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Abstract

Background: DNA copy number alterations are frequently observed in ovarian cancer, but it
remains a challenge to identify the most relevant alterations and the specific causal genes in those
regions.

Methods: We obtained high-resolution 500K SNP array data for 52 ovarian tumors and identified
the most statistically significant minimal genomic regions with the most prevalent and highest-level
copy number alterations (recurrent CNAs). Within a region of recurrent CNA, comparison of
expression levels in tumors with a given CNA to tumors lacking that CNA and to whole normal
ovary samples was used to select genes with CNA-specific expression patterns. A public
expression array data set of laser capture micro-dissected (LCM) non-malignant fallopian tube
epithelia and LCM ovarian serous adenocarcinoma was used to evaluate the effect of cell-type
mixture biases.

Results: Fourteen recurrent deletions were detected on chromosomes 4, 6, 9, 12, 13, 15, 16, 17,
I8, 22 and most prevalently on X and 8. Copy number and expression data suggest several
apoptosis mediators as candidate drivers of the 8p deletions. Sixteen recurrent gains were
identified on chromosomes |, 2, 3, 5, 8, 10, 12, I5, 17, 19, and 20, with the most prevalent gains
localized to 8q and 3q. Within the 8q amplicon, PVT/, but not MYC, was strongly over-expressed
relative to tumors lacking this CNA and showed over-expression relative to normal ovary.
Likewise, the cell polarity regulators PRKCI and ECT2 were identified as putative drivers of two
distinct amplicons on 3q. Co-occurrence analyses suggested potential synergistic or antagonistic
relationships between recurrent CNAs. Genes within regions of recurrent CNA showed an
enrichment of Cancer Census genes, particularly when filtered for CNA-specific expression.

Conclusion: These analyses provide detailed views of ovarian cancer genomic changes and
highlight the benefits of using multiple reference sample types for the evaluation of CNA-specific
expression changes.

Page 1 of 15

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19419571
http://www.biomedcentral.com/1755-8794/2/21
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Medical Genomics 2009, 2:21

Background

Ovarian cancer is the fifth most common cancer among
women and leading cause of death from gynecological
cancers in the United States [1]. Treatment options
include surgery, chemotherapy, and occasionally radia-
tion therapy. To develop targeted therapies, which have
the potential to be more effective and less toxic, candidate
target genes must be identified. Trastuzumab, an antibody
to HER?2 for breast cancer therapy, provides a good exam-
ple of an amplified cancer gene as a specific therapeutic
target. As somatic DNA copy number alterations (CNAs)
can indicate the presence of genes involved in tumorigen-
esis, studies of DNA instability in ovarian cancers could
potentially lead to identification of causal genes and thus
therapeutic targets. Indeed, several groups have used
genomic technologies to systematically survey copy
number changes in ovarian cancer [2-11].

Array comparative genomic hybridization (CGH) tech-
nology is frequently used for measuring copy number
gains or losses. Early studies used Bacterial Artificial Chro-
mosome arrays with resolutions of approximately 1 Mbp
[2-4,6,8,9,11]. The Affymetrix 10K single nucleotide poly-
morphism (SNP) arrays, with the average resolution of
210 kb, have also been used to measure copy number
changes in ovarian serous carcinoma [7,10]. Recently, the
Affymetrix 500K SNP Chip has been applied to further
survey the prevalence of copy number changes across the
genome, focusing on rare micro-deletions [5]. Recurrent
patterns of DNA amplification in regions including 3q26,
8q24, 12p13, and 20q13 were detected in multiple stud-
ies [3,5,6,9,11] (summarized in Additional file 1).

