as well as gene essentiality predictions in metabolic pathways relevant to the corre-

sponding media. The platform was subsequently tested utilizing in vivo metatranscriptomic

sequence data from clindamycin-treated mouse cecal content where E. coli is the dominant

member of the bacterial community [8]. When contrasted against results from the previous

analysis, the in vivo RIPTiDe-contextualized model simulated significantly slower growth than

in aerobic rich media and more central metabolites were produced intracellularly when in

competition with other bacterial species. These combined analyses validated our methodology

by correctly uncovering context-specific biological trends, and previously unappreciated host-

associated behaviors of E. coli. Furthermore, this technique could present a powerful tool for

the study of the microbiota through the simultaneous unsupervised contextualization of omics

data from multiple organisms within the same community.

Results and discussion

Reaction Inclusion by Parsimony and Transcript Distribution (RIPTiDe)

RIPTiDe relies on sequential optimization steps, guided by transcript abundances in order to

identify the most efficient usage of metabolism that also reflects an organism’s transcriptional

state [29]. The required inputs for RIPTiDe are a GENRE (with an assigned objective) and a

dictionary of gene-associated transcript abundances. By first calculating the optimal objective

value for the original GENRE, and then constraining any future optimization to approximately

this level of flux, RIPTiDe ensures both functional output models as well as the identification

of highly efficient metabolic strategies that are consistent with transcriptomic datasets. Subse-

quently, transcript mapping is reduced to only genes that appear in the genome-scale network

reconstruction of interest, therefore not skewing the distribution with data that is uninforma-

tive to the current analysis. To generate reaction coefficients (weights) that closely reflect the

normalized transcript abundance [37] for their associated genes, we calculated the ratio of

transcription for each gene with the maximum abundance in the dataset (Fig 1A). In line with
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Fig 1. Visual representation of RIPTiDe workflow. (A) Example transcript and resultant reaction weight

distributions were calculated by RIPTiDe. During the pruning step, reactions for genes that recruit greater abundances

of transcript are assigned smaller linear coefficients which in turn result in higher likelihood of usage in an overall flux

minimization objective. Alternatively, during the subsequent the flux sampling step, the remaining reactions associated

with higher transcription are assigned larger linear coefficients leading to increased possible flux ranges. (B) Schematic

outlining computation performed during each step of RIPTiDe. The platform requires two input data structures: a

genome-scale network reconstruction and transcript abundances associated with genes. During initialization

transcript abundances for genes are transferred to their corresponding reaction, allowing coefficients to be assigned.

Each reversible reaction is now also separated into pairs of irreversible reactions. Applying principles of parsimonious

FBA to the constrained model, a minimum sum of fluxes optimization is performed with respect to a predefined

minimum flux through the cellular objective. Reactions that no longer carry flux in this state are pruned, and flux

sampling is performed on the intermediate model to determine context-specific bounds for the remaining reactions.

(C) Pictorial representation of the impact of RIPTiDe on the original reconstruction, converting it to a context-specific

model of metabolism with a parsimonious metabolic solution space with respect to the given transcriptomic data.

https://doi.org/10.1371/journal.pcbi.1007099.g001
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the overall motivation for RIPTiDe, this calculation results in a weight for all genes that repre-

sents each as a fraction of the maximum cellular investment in any one metabolic function,

which has been shown to be effective in at least one previous approach for transcriptome inte-

gration [25]. The process results in a distribution of linear coefficients that is >0.0 and ≦ 1.0; a

higher transcript abundance corresponds with a lower linear coefficient and therefore a larger

probability of being utilized in the final metabolic model, given that RIPTiDe first minimizes

the sum of linear coefficients and fluxes. Additionally, in the cases where multiple genes con-

tribute to the same reaction (i.e. isozymes or multimers), then the lowest coefficient (highest

transcript abundance) among the group is chosen as it reflects in what processes the cell has

invested energy. Another approach is to have the overall GENRE flux state limited by whole-

cell transcriptomic analyses to more directly predict metabolic capacities [25]; however, this

approach did not leverage additional constraints on total flux, as done here through a pFBA

assumption, to maximize cellular economy as a reflection of omics datasets. By calculating a

continuous scale of linear coefficients based on absolute transcript abundances, RIPTiDe

removes the need for different cutoffs between datasets of variable sequencing depth and

reduces the requirement for manual intervention in the generation of functional context-spe-

cific models.

As with pFBA, reversible reactions are split into pairs of irreversible reactions carrying

non-negative flux. Coefficients are subsequently transferred to the corresponding metabolic

reactions for each gene. Reactions are then assembled into a single new equation which is set

as the cellular objective where the magnitude of the linear coefficient drives the amount of flux

carried by each reaction. Reactions without genes are assigned the median score to not be

incorrectly penalized, nor overly biased to their inclusion. Larger coefficients correspond to

the reaction receiving a larger weight per unit of flux during optimal growth, which would

therefore be favored less when minimizing the overall sum of weights times flux for a given

objective function. In this way, we were able to minimize overall flux subject to the transcript-

guided linear coefficients added by RIPTiDe. Within the transcript abundance distribution,

progressively smaller linear coefficients are assigned to genes with increased transcription (Fig

1A). With an additional linear optimization, reactions with no flux are pruned from the net-

work. As no arbitrary cutoffs are introduced during these steps, this approach is equally tracta-

ble between datasets of variable sequencing depths.