However, significant challenges remain in selecting the
most important CNAs and in distinguishing driver genes
from other passengers or bystanders. This is reminiscent
of difficulties encountered in cancer genome re-sequenc-
ing projects where the discovery of driver somatic muta-
tions is often complicated by the preponderance of
passenger mutations [12-15]. Likewise, genes exhibiting
copy number alterations are not necessarily functionally
relevant in oncogenesis. In fact, due to the large size of
most tumor amplicons, the vast majority of genes located
in a given amplicon are likely passenger genes. The mini-
mal region of overlap in an altered region can suggest a set
of potential driver genes, but these regions can often span
several megabase pairs. Currently, most studies have
relied heavily on prior biological knowledge to select
causal genes in amplified regions, which can potentially
lead to inconsistency or domain-knowledge bias. For
example, while the PIK3CA gene was selected from the
3q26 amplicon as the oncogene for subsequent func-
tional analysis [16], the PRKCI gene from the same region
was proposed by a different group to be the oncogene in
ovarian cancer [17]. While many known or putative onco-
genes were credited as the driver genes, some less charac-

http://www.biomedcentral.com/1755-8794/2/21

terized genes may have been overlooked. A systematic,
unbiased approach should help find cancer-driving genes
in ovarian cancer.

We have applied Affymetrix 500K SNP Chips to survey
and compare copy number alterations (CNAs) in fresh-
frozen ovarian tumor samples, of several subtypes, from
52 patients. Five additional samples were available from
four patients allowing a comparison of CNAs from pri-
mary and metastatic samples as well as those in metastatic
samples from different sites. To distinguish important
changes from random CNAs, we have applied a statistical
method (GISTIC: Genomic Identification of Significant
Targets in Cancer) [18] that considers both the frequency
and degree of copy number gains. This filtering leads to a
relatively small set of genomic regions that reach statisti-
cal significance. To further evaluate the importance of
genes in these regions to oncogenesis, we profiled the
expression patterns of these tumors and whole ovary nor-
mal samples with Affymetrix U133A and B chips, filtering
out genes with expression patterns that were inconsistent
with their copy number. Combining copy number and
expression data has been successful in other indications
[19-21]. Lastly, as the ovarian surface epithelia (OSE) that
are thought to give rise to the epithelial subtypes of ovar-
ian cancer comprise a small percentage of the ovary [22],
we also assessed the cancer-specific expression differences
of genes in CNA regions using a public data set
(GSE10971) consisting of Laser Capture Micro-dissected
(LCM) normal fallopian epithelia and LCM serous aden-
ocarcinoma.

Methods

Sample Information and SNP Array Analysis

Fifty-seven ovarian tumor samples from 52 patients were
selected for analysis (Source: GenelLogic, Inc., Gaithers-
burg, MD). These tumors include 36 serous adenocarcino-
mas, 9 mullerian mixed tumors, 4 carcinomas of
unspecified type, 3 clear cell carcinomas, 2 endometriod
adenocarcinomas, 2 mucinous cystadenocarcinomas, and
1 granulosa cell tumor. All tumors were fresh frozen and
possessed greater than 75% neoplastic cell content.
Thirty-one samples were primary tumors while the
remaining 26 were metastasized tumors. Forty-eight
patients provided a single tumor. Matched primary and
metastatic samples were available from three patients, one
of which provided one primary and two metastatic sam-
ples. Two metastatic samples were available for one addi-
tional patient. Details regarding each sample, including
tumor subtype, stage, and primary/metastasis status are
available in Additional file 2.

For the Affymetrix 500K SNP array analysis genomic DNA
preparation and chip processing were performed accord-
ing to Affymetrix's recommended protocols. The array sig-
nal intensity CEL files were processed by dChip 2005 [23]
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(Build date Nov 30, 2005) using the PM/MM difference
model and invariant set normalization. Data for 48 nor-
mal samples were downloaded from the Affymetrix web-

site http://www.affymetrix.com and analyzed at the same

time.

The dChip-normalized signal intensities were converted
to log, ratios and segmented as follows. For each auto-
somal probeset, the log, tumor/normal ratio of each
tumor sample was calculated using the average intensity
for each probeset in the normal samples. For Chromo-
some X, the averages of the 20 female normal samples
were used. The log, ratios were centered to a median of
zero and segmented using GLAD [24]. For each resulting
genomic segment, GLAD estimates the mean, or inferred
log, ratio. DNA copy number was calculated as 2 (inferred log
ratio +1) The raw and normalized SNP array data (CEL files
and copy number) data are available at the NCBI GEO
website (GSE11960). Hierarchical clustering of log, ratio
scale copy number values was performed with the Eucli-
dean distance metric and complete linkage clustering.