The scope of feasible solution states in a GENRE typically out-scales the number of realistic

metabolic states of the cell by a large magnitude [38]. Placing further constraints on a model

that reflect likely metabolism allows for improved predictions, but only partially mitigates the

potential for biologically meaningless solutions to be reported. Sampling of feasible flux distri-

butions reveals how the applied constraints limit the possible metabolic states and ensure we

do not rely on any single state that may be physiologically less likely [39,40]. Each sampled flux

distribution represents a hypothesis for how metabolism is truly functioning given the con-

straints placed on the system. Integrating a flux sampling technique into RIPTiDe, we were

able to further leverage our transcript-based constraints to maximize the context-specificity of

resultant models. Following assignment of linear coefficients to metabolic reactions, we pro-

ceeded through the linear optimization steps at the core of RIPTiDe as illustrated in Fig 1B. Of

note, after reaction pruning we assign weights to the reaction fluxes directly proportional to

transcript abundance (inverse of how the weights are applied before pruning) because we want

to promote flux through the remaining reactions that are associated with high transcript values

during the flux sampling analysis. In order to be quickly and uniformly sample this highly-

constrained solution space, we utilized the sampler gapsplit which is tuned to maximize effi-

ciency per sample under this type of condition [41]. Transcript abundances were used to guide

the optimization and flux sampling in order to identify the most economic, likely usage of

PLOS COMPUTATIONAL BIOLOGY Transcriptome-guided parsimonious flux analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007099 April 16, 2020 6 / 26

https://doi.org/10.1371/journal.pcbi.1007099


metabolism with the given cellular investment in transcription. A more detailed description of

the steps in RIPTiDe are as follows:

1. Near optimal flux through the objective function is set as a constraint (≧80%, S1 Table).

2. Linear coefficients are assigned as constraints to each reaction based on transcriptomic

abundance of the associated gene-enzyme assignments. In cases where multiple gene prod-

ucts contribute to the same reaction, the lowest coefficient/largest weight among them is

selected.

3. Total sum of weights times fluxes in the model is minimized subject to previously outlined

constraints.

4. Standard flux balance analysis then identifies inactivated subnetworks (zero flux) which are

subsequently removed from the model. Orphaned genes and metabolites are then pruned.

5. Inverse linear coefficients within the original provided range are calculated and assigned for

each reaction. Flux sampling is performed on the constrained and reduced model to find

most likely pathway utilization patterns while maintaining 80% of the objective function.

The resultant pruned model has a dramatically more focused, biologically feasible, meta-

bolic solution space that has been adequately sampled for feasible metabolic states (Fig 1C).

Unlike many previous approaches, models produced by RIPTiDe are able to achieve flux

through their given objectives by default without any reintroduction of deactivated reactions.

This characteristic is critical as the principle of optimum cellular economy with respect to the

transcript data is never broken throughout the contextualization process. In addition, main-

taining flux through a given objective function allows for predictions on potential targets for

therapeutic interventions, such as essential genes. Spearman correlation is then performed

between median absolute flux values for all reactions found during sampling and their associ-

ated levels of transcription to identify the level of concordance of context-specific metabolic

states with the measured transcriptome (S3A Fig). Differences between median absolute flux

values and transcript abundances highlight reactions that are potentially subject to high post-

transcriptional regulation [42]. Furthermore, we have also integrated functionality to instead

utilize one or more metabolic tasks (single reactions) as constraints which must achieve posi-

tive flux in order to accommodate larger-scale models where a single defined cellular objective

may be a biologically invalid assumption (e.g. human tissue). For a more detailed description

of the algorithm, refer to the Methods section.

Application of RIPTiDe to an example model of bacterial metabolism

To test RIPTiDe, we created a small, flux-consistent metabolic network reconstruction with

two compartments and generation of ATP (in arbitrary units) as the cellular objective func-

tion. The model has two separate means of accomplishing this goal; either through glycolysis

where glucose is the primary substrate, or Stickland fermentation which requires pairs of

amino acids in coupled redox reactions to create energy [43]. In nature, fewer ATP are gener-

ated per unit of substrate in Stickland fermentation compared to glycolysis [44]. This phenom-

enon was replicated in the example model as fewer reactions are required to generate ATP

from glucose, making this pathway more energetically favorable (S2 Table). Utilizing the base

implementation of pFBA available within COBRApy to quantify which pathway was the more

parsimonious solution, we ensured that glycolysis was actually the most efficient (lower sum of

flux with fewer enzymes used) for optimal ATP generation (Fig 2A). Critically, this ATP
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generation was performed under the conditions where all possible extracellular substrates were

provided in excess to the model as to not bias results only on the basis of resource availability.

As a means to determine the context specificity of RIPTiDe output models, we then gener-

ated two distinct simulated transcript abundance distributions that each reflected elevated

transcription of a single pathway (S2 Table). In Fig 2B, RIPTiDe was provided with a transcrip-

tome in which genes for glycolysis and related reactions were more highly transcribed. The

contextualized model in this case also utilized glycolysis as the only means of generating ATP,

directly matching those results obtained from pFBA. Alternatively, as illustrated in Fig 2C,

when genes associated with Stickland fermentation and peptide substrate transporters were

more highly transcribed, RIPTiDe was able to discern that the less directly parsimonious path-

way should be utilized instead when provided sufficient transcriptomic evidence. In each case,

reactions related to the opposite pathway were correctly pruned while generating the final con-

text-specific model. Furthermore, flux samples for the cellular objective from each contextual-

ized example model revealed that significantly more ATP could be produced when employing

glycolysis (S2 Table), further supporting the energetic favorability of this pathway. These com-

bined results confirmed that RIPTiDe was indeed able to use a less parsimonious pathway

when necessary to better reflect the associated transcriptomic dataset. We also made the same

topological assessment following Stickland fermentation-associated transcriptome integration

using two other relatively recent approaches, CORDA and RegrEx [13,27]. Neither algorithm

yielded the same result as RIPTiDe, and both incorrectly retained glucose and its associated

transporter in their resultant models (S2 Table). These results further indicate that RIPTiDe is

well suited to identify metabolic capabilities which are most likely to be utilized given cellular

economy and transcriptomic evidence.

RIPTiDe performance with a curated model of E. coli metabolism

To perform a thorough evaluation of our approach, we utilized the genome-scale metabolic

network reconstruction iJO1366 (2583 reactions, 1805 metabolites, 3 compartments), for the

model organism E. coli strain K-12 substr. MG1655 [45]. This GENRE has been the subject of

extensive manual curation and experimental validation, making it the best possible candidate

for examining new approaches in constraint-based modeling [46]. Leveraging these years of

research, we utilized this well described system to determine the biological validity of predicted

context-specific differences returned by RIPTiDe. To accomplish this goal, we performed a

comparative analysis using three separate transcriptomic sequencing datasets, each derived

from well characterized in vitro media conditions including aerobic LB rich media, aerobic

M9+glucose defined minimal media, and anaerobic M9+glucose defined minimal media.