Comparison of CNAs to Germline Polymorphisms

A summary of 1193 published germline Copy Number
Variants (CNVs) annotated as gain or loss was down-
loaded from version 5 of the Database of Genomic Vari-
ants [25].

Prioritizing Altered Genomic Regions

Outliers in the segmented data were removed by merging
segments of < 8 probesets with the neighboring segment
having the most similar inferred log ratio. Probesets with
an inferred log ratio > 0.3 or < -0.3 (~2.5 and ~1.6 copies)
were classified as gain and loss, respectively. These values
were selected to capture higher-confidence changes.
Regions of significant gains or losses were identified using
the GISTIC (Genomic Identification of Significant Targets
in Cancer) application, version 0.9.2 [18].

GISTIC is similar in spirit to the STAC [26], CMAR [27]
and MCR [28] methods in that it seeks to select the
genomic regions containing the most important copy
number alterations. GISTIC differs from these methods in
that it assesses the statistical significance of the combina-
tion of alteration frequency and magnitude across the
genome. In brief, GISTIC scores each probeset across the
genome for the frequency with which it shows copy gain,
times the average level of cancer/normal log, ratio for the
samples showing copy gain. The statistical significance of
each score is then determined by comparison to the distri-
bution of scores obtained from all permutations of the
data. Multiple hypothesis testing is accounted for using
the False Discovery Rate (FDR) Q-value statistic of Ben-
jamini and Hochberg [29] and a cutoff of 0.25 (25% FDR)
was used to select significant regions.
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The GISTIC application selects the significant independ-
ent peaks on each chromosome by following a method
called "Peel-Off". Peel-Off analyzes each peak on a chro-
mosome in decreasing order of significance. For each peak
it sets the log, ratio of all probes in individual aberrations
overlapping a more significant peak on the same chromo-
some to zero and then re-calculates the Q-value for the
remaining peaks using the original permutation-derived
null distribution G-scores. If a peak still meets the FDR
cutoff of 0.25 after all more significant peaks on the chro-
mosome have been peeled-off, it is reported in the final
list of GISTIC peaks.

GISTIC determines the boundaries of each peak by serially
removing one sample and repeating the analysis. The
boundaries are taken to be the outer bounds of the start
and end of the region across all iterations. Significant
regions were assessed to be "broad" if the width of the
GISTIC G-score peak at the level of significance (0.25
FDR) or half the maximal G-score for that peak spanned
more than half the chromosome. Peaks narrower than
this were judged to be "focal". DNA copy loss was ana-
lyzed in the same manner.

Expression Microarray Analyses

All 57 samples were assayed for mRNA abundance using
Affymetrix U133A and U133B microarrays. Affymetrix
MAS 5.0 signal method [30] intensities were scaled to a
mean of 500 (excluding the top and bottom 2% of val-
ues). For each gene, the probeset with the highest expres-
sion variance across cancer samples was selected unless
noted otherwise. As a basis of comparison, 76 whole
ovary samples from patients without ovarian cancer were
also assayed in the same manner.

Copy number associated gene expression changes were
assessed using a one-way ANOVA for each gene in each
GISTIC peak. This ANOVA compared the average expres-
sion level of a given gene in three groups of samples: 1)
cancer samples with the CNA in question, 2) cancer sam-
ples without the CNA in question, and 3) normal whole
ovary samples from patients without ovarian cancer. The
presence or absence of a CNA in a given sample was
assessed using the same copy number cutoffs used for the
GISTIC analysis. Following the fitting of the ANOVA, we
applied Dunnett's Test to evaluate potential expression
differences for the gene in question between groups 1 and
2 and between groups 1 and 3. Dunnett's test utilizes the
within-groups variance from the ANOVA for the gene in
question and accounts for the multiple tests for one gene.
The resulting P-values for the ANOVA and two post-hoc
comparisons were then separately corrected for multiple
testing across genes using the Benjamini and Hochberg
method [29]. Genes showing an FDR of < 5% for the
ANOVA and either of the post-hoc tests were considered
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to have "CNA-specific expression". The ANOVA was per-
formed using R and Dunnett's Test was performed using
the "multcomp" package for R http://cran.r-project.org.