Each dataset was collected at approximately the same mid-exponential phase of growth

[47,48], and contextualization of iJO1366 with RIPTiDe took only seconds to complete (S3B

Fig). These data were chosen due to the large amount of characterization each has received,

allowing our predictions to be more readily supported compared to assessing metabolic differ-

ences possibly seen across numerous less well explored conditions. Additionally, E. coli is a

Fig 2. Example model of bacterial metabolism supports the utility of RIPTiDe for identifying most likely context-specific

strategies. (A) General topology of simplified GENRE that consists of 16 reactions and 14 metabolites in total (S2 Table). The

objective of ATP generation can be achieved through two separate means: either the catabolism of glucose via glycolysis or through

the paired fermentation of proline and glycine. Glycolysis is the more parsimonious pathway for generating ATP, which is reflected

in the pFBA solution fluxes to the right of the diagram (outlined in red). (B) RIPTiDe is able to correctly identify a likely route of

flux when provided a transcriptome. (C) When provided with transcriptomic evidence, RIPTiDe is able to identify a less

parsimonious, but more concordant solution (Lower weighted sum of fluxes). Despite very low transcription, RIPTiDe still identifies

the necessity for carbon dioxide efflux during fermentation to maintain mass balance.

https://doi.org/10.1371/journal.pcbi.1007099.g002
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facultative anaerobe with known differences in metabolism between these lifestyles that we

hoped to capture with RIPTiDe [49].

We first set a performance baseline using implementations of the distinct methodologies

for contextualizing omics data with GENREs mentioned previously; strict integration to corre-

sponding reaction flux levels versus complete context-specific model generation. For equal

comparison between algorithms, these analyses were all performed utilizing the transcriptome

collected from E. coli K-12 growing in aerobic LB rich media. We elected to assess an array of

distinct GENRE+transcriptome integration algorithms; including GIMME, iMAT, CORDA,

MBA, and RegrEx [11–13,20,27]. Of note, GIMME and CORDA require the resulting model

to meet an objective function while iMAT, MBA, and RegrEx maximizes the number of reac-

tions present in the model based on a defined threshold, and therefore do not necessarily meet

a cellular objective. Additionally GIMME, iMAT, CORDA and MBA all require abundance

cutoffs for selectively including reactions associated with genes that meet predetermined levels

of transcription, while RegrEx does not. Instead, RegrEx attempts to maximize correlation

between model activity and transcript levels through least squares regression, which does not

completely reflect functional enzyme concentration nor focus on obtaining a functional model

[33,34]. In several of the algorithms, reactions necessary for an objective function do not nec-

essarily have associated GPR rules, meaning they will be considered inactive and pruned from

the network. Additionally, it is important to note that each of these algorithms obtain slightly

varied results and may be better suited for their original analysis objectives. For all platforms,

we utilized the recommended threshold values published alongside each method as well as

allowing for all available substrates to be taken in by the system. With these settings only

GIMME, CORDA and RIPTiDe returned models that were able to achieve flux through the

biomass objective reaction (S3 Table). GIMME and CORDA yielded models containing 2055

and 1702 reactions respectively, both without a substantial shift in growth rate. This level of

pruning did not substantially narrow the possible compensatory pathways for achieving

growth which can be studied easily, and also does not necessarily reflect a single context-spe-

cific metabolic strategy. Alternatively, RIPTiDe created a model which only contained 567

reactions and a large decrease in flux through the biomass reaction, consistent with the shift in

doubling times between rich and minimal media. This point was even better represented in a

comparison of context-specific gene essentiality which revealed large differences across plat-

forms that yielded functional models (S3 Table). From genes that are included in iJO1366, we

limited our analysis to only focus on those also found to be experimentally essential in a single

gene deletion screen of E. coli K-12 growing in LB rich media [50]. Of the genes from this list

that were present in the RIPTiDe-generated model, all were found to be essential for biomass

generation. Conversely, only 72% and 65% of genes from GIMME and CORDA-generated

models that were experimentally essential were also essential in silico. Only after altering extra-

cellular metabolite availability to reflect LB media components are all genes found to be essen-

tial across all platforms (S3 Table). These results support the necessity for techniques that do

not require such a high degree of information at the outset.

Growth substrate uptake predictions using RIPTiDe reflect experimental

measurements

To evaluate how closely RIPTiDe-based predictions reflect predictions when media conditions

are known, we performed NMDS ordination analysis of Bray-Curtis dissimilarities between

common exchange reaction flux distribution samples from iJO1366 with and without con-

straints on available substrates compared with RIPTiDe-generated flux samples with no

defined media (Fig 3A). For these comparisons, RIPTiDe was applied to iJO1366 with no

PLOS COMPUTATIONAL BIOLOGY Transcriptome-guided parsimonious flux analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007099 April 16, 2020 10 / 26

https://doi.org/10.1371/journal.pcbi.1007099


Fig 3. RIPTiDe identifies established biological differences in E. coli str. K-12 substr. MG1655 across in vitro
growth conditions. Without increased user supervision, RIPTiDe correctly predicts behavior and context-specific
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additional constraints applied utilizing the transcriptome from growth in M9+glucose defined

minimal media. As expected, flux samples from the model with only constraints for near maxi-

mal growth are significantly different (p-value = 0.001) from each other group as it has access

to all possible growth substrates which combined allow for faster growth and distinct patterns

of metabolism. A striking relationship emerged when RIPTiDe flux distributions were com-

pared with those from media-constrained models, revealing that these groups were highly cor-

related. Importantly, no difference (p-value > 0.05) was found when RIPTiDe was applied to

the model with M9+glucose media constraints contrasted against results from RIPTiDe-gener-

ated flux samples without media constraints (S4 Table). A similar trend was also observed with

pFBA integrating two additional transcriptomic datasets from E. coli across distinct media

conditions (S5 Fig). These data indicated that RIPTiDe-based predictions for an organism’s

interaction with its environment (exchange fluxes) were analogous to those made when extra-

cellular metabolic conditions were known. With these results in mind, for all subsequent work

we took an unsupervised approach by allowing for unpenalized flow of all extracellular metab-

olites in and out of the system (exchange reaction bounds set to ±1000), otherwise referred to

as “complete” media. This approach allowed for inferences about the most likely growth sub-

strates for a contextualized GENRE since only those that carry flux following RIPTiDe remain,

which is imperative to accurately describing context-specific metabolic patterns in complex

extracellular environments. We performed this inference in aerobic LB rich media as well as

aerobic M9+glucose defined minimal media (S7 Table). Growth substrates were defined as

those extracellular metabolites which had a negative median flux through the associated

exchange reaction following flux sampling of the context-specific models. This analysis in LB

rich media revealed that 54 metabolites (76.1% of the total remaining exchange reactions after

pruning) were generally imported by the RIPTiDe-generated model and used for growth.