An external expression data set was downloaded from
GEO [31] (GSE10971). Affymetrix U133 Plus 2.0 CEL
files were processed using the MAS 5.0 method [30].
Intensities were scaled to a mean of 500 (excluding the
top and bottom 2% of values). Twelve samples annotated
as laser capture micro-dissected (LCM) non-malignant
fallopian tube epithelium without BRCAI or BRCA2
mutations were selected. Eleven LCM high-grade serous
carcinoma samples were also selected after removing two
additional samples from these same patients. Partek 6.4
was used to analyze cancer-specific gene expression differ-
ences [32]. Batch removal was applied to remove minor
systematic differences between samples in this GEO data
set that were run on different dates. This method applies a
two-way ANOVA to each gene to estimate linear coeffi-
cients of expression variability due to sample batch and
cancer/normal variables. The significance of cancer-spe-
cific expression differences was obtained from an F-test of
the variability explained by the cancer/normal variable.
The resulting P-values were corrected for multiple testing
using the Benjamini and Hochberg method [29]. Signifi-
cant expression differences were defined as a FDR < 1%
and a cancer/normal ratio > 1.5 for gain or < 0.66 for loss.
A gene was judged to show significant expression change
if any probeset assigned to that gene was considered to be
significant. When comparing this LCM data set to our
own, we reduced potential difficulties related to microar-
ray platform differences by analyzing the data sets sepa-
rately and comparing them at the significant gene-list
level, rather than comparing their raw data directly.

Associations Among Prevalent Gains and Losses

The association between all pairs of the 30 genome
regions identified by GISTIC was calculated using Pear-
son's correlation. P-values for each test were corrected for
multiple testing using the Benjamini and Hochberg
method [29]. Significant pairs were selected using a FDR
cutoff of 0.25.

LOH Analysis

Genotypes were generated using the BRLMM method
(apt-probeset-genotype version 1.8.5 from the Affymetrix
Power Tools package). The HMM-based method imple-
mented in Partek 6.3b was used to detect LOH in each
sample using the default parameters.

Gene Set Analysis

The genes in the GISTIC peaks for gain and loss with CNA-
specific expression patterns were analyzed for the relative
abundance of the 364 genes listed in the Cancer Gene
Census [33] (downloaded 2-6-2009). Entrez Gene IDs
were used as the basis for matching genes and only genes
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represented by an Affymetrix U133A or U133B probeset
were considered. Fisher's Exact Test was used to test for a
positive association of Cancer Gene Census genes and
genes located within a GISTIC peak, relative to all genes.
Likewise Fisher's Exact Test was used to test for a positive
association of Cancer Gene Census genes and genes
located within a GISTIC peak showing a CNA-specific
expression pattern.

Pathway Analysis

Genes in the GISTIC peaks that showed CNA-specific
expression were overlaid onto a global molecular network
developed from information contained in the Ingenuity
knowledge base (Ingenuity Systems®, http://www.ingenu
ity.com). Networks of these genes were then algorithmi-
cally generated based on their connectivity. Pathways
Analysis also identified the pre-specified canonical path-
ways that were most over-represented in the data set.
Fisher's Exact test was used to calculate a P-value for the
association between the genes in the data set and the path-
way. The resulting P-values were corrected for multiple
testing using the Benjamini and Hochberg method [29].

Gene Locations

SNP Chip probesets were mapped to the genome, NCBI
assembly version 36, using annotation provided by the
Affymetrix web site http://www.affymetrix.com/products/
arrays/specific/500k.affx. Genes and Affymetrix expres-
sion probesets were localized on the genome by aligning
RefSeq sequences and probeset targets to the genome,
NCBI Version 36, using GMAP [34]. Cytoband and
miRNA locations, for the NCBI Version 36 of the genome,
were downloaded from the UCSC genome browser http:/
/www.genome.ucsc.edu.

Results

General characteristics of copy number alterations in
ovarian tumors

Data generated by profiling the 57 ovarian tumors were
processed for inferred copy number using the dChip [23]
and GLAD [24] methods. We first compared DNA copy
number profiles of ovarian cancers of different subtypes
from 52 distinct donors. While most of the samples are
serous adenocarcinomas, there are a smaller number of
tumors of other types, including clear cell carcinoma,
endometrioid adenocarcinoma, granulosa cell tumor, and
Mullerian mixed tumor (see Additional file 2). The most
distinct cluster revealed by hierarchical clustering is made
up of 15 samples that are predominantly primary tumors
of subtypes that are neither mullerian mixed tumor nor
serous adenocarcinoma (Fig. 1). These tumors are charac-
terized by a dearth of CNAs, with the exception of gains
on chromosome 8 in seven of these tumors. To control for
any visual bias caused by the copy number heatmap, we
compared the number of copy number breakpoints for
each sample (See Additional file 3). Despite the apparent
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global differences in CNA across subtypes, the number
and magnitude of gains and losses were not significantly
different (P-values > 0.1). Given the low number of sam-
ples from the more rare subtypes and the limited tumor
stage information for these samples, it is difficult to
attribute the similarity of these samples to stage or sub-
type. Outside the cluster of 15 samples with infrequent
CNAs, primary and metastatic samples were not distin-
guishable (Fig. 1).

Samples from different sites in the same patient display
similar CNA and expression profiles

To further evaluate the practicality of analyzing a mixed
collection of primary and metastatic samples, we then
examined whether different tumors from the same donors
would exhibit similar CNAs. The inferred DNA copy num-
bers of 9 tumors from 4 distinct donors were examined
using un-supervised hierarchical clustering analysis. It is
apparent that although different donors display distinct
patterns of DNA copy number gains and losses, tumors
from different sites of the same donor show remarkable
similarity and are clustered together (see Additional file
4). Such similarities apply to secondary tumors metasta-
sized to different sites, and to primary and metastasized
tumors in the same individual. These few samples also did
not reveal any statistically significant genes, after multiple
testing correction, in two-way ANOVAs testing for copy
number or expression differences between primary and
metastasized tumors controlling for patient ID. Therefore,
despite the fact that the different ovarian tumors were col-
lected from different sites, the genomic and expression
patterns remain largely the same. Strong similarities in
primary and metastatic CNA profiles have been reported
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before for ovarian cancer [35] and colorectal cancer [36].
For the subsequent analyses, we selected a single tumor
sample to represent each distinct donor (see Additional
file 2).

Cancer-specific aberrations are quantitatively different
than germline polymorphisms

In general, copy number changes we observed seem to
have features distinct from the copy number variants
(CNVs) recently reported to be present in the general pop-
ulation [25]. Notably, the copy number gains in ovarian
cancer tend to be considerably broader than CNVs in the
general population (P-value = 1.91e-94, two-sided t-test)
(see Additional file 5). The median length of genomic
regions with gain is 3.34 Mb in ovarian cancer, which is
larger than the median length of 20.4 kb in the CNVs.
Similarly, the regions of copy number loss in the ovarian
cancer samples are also significantly larger than those of
CNVs (see Additional file 5). More importantly, the distri-
bution of tumor-associated copy number alterations in
the genome is not uniform (Fig. 1), providing opportu-
nity to infer oncogenic events based on the recurrent
nature of such changes.

Defining minimal tumor amplicons with statistical
significance

Since numerous regions show some degree of copy
number alteration, it is important to assign statistical sig-
nificance to a given location. Selecting genome segments
with a log, ratio of < -0.3 and > 0.3 as "loss" and "gain",
respectively, we then applied the GISTIC algorithm [18] to
select the most statistically significant regions. For each
probed location across the genome GISTIC calculates a
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inferred copy number values across each sample are depicted. In the heatmap, red represents copy gain and blue represents
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"G-score" which is the fraction of samples showing gain at
that probeset multiplied by the average log, ratio for those
samples showing gain. The significance of each G-score is
assessed by comparison to a null-distribution of G-scores
arising from permutations of the log, ratios for all sam-
ples. The resulting P-value is then corrected for multiple
testing across all probesets to generate a Q-value. Copy
number loss is then analyzed in the same manner. The
utility of this algorithm has been demonstrated in analy-
ses of non-small cell lung cancer [37], glioblastoma [18],
and breast tumors [38].