Among these substrates, most have been documented as constituents of LB including numer-

ous amino acids which were predicted as the primary in silico carbon sources. This finding

reflects known patterns of E. coli physiology in LB as the media is devoid of sugars that are fer-

mentable by the bacterium, and instead the bacterium primarily utilizes several amino acids

for growth [51]. Additionally, glucosamine and glycerol 3-phosphate were predicted carbon

sources in rich media, both of which have been shown to be commonly recycled components

of the E. coli cell wall during growth in LB. When contrasted against those growth substrates

RIPTiDe predicted with the M9+glucose transcriptome, glucose and fructose were instead

included as carbon sources which appropriately tracked with known E. coli metabolic be-

haviors [51–54]. Conversely both models produced by GIMME and CORDA using the LB-

associated transcriptome were unable to perform similarly; with GIMME predicting net

uptake of mainly trimethylamine, and CORDA predicting both butyrate and indole as primary

sources of carbon (S7 Table). None of these metabolites are found in LB and E. coli lacks the

cellular machinery to produce them for eventual recycling, making their availability in vitro

pathways for E. coli str. K-12 substr. MG1655 (iJO1366), while simultaneously producing functional models that can

be characterized phenotypically. (A) NMDS ordination of Bray-Curtis dissimilarities between exchange reaction flux

samples for each version of iJO1366. Table legend indicates flux constraints placed on iJO1366 prior to flux sampling.

Flux samples from RIPTiDe transcriptome contextualization without exchange constraints are not significantly

different from those where media condition was set a priori (p-value> 0.05). The gray check denotes that the max

growth constraint is inherently integrated into the RIPTiDe workflow. Significant differences evaluated by

PERMANOVA. (B) Comparison of metabolic reactions included among RIPTiDe-contextualized transcriptomes with

iJO1366. The majority of reactions (71.5%) are conserved across models within a central set of pathways. All exchange

reaction bounds set ±1000 prior to contextualization. (C) Comparison of importance (essentiality) for conserved genes

across pruned RIPTiDe models. 105 core essential genes were identified across all groups (S3 Table). Hierarchical

clustering reveals context-specific pathway essentially, labeled across the bottom axis, based on the environment in

which the bacterium is growing. All exchanges set to ±1000 prior to contextualization.

https://doi.org/10.1371/journal.pcbi.1007099.g003
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improbable. As an additional finding, the median flux values predicted by RIPTiDe were

within realistic ranges for rates of metabolite import and not nearing the arbitrary high bounds

(±1000) as was the case with GIMME and CORDA-produced models. These results collec-

tively indicated that RIPTiDe is also able to approximate the media condition from which the

transcriptome was collected. This feature will likely be especially useful when growth condi-

tions are much more difficult to quantify, as in environmental samples or in vivo.

Context-specific differences in Escherichia coli biology uncovered by

RIPTiDe

We next performed RIPTiDe-based analyses of iJO1366, utilizing all three transcriptomic data-

sets described previously. As a standard of comparison, we also created a simulated transcrip-

tome where all transcript abundances were identical, forcing RIPTiDe to assign maximum

importance to all reactions and establish the most “economic” overall flux distribution that

achieves maximum growth (referred to as Maximum Parsimony), and also constrained to

achieve at least 80% of the optimal objective function value. We first assessed the impact that

each transcriptome had on the components of each model created by RIPTiDe. Different

topologies of reaction inclusion were found among each of the contextualized models; how-

ever none were completely unique and a core set of metabolic reactions were necessary for

optimal growth across all conditions (347 reactions; Fig 3B). The next largest fraction of over-

lap was between those models generated using transcriptomes from E. coli grown in M9 mini-

mal media (aerobic & anaerobic), which supported that RIPTiDe was able to identify general

biological trends that are conserved between similar media conditions. Interestingly, the next

largest group was the intersection between Maximum Parsimony and LB rich media, which

may reflect that growth in an environment with surplus growth nutrients is partially analogous

to the artificial state of minimal cellular investment. These distinctions in network topology

were further crystallized by conditional gene essentiality between the RIPTiDe-contextualized

models (necessary for at least 1% of optimum growth). It is important to note that genes found

to be essential during these analyses do not necessarily correspond with survival of E. coli, only

that these genes may be critical to the optimal metabolic strategy under the associated condi-

tions [55]. Future work may seek to elucidate the individual contribution of these genes to

overall metabolic strategies across respective media conditions. Although 105 genes were

essential all four contextualized models, in addition to the 152 essential genes in the uncontex-

tualized GENRE that were also essential in all contextualized models (S5 Table), those genes

that were context-specific often related to pathways of biological significance to their respec-

tive media conditions (Fig 3C). As a corollary to creating a smaller metabolic network than

those using transcriptomes contextualized by RIPTiDe (by an average of 9%), fewer genes

were distinctly essential in the model resulting from Maximum Parsimony (5 genes) compared

to any of the RIPTiDe-contextualized in vitro transcriptomes (8, 15, and 20 genes respectively;

S5 Table). Interestingly, the contextualized models on average shared larger ratios of compo-

nents (approximately 7% reactions) with each other than with Maximum Parsimony, support-

ing that RIPTiDe selects more distinct patterns of metabolism compared to Maximum

Parsimony alone (Fig 3B). We also calculated the relative doubling time for each of the contex-

tualized models from the objective values associated with the biomass objective function (S1

Fig) [56]. As expected, the base model with all open exchanges and no additional constraints

displayed the fastest doubling time. However, the growth rates for models associated with in
vitro transcriptomic data each decrease in the expected order reflecting experimentally mea-

sured results [51,57]; LB (aerobic)!M9+glucose (aerobic)!M9+glucose (anaerobic). These

results collectively suggested that the RIPTiDe-contextualized GENREs not only topologically
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reflected known biological trends, but also phenotypically mimicked experimentally measured

behaviors.