Given the potential for the selection of different CNAs in
different ovarian cancer subtypes (Fig. 1), we elected to
focus our search for the most significant recurrent CNAs
on the 32 serous adenocarcinoma samples. Despite the
complexity of genomic profiles of individual tumors, the
plot of GISTIC-based Q-values reveals a relatively simple
pattern of amplification (Fig. 2a). Using an FDR cutoff of
25% as the threshold, we identified 16 distinct minimal
regions ("Gistic Peaks") of gain on chromosomes 1, 2, 3,
5, 8, 10, 12, 15, 17, 19, and 20 (see Additional file 6).
When expanded to the cytoband level, many of these
regions can be matched to regions previously reported
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(see Additional file 1). GISTIC analysis of all 52 samples
produced similar results with respect to the most signifi-
cant gain and loss peaks.

Prioritization of potential driver genes with CNA-specific
gene expression

To further facilitate the enrichment of driver genes in each
minimal amplicon, we compared the expression levels of
genes within the bounds of each GISTIC peak among
three groups of samples 1) tumors with the CNA in ques-
tion 2) tumors without that CNA and 3) a pool of normal
whole ovary samples. Genes showing significant expres-
sion differences among the three groups (1-way ANOVA)
and between either groups 1 and 2 or 1 and 3 were judged
to have significant "CNA-specific expression" (see Meth-
ods). While increased or decreased gene expression
accompanying DNA gain or loss does not necessarily indi-
cate functional significance, the lack of such a change
would suggest that a gene is likely a passenger gene. Inter-
estingly, only a small number of genes in the GISTIC peak
regions display CNA-specific expression patterns (Addi-
tional files 6, 7, 8). By making these multiple comparisons
we can avoid false-negatives that could arise due to other
cancer-specific mechanisms of expression dis-regulation
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Figure 2

Selection of Statistically Significant Recurrent Copy Number Alterations. a) Genomic Identification of Significant
Targets in Cancer (GISTIC) analysis of copy number gains was performed with 32 ovarian serous adenocarcinoma samples.
GISTIC calculates the false discovery rate corrected significance (Q-value) of the frequency of gain and the average copy
number for samples with gain at each probe position. Each point represents this Q-value for a SNP array probeset. Points are
proportionately spaced and arranged in genome order from | pter to Xqter. Vertical dashed lines represent chromosome
boundaries. b) GISTIC analysis of copy number losses, plotted as above. Gain and loss were specified as log,-transformed can-

cer/normal copy number ratios of > 0.3 and < -0.3, respectively.
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or differences in cell-type proportions in tumor and whole
ovary normal samples.

The whole ovary normal samples available in our data set
may not be optimal references. The epithelial portion of
the ovary, which is believed to give rise to ovarian serous
adenocaricinoma, comprises a small portion of the whole
ovary [22]. Therefore, we have cross-referenced our
expression findings to Laser Capture Micro-dissected
(LCM) ovarian serous adenocarcinoma and LCM normal
fallopian epithelia from a public data set (GSE10971), as
described in the following sections.

Enrichment for Cancer Census genes using copy number
and gene expression

Although individual driver genes cannot be definitively
determined in this study, we can estimate whether our
approach leads to the enrichment of known cancer genes.
All 364 genes in the Cancer Gene Census set [33] were
selected to represent known cancer genes. We did not
select only ovarian-cancer-specific genes as cancer genes
tend to be relevant to more than one tissue. We detected a
significant enrichment of Cancer Gene Census genes in
the GISTIC Peak regions (one-sided Fisher's Exact, P-value
= 4.06e-2, odds ratio 1.46). Selecting for only those genes
in the GISTIC Peak regions with CNA-specific expression
patterns showed an even higher degree of significance
(one-sided Fisher's Exact Test, P-value = 1.08e-3, odds
ratio 2.24).

GISTIC gain peaks contain a small number of over-
expressed genes

We examined several GISTIC peak regions in detail. The
most significant region of gain was 8q24 where 59% of
samples showed gain. This region contains only MYC,
PVT1, TMEM75 and a cluster of four microRNAs (Fig. 3).
In samples with this amplicon, MYC, PVT1 and TMEM75
do not show CNA-specific expression although the scores
for MYC are suggestive (ANOVA FDR 0.02, Cancer with
CNA vs. Cancer without CNA FDR 0.10, log, ratio 0.75).
Unexpectedly, in tumors with gain in this region, MYC is
expressed at a level slightly less than the level in normal
tissues (log, ratio -0.12). Data on 25 of the 32 serous ade-
nocarcinoma samples and 51 whole ovary normals from
the Affymetrix U133 Plus 2.0 array shows similar data for
MYC. However, this newer array offers a probeset with
probes distributed along the length of PVTI
(1558290_a_at). This probeset shows that PVTI is over-
expressed relative to non-amplified samples (2.5x) and to
normal (1.6x) (Fig. 3c). The LCM data did not show sig-
nificant expression difference between cancer and normal
samples for any gene at this locus.

The region 3q26.2 is the next most significant. It shows
gain slightly more often than 8q24 (63%), but at a lower
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level (2.91 copies among those showing gain relative to
3.21 copies, see Additional file 6). The most prominent
peak on this chromosome is located at 3q26.2, but an
interesting secondary peak can be observed at 3q26.31
(Fig. 4a). The first peak contains eight significantly over-
expressed genes, EVI1, MDS1, MYNN, TLOC1, GPR160,
PHC3, PRKCI, and SKIL. PRKCI has been shown to be a
target of amplification in ovarian cancer that contributes
to transformation in cooperation with mutant Ras in
addition to contributing to anchorage independent
growth [17]. These genes generally show dramatic up-reg-
ulation in samples with this amplicon, relative to normal
ovary samples, and less over-expression in cancer samples
with this amplicon relative to those without (Fig. 4d).
Interestingly, CLDN11 shows dramatic under-expression
in cancer, especially in samples with this amplicon. The
LCM data set shows over-expression of CLDN11, MYNN,
PRKCI, and SKIL in ovarian serous adenocarcinoma.

The 3q26.2 amplicon is adjacent to an interesting focal
amplification. This region contains 5 genes, of which only
TNFSF10, AADACL1 and ECT2 show over-expression in
tumors with this amplification relative to normal whole
ovary (Fig. 4e). A heatmap of aberrations on chromosome
3 (see Additional file 9) suggests that this adjacent peak
results from one focal, high-level amplification in one
sample in addition to frequent gain of a much wider
region of 3q. This may explain why it not classified as a
secondary significant peak by GISTIC's Peel-Off method
(see Methods). Interestingly, PIK3CA, which has been sug-
gested as an oncogene and driver of 3q gain in ovarian
cancer [16], is not within either peak, although it is
located in the shoulder region of the 3q26.2 peak. Gain of
PIK3CA is less prevalent (49%) than at the major 3q peak
in our samples (63%). The LCM data set shows significant
over-expression of ECT2 (FDR 5.00e-4, cancer/normal
ratio 1.88) and suggests over-expression of TNFSF10 (FDR
0.014, cancer/normal ratio 1.78).

GISTIC selects one significant peak on chromosome 20
(see Additional file 6). The most significant peak, at
20q13.12, spans a genomic region that shows gain in 28%
of samples and shows significant over-expression of EYA2,
PRKCBP1, and NCOA3 (Fig. 5b, e). Closer inspection of
the Q-values in this region reveals three narrow peaks (Fig.
5a), which is in line with previous findings of three cores
of amplification in this region [39]. The second region, at
20q13.12-q13.13, shows gain in 31% of samples and
spans 16 genes represented on the expression array (Fig.
5¢, f). Of these PARDGB, BCAS4, and KCNGI are
expressed greater than two-fold higher in cancer samples
with the amplification relative to normal (Fig. 5f). The
third peak, also gained in 32% of samples, contains three
genes represented on the expression array (Fig. 5d). Only
ZNF217, a putative driver of 20q amplification in breast
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Figure 3