We subsequently focused our analysis on assessing known differences in core metabolism

across transcriptomes in RIPTiDe-contextualized models. Growth conditions are known to

affect which forms of metabolism are possible or favored at a given time, driving the cell to uti-

lize alternative pathways for replenishing its cellular currency. One such anabolic circuit in

Enterobacteriaceae is the small transhydrogenase pathway which consists of two distinct

enzymes, contributing to NADPH homeostasis within the cell [58]. It has been previously

demonstrated in E. coli str. K-12 that transhydrogenase functionality is critical for normal

growth in M9 minimal media, but dispensable in LB rich media [59]. Strikingly, the RIPTiDe-

contextualized model in aerobic M9 minimal media indeed obtained the majority of cellular

NADPH from this mechanism (Fig 4A). Alternatively, both gene-associated reactions were

pruned when the LB media-associated transcriptome was integrated with RIPTiDe. Instead in

rich media, the contextualized model generated the bulk of its NADPH via glycerol-3-phos-

phate dehydrogenase (Fig 4B). This enzyme is a major contributor to the bacterial electron

Fig 4. Cellular sources of NADPH in RIPTiDe contextualized models reflect known biological differences in E.

coli across media conditions. Shown in each panel is reaction pruning of the small transhydrogenase circuit found in

E. coli, and flux sampling results of NADPH sources from RIPTiDe using the iJO1366 GENRE with contextualized

transcriptomic abundances from E. coli K-12 MG1655 grown in (A) M9+glucose minimal media, and (B) LB rich

media. This mechanism for restoring NADPH balance is known to be essential for E. coli growth in M9 minimal

media but dispensable in LB, which is correctly selected by the unsupervised network pruning from RIPTiDe.

Significant difference in flux levels determined with Wilcoxon signed-rank test (p-value<< 0.001); pathway maps

generated using Escher [77].

https://doi.org/10.1371/journal.pcbi.1007099.g004
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transport chain and known to be active in E. coli during fermentation and growth in aerobic

LB broth [54,60]. Importantly we found that pntA and pntB, the genes for NADP transhydro-

genase subunits, were significantly upregulated in M9 minimal media and downregulated in

rich media (S5 Table). Alternatively, glycerol-3-phosphate dehydrogenase is transcribed rela-

tively evenly in both conditions but contributes to a parsimonious flux solution. This result

reinforced that RIPTiDe has the ability to correctly deviate from the most parsimonious flux

states when sufficient evidence is presented. These combined findings signified that RIPTiDe

is able to capture previously measured, context-specific behaviors with only transcriptomic

characterization and no manipulation of in silico media conditions.

Contextualization of in vivo metatranscriptomic data reflects host-

associated metabolism

Finally, we sought to test the utility of RIPTiDe for capturing metabolic behavior of bacteria

from within host-associated communities of microorganisms. Computational analysis of a dis-

crete bacterial species within a complex environment as a member of a larger microbial com-

munity has been historically difficult [61]. To address this problem, we utilized in vivo
metatranscriptomic abundance data collected from the cecum of wildtype C57Bl6 mice. These

data were chosen because the specific antibiotic pretreatment (intraperitoneal injection of clin-

damycin) resulted in a bacterial community composed of>90% E. coli [8]. To begin the analy-

sis, we first made certain that the in vivo transcript abundance distribution reflected the same

negative binomial type as those derived from in vitro transcriptomes mapped to the same E.

coli K-12 MG1655 genome (Fig 5A). This result demonstrated that with sufficient sequencing

depth, a species with a GENRE may be analyzed with RIPTiDe using data collected from

among a diverse collection of microbes. After contextualization of this data, the context-spe-

cific flux values during sampling were correlated with assigned linear coefficients based on

transcript abundances (Fig 5A & S2 Fig). This result supported that the transcriptomic data

was indeed informative, but not overly deterministic, of optimal metabolic states through RIP-

TiDe. We then assessed how distinctive the flux distributions were of those metabolic reactions

which were shared between context-specific models. Cross-referencing each contextualized

model to identify shared reactions, we then performed principle component analysis using

Bray-Curtis dissimilarity for those flux samples corresponding with this core metabolic sub-

network (Fig 5B). This analysis revealed not only significant differences between all of the met-

abolic profiles identified using the transcriptomic data from E. coli across the four conditions

(p-value< 0.001), but more specifically between those bacteria grown in M9 minimal media

and those found using LB rich media or in vivo transcriptomes (p-value << 0.001). These

results implied distinct metabolic strategies necessary for growth during resource scarcity or

surplus, and these patterns were captured by RIPTiDe. Although similar, no group of flux dis-

tributions entirely overlapped another and indicated that although numerous reactions and

metabolites are shared between all context-specific models, they are utilized significantly dif-

ferently to manage growth across media conditions and supported differential metabolism is

likely necessary to cope with distinct environments.

Next, we contrasted the RIPTiDe models generated using in vivo or LB rich media tran-

scriptomes as they were more similar during unsupervised learning analysis. Aside from one

environment being highly aerobic and the other largely anaerobic, previous research on E. coli
physiology during growth in liquid LB concluded that the bacterium utilizes amino acids that

are simple to metabolize for growth early on, then switches to other substrates in a diauxic-like

growth pattern. LB broth has also been shown to have only modest levels of usable carbohy-

drate growth substrates, increasing the importance of amino acid catabolism for E. coli [51].
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Additionally, in vivo amino acids and simple sugars are contested resources in the cecum as

the majority are already absorbed by the host or used by other microbes upstream in the GI

tract, making these growth conditions extremely different [62]. As an analogy to differential

growth substrates, we looked to assess the presence of context-specific exchange reactions. We

identified 4 exchange reactions that were present in the LB-associated model but not in vivo,

and 5 of these were peptides or peptide conjugates (Fig 5C). Carbohydrate growth substrates

have been demonstrated to be at very low concentrations in LB media. Additionally, E. coli has

also been shown to preferentially utilize amino acids to generate energy during early exponen-

tial phase [51]. Indeed, upon assessing the measured changes in the in vivo concentrations of

the highlighted metabolites they were reduced in the context where E. coli dominated the envi-

ronment, possibly due to consumption by the microbe (S2 Fig). Additionally, the exchange for

glucose-6-phosphate was also only found in in vivo-contextualized models, reinforcing that

carbohydrates may be less available for growth by E. coli compared to amino acid substrates in

LB media [51]. Continuing this analysis now with shared intracellular reactions we utilized

AUC-Random Forest [63] on the sampled flux distributions for each reaction to determine

those metabolic functionalities that most distinguish the two models (S4 Fig). Among other

Fig 5. RIPTiDe reveals differential host-associated, metabolism utilizing in vivo metatranscriptomic data.

Transcriptomic reads attributable to E. coli were extracted from a metatranscriptomic dataset sequenced from the

cecum of mice in which E. coli is the most highly abundant community member [8]. (A) In vivo transcript abundance

of reads recruited to the E. coli K-12 MG-1655 genome (left y-axis) and the weights assigned by RIPTiDe to the

associated metabolic reactions during each step (right y-axis). Metrics listed at the top of the plotting area reflect the

resultant context-specific model compared to the complete iJO1366 model. (B) PCoA ordination of Bray-Curtis

dissimilarities between flux distributions among reactions of each contextualized iJO1366 model either from in vivo or

LB rich media (aerobic, in vitro) conditions. Significance was calculated by PERMANOVA. (C) Metabolite substrates

of exchange reactions exclusive to the contextualized models shown. Inverse, normalized flux was calculated by

dividing each flux sample by the associated flux through biomass in the same distribution, then multiplied by the

overall median flux through biomass across all conditions analyzed. Median and interquartile ranges are displayed.

https://doi.org/10.1371/journal.pcbi.1007099.g005
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findings, machine learning revealed consistent differences in flux ranges for both flavodoxin

and thioredoxin reductases in aerobic LB culture, but not in vivo. These enzymes are impor-

tant for dealing with oxidative stress which would be much more prevalent in the broth culture

than in the mostly anoxic environment of the mammalian gut [64]. Putrescine transport also

distinguishes in vitro and in vivo flux levels, which can be converted to succinate and may be

an adaptation for survival in the gut where polyamines (like putrescine) are at elevated concen-

trations [65]. Altogether, our results support that RIPTiDe is also a strong platform for the

analysis of bacterial GENRE behavior in the context of complex microbial communities

through the use of metatranscriptomic data.

Conclusions

In order to survive in a given environment, an organism must express the appropriate forms

of metabolism to cope with changing conditions. Production of transcript and protein is meta-

bolically expensive, and over-production likely puts the cell at risk if further perturbation is

placed on the system [66]. Although recent findings suggest that levels of transcript for a given

enzyme product do not always directly correlate with the amount of functional protein present

in the cell at a given time [33], these values may be considered a signature of cellular “invest-

ment” and therefore may still be useful in interrogation of metabolism. Furthermore, under-

standing the quantity of even a small number of functional enzymes remains extremely

challenging, which negatively impacts our ability to grasp which and why resources are used

by the cell [67]. We should then consider transcriptomic abundance data as signatures of cellu-

lar energy expenditure where high transcript levels for a particular gene are an indication of

large cellular investment related to that particular function, but are not particularly determin-

istic of the associated phenotype. Parsimonious Flux Balance Analysis approaches the idea of

maximizing cellular economy, and we have built on this idea by employing RNA-Seq data to

inform where the cell is most likely spending its energy.

We have demonstrated empirically that our algorithm correctly calculated both in vitro and

in vivo metabolic phenotypes with reasonably high accuracy. In addition to these predictions,

our method does not require prior knowledge of active metabolic subnetworks which can pre-

clude work with understudied or uncultured species that cannot or have not been grown or

characterized in isolation. Furthermore, the ability to accurately capture the context-specific

metabolism of bacteria when media conditions are not easily defined will be an important

component for the discovery of metabolic behaviors of microbes in complex environments or

novel host-microbe metabolic interactions. Some possible limitations of RIPTiDe do exist

however. First, as RIPTiDe relies on the distribution associated with shotgun transcriptomic

sequencing, it is less suited for other types of omic data in its current form [68]. RNA-Seq

reads are easily attributable to single species within the microbiota due to strict genomic map-

ping techniques and are measured within a single sequencing assay, however with sufficient

consideration to reaction weights given other data types RIPTiDe’s functionality could be

expanded. Second, by condensing to such a small metabolic network “solution space”, the

models generated by RIPTiDe are meant to represent the most probable context-specific

“snapshot” of likely metabolism. To counteract potential overfitting to a single metabolic state

for more generalizable downstream models, we created options for manually setting a maxi-

mum weight that coefficients are allowed as well as providing lists of core functionality that

must remain in the context-specific model created by RIPTiDe. In spite of these concerns, we

have shown this algorithm to be a strong approach for contextualization of genome-scale met-

abolic network reconstructions for both in vitro and in vivo conditions, producing models that

closely mirror known biological phenotypes. Additionally, RIPTiDe run time scales linearly
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with GENRE size and compartmentalization (S3B Fig), demonstrating that this technique may

also prove effective for generating tissue-specific models with GENREs from larger eukaryotes.

The implementation of RIPTiDe rewards divergence from the most numerically parsimonious

state to one that is more reflective of cellular investment, and in turn may be more illustrative

of in situ biology. This approach also allows for inferences to be made about substrate prefer-

ences or utilization, even in the context of unknown or highly enriched media conditions. In

summary, RIPTiDe approaches transcriptomic data integration uniquely from previous tech-

niques and provides a potentially more biologically relevant platform for considering the cellu-

lar behavior in complex extracellular metabolic environments.

Methods

Parsimonious flux balance analysis adaptation

RIPTiDe was implemented within COBRApy [69] and is freely available with installation instruc-

tions at https://github.com/mjenior/riptide. RIPTiDe utilizes exclusively linear programming (LP)

techniques, avoiding computational demand brought on by mixed integer linear programming

(MILP) approaches and making it compatible with all popular solvers (GLPK was used in this

study). Optimal flux through the objective function was set as a constraint with a 20% range of

allowed variation (based on 80% fraction of optimal objective function value). Following sensitiv-

ity testing, this level was found to result in models which best achieved high growth rates while

reaching acceptable levels of correlation with input transcriptomes (S1 Table).

Linear coefficient assignment

As previously described, remaining reactions were then assigned a linear coefficient based on

the user provided transcriptomic abundance data [70]. An option has also been integrated to

differentially penalize reactions where multiple gene products are required for a reaction to

proceed and discordant transcript abundances are observed based on GPR rules. In order to

illustrate this difference, we repeated this analysis with and without GPR consideration (S6

Table). The base implementation of RIPTiDe utilizes the maximum transcription abundance

level among genes encoding for a single reaction, however the ability to pool overall transcript

for all genes contributing to a reaction has also been added.

gw ¼
Tg

Tmax

rwsampling ¼ maxgw8g 2 GPR

rwpruning ¼ ðmingwþmaxgwÞ � rwsampling

For reaction weight gw (linear coefficient) assignment of gene g, the reads-per-million nor-

malized transcript abundance of gene Tg within the sorted (smallest to largest) transcript abun-

dance distribution is divided by the largest abundance Tmax this distribution. These gw values

are then assigned to their corresponding reactions to generate a distribution of linear coeffi-

cients rwsampling and the maximum weight among reactions in each gene reaction rule (GPR)

is assigned to all associated reactions. The sum of the minimum and maximum weights within

gw is calculated and then the inverse weight is determined based on the weight associated with

reaction r in rwsampling, creating a second distribution of reaction weights rwpruning.

min
Xr

virrev � rwpruning
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s:t:vobjective ¼ maxvobjective � f

Sirrev � virrev ¼ 0

0 � virrev � vmax

As in parsimonious-FBA, each reversible reaction is separated into individual forward and

reverse reactions virrev. Linear coefficients wr for each vector can now be integrated and an

objective function is then defined to minimize that total of flux across the entire model. These

steps are all performed subject to a lower bound on the biomass flux (vobjective, lb) set to a frac-

tion (f, default is 0.8) of the previously identified maximum biomass flux (max vobjective) and

mass-balance constraints. Optimization (standard FBA) is performed and reactions found in

the solution to have<1x10-6 flux are then removed from the model (the threshold is adjustable

by the user). The model is then checked for orphaned genes and metabolites, which are subse-

quently removed as well.

Flux sampling

In order to adequately explore intracellular flux through the remaining reactions, previous

coefficients are reassigned to remaining reactions using the rwsampling linear coefficient assign-

ments. The overall sum of flux is then maximized. The assembly of the large function of

weighted reaction fluxes is performed with symengine (https://github.com/symengine/

symengine):

max
Xr

rirrev � rwsampling

s:t:vobjective ¼ maxvobjective � f

Sirrev � virrev ¼ 0

0 � virrev � vmax

Coefficients (rwsampling) are then assigned to the corresponding irreversible reactions virrev.
Flux sampling was then performed with the Gapsplit sampler using standard parameters and

500 samples (https://github.com/jensenlab/gapsplit) [41]. Flux variability analysis for the con-

strained models is also performed to establish flux ranges for each reaction [71]. An overall

concordance is then calculated by finding the Spearman correlation coefficient and associated

p-value between median absolute flux and their associated linear coefficient during flux sam-

pling for all reactions (S1 Table and S3 Fig).

Example model construction

The example model used for initial RIPTiDe testing consists of 16 reactions (7 exchanges, 7

transporters, and 2 metabolic) and 14 metabolites across 2 compartments (extracellular and

intracellular). The intracellular demand reaction for ATP generation was utilized as the objec-

tive. Simulated transcriptomes are shown in S2 Table and an SBML file (example_GENRE.

sbml) for the model is also available at https://github.com/mjenior/Jenior_RIPTiDe_

PLOSCompBio_2019github.com/csbl/Jenior_RIPTiDe_2020.
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Data processing

Sequenceread processing was performed as described previously in [3,8]. In summary, raw

cDNA reads were quality-trimmed with Sickle [72] at ≧Q30 and subsequently mapped to

Escherichia coli K-12 MG1655 genes using Bowtie2 [73]. MarkDuplicates was then used to

remove optical and PCR duplicates (broadinstitute.github.io/picard/). The remaining map-

pings were converted to idxstats format using SAMtools [74], and the read counts per gene

were tabulated. Discordant pair mappings were discarded, and counts were then normalized

to read length and gene length to give a per-base report of gene coverage. If replicate sequenc-

ing was performed, median transcription values for each gene were then calculated. The data

were then converted to a python dictionary of gene keys and associated numeric transcript

abundances for use with RIPTiDe. In vivo untargeted metabolomic data were generated for a

previous study [8]. The current version of iJO1366 was accessed from the BiGG Model Data-

base [75].

https://github.com/SchlossLab/Jenior_Metatranscriptomics_mSphere_2018/tree/lab_

computer/data/metabolome. https://paperpile.com/c/vZ3H0e/ECBS

Previous transcriptomic integration algorithms

GIMME [11], iMAT [12], MBA [20], CORDA [13], and RegrEx [27] were all implemented

using the COBRA toolbox V3 in MATLAB (v9.6; https://opencobra.github.io/cobratoolbox/

stable/) using the specified thresholds. For both MBA and RegrEx, a flux consistent model was

used based on the requirements for the integration algorithms. CORDA (v0.4.2) and RegRx

were downloaded and installed on 12-1-2019.

Statistical methods

All statistical analysis was performed using R (v3.2.0). Significant differences between flux dis-

tributions and metabolite concentrations were determined by Wilcoxon signed-rank test with

Benjamini-Hochberg correction. Principle Component Analysis and Non-Metric Multidi-

mensional Scaling of sampled flux distributions was performed using the vegan package [76].

Machine-learning was accomplished with the implementation of AUC-Random Forest in R

[63].

Software availability

As previously stated, RIPTiDe is freely available for download at https://github.com/mjenior/

riptide and also as a full package (v2.8.0) from the Python Package Index (https://pypi.org/

project/riptide/). Complete analysis associated with this study is available in a Jupyter note-

book hosted on a GitHub repository along with all other data and code associated with this

study (https://github.com/mjenior/Jenior_RIPTiDe_PLOSCompBio_2019https://github.com/

csbl/Jenior_RIPTiDe_2020).

Supporting information

S1 Fig. In silico growth predictions for E. coli K-12 MG1655 supports the utility of RIP-

TiDe. Computed doubling time from biomass reaction objective value following FBA analysis

of each contextualized model (all open exchange reactions). Result from the unconstrained

model is listed along the top axis. Biomass objective flux was constrained to ≧80% of the opti-

mal flux value prior to identifying the state of Maximum Parsimony as it is during RIPTiDe

contextualization.

(TIF)
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S2 Fig. Relative concentrations of metabolites highlighted during in vivo analysis of

iJO1366 with RIPTiDe. Concentrations quantified with liquid chromatography mass-spec-

trometry previously [3]. Comparing the metabolite content in cecal content of mice pretreated

with an intraperitoneal injection of clindamycin against untreated control animals. (A) Valine,

(B) Deoxyuridine, (C) and Methionine. Significant differences were determined by Wilcoxon

signed-rank test.

(TIF)

S3 Fig. RIPTiDe performance metrics. (A) Spearman correlation results between RIPTiDe

linear coefficients from flux sampling and median absolute values from sampled flux ranges

from in vivo transcriptome. Assigned linear coefficients are significantly correlated with their

associated absolute reaction activities. Correlation results are referred to as concordance in the

output of RIPTiDe. (B) Run time in seconds with increasing metabolic network reconstruc-

tion size. Using RIPTiDe, each GENRE (11 total) was integrated with a simulated transcrip-

tome of 1.0 transcript for all genes. Multicellular eukaryotic models include mouse

(iMM1415), golden hamster (iCHOv1), and human (Recon3D). The relationship between

model size and RIPTiDe run time fits a linear model (p-value = 0.002). These analyses were

completed using an Intel Core i7-7Y75 CPU @ 1.30GHz × 4 processor and 15.4 GB of mem-

ory.

(TIF)

S4 Fig. Results from Random Forest machine learning to identify the most differentiating

metabolic reactions between models. Mean Decrease Accuracy for an optimal subset of 20

reactions determined by AUC Random Forest that flux levels differentiate the distributions

from shared reactions between in vivo and LB rich media RIPTiDe-contextualized transcrip-

tomes of E. coli.
(TIF)

S5 Fig. Flux samples from context-specific models with RIPTiDe vs exchange flux media

constraints follow the same trends across all conditions tested. NMDS ordination of Bray-

Curtis dissimilarities between flux samples for each version of iJO1366 in (A) M9+glucose

anaerobic and (B) LB aerobic. Significant differences between constrained objective flux only

and all other groups determined by PERMANOVA. The dissimilarity of RIPTiDe-generated

flux samples in these analyses highlight context-specific metabolic patterns that were unob-

servable through other methods.

(TIF)

S1 Table. Sensitivity testing for minimum objective threshold percentage.

(XLSX)

S2 Table. Structure and analysis for example metabolic reconstruction.

(XLSX)

S3 Table. Parameters and results from previous transcriptomic integration algorithms.

(XLSX)

S4 Table. Bray-Curtis dissimilarities between flux distributions from differentially con-

strained versions of iJO1366.

(XLSX)

S5 Table. Network topology and gene essentiality across RIPTiDe contextualized models.

(XLSX)
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S6 Table. Comparison of RIPTiDe Models Resulting from LB-media Transcriptome Con-

textualization With and Without Consideration for Gene-Protein Reaction Rules.

(XLSX)

S7 Table. Growth Substrate Predictions Across Transcriptome Integration Algorithms.

(XLSX)
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10. Magnúsdóttir S, Thiele I. Modeling metabolism of the human gut microbiome. Curr Opin Biotechnol.

2018; 51: 90–96. https://doi.org/10.1016/j.copbio.2017.12.005 PMID: 29258014

11. Becker SA, Palsson BO. Context-Specific Metabolic Networks Are Consistent with Experiments. PLoS

Comput Biol. 2008; 4: e1000082. https://doi.org/10.1371/journal.pcbi.1000082 PMID: 18483554

12. Zur H, Ruppin E, Shlomi T. iMAT: an integrative metabolic analysis tool. Bioinformatics. 2010; 26:

3140–3142. https://doi.org/10.1093/bioinformatics/btq602 PMID: 21081510

13. Schultz A, Qutub AA. Reconstruction of Tissue-Specific Metabolic Networks Using CORDA. PLoS

Comput Biol. 2016; 12: e1004808. https://doi.org/10.1371/journal.pcbi.1004808 PMID: 26942765

14. Cho JS, Gu C, Han TH, Ryu JY, Lee SY. Reconstruction of context-specific genome-scale metabolic

models using multiomics data to study metabolic rewiring. Current Opinion in Systems Biology.

2019. pp. 1–11. https://doi.org/10.1016/j.coisb.2019.01.001

15. Chandrasekaran S, Price ND. Probabilistic integrative modeling of genome-scale metabolic and regula-

tory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2010; 107:

17845–17850. https://doi.org/10.1073/pnas.1005139107 PMID: 20876091

16. Jensen PA, Papin JA. Functional integration of a metabolic network model and expression data without

arbitrary thresholding. Bioinformatics. 2011; 27: 541–547. https://doi.org/10.1093/bioinformatics/btq702

PMID: 21172910

17. van Berlo RJP, de Ridder D, Daran J-M, Daran-Lapujade PAS, Teusink B, Reinders MJT. Predicting

metabolic fluxes using gene expression differences as constraints. IEEE/ACM Trans Comput Biol Bioin-

form. 2011; 8: 206–216. https://doi.org/10.1109/TCBB.2009.55 PMID: 21071808
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