Chromosome 8 Amplifications and Associated Expression Changes. a) GISTIC Q-values for gain on chromosome 8,
plotted as in Fig. 2. b) Close-up of the region of panel "a" indicated by vertical, red lines. The locations of all genes associated
with a RefSeq transcript or Affymetrix probeset are indicated in red. c) Expression ratios for genes in the genome region
depicted in panel "b" and represented on the UI33A and B arrays. The probeset with the highest variance in cancer samples
was selected for each gene. Red bars indicate the log, ratio of the mean value in tumor samples with copy gain of this gene and
the mean value in tumor samples without gain of this gene. Orange bars represent the log, ratio of the mean value in samples
with copy gain of this gene and the mean expression level in the normal whole ovary samples.

cancer [40] shows over-expression in cancer samples with
this amplification (Fig. 5g). A broader and less prevalent
(25%) peak containing AURKA is visible distal to this
region. AURKA showed a log, ratio of 0.95 in tumors with
AURKA gain relative to those without and a log, ratio of
1.43 in those tumors relative to normal whole ovary.
Inspection of a heatmap of this region (See Additional file
9) shows some independent support for these secondary
peaks although the focus of ZNF217 peak is formed by

one narrow, high-level aberration. Of these chromosome
20 genes, only ZNF217 (FDR 2.67e-2, cancer/normal ratio
1.57) and AURKA (FDR 5.52e-5, cancer/normal ratio
2.32) were also significant in the LCM data set. Amplifica-
tion of 20q13 may be particularly heterogeneous as
AURKA [41], TGIF2, PTPN1 and ZNF217 [39], and
ADRM]1 [42], and other genes, have been cited as drivers
of 20q13 amplification in ovarian cancer.
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Figure 4

Chromosome 3 Amplifications and Associated Expression Changes. a) GISTIC Q-values for gain on chromosome 3,

plotted as in Fig. 2. b) Close-up of the region of panel "a"

indicated by vertical, red lines. The locations of all genes associated

with a RefSeq transcript or Affymetrix probeset are indicated in red. c) Close-up of the region of panel "a" indicated by vertical,
blue lines. The locations of all genes associated with a RefSeq transcript or an Affymetrix probeset are indicated in red. d)
Expression ratios for genes in the genome region depicted in panel "b" and represented on the U133A and B arrays. The
probeset with the highest variance in cancer samples was selected for each gene. Red bars indicate the log, ratio of the mean
value in tumor samples with copy gain of this gene and the mean value in tumor samples without gain of this gene. Orange bars
represent the log, ratio of the mean value in tumor samples with copy gain of this gene and the mean expression level in the
normal samples. e) Expression ratios for genes in the genome region depicted in panel "c", plotted as in panel "d".

Expression data points to potential tumor suppressors in
broader recurrent deletions

GISTIC peaks for deletion were reported on chromosomes
4,6,8,9,12,13,15,16, 17,18, 19, 22, and X (see Addi-
tional file 7). The p-arms of chromosomes X and 8 are the
dominant features (Fig. 2b), which we examined in fur-
ther detail to identify potential tumor suppressors.

The GISTIC peak on chromosome X spans 4.6 Mb of
Xp22.31 and includes 17 genes with RefSeq or Affymetrix
annotation. Of these, 8 genes showed a significant
decrease in expression in tumor samples with this dele-
tion relative to tumors samples without this deletion:
ARSD, ARSE, MXRA5, PRKX, LOC729137, NLGNA4X,
HDHDI1A, and STS (see Additional files 7, 8).
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Figure 5

Chromosome 20 Amplifications and Associated Expression Changes. GISTIC Q-values and expression ratios for
three regions of chromosome 20 plotted as in Fig. 2. Probeset 230533_at was eliminated as it mapped to the extreme 5' end of
the PRKCBP! transcript and disagreed with the majority of the other 6 probesets for that gene.

GISTIC identifies chromosome 8p as the autosome with
the most statistically significant deletion. The most signif-
icant GISTIC peak in the 8p region spans 8p21.3 (Fig. 6).
Although this extended peak contains 63 genes only 31
show significant down-regulation (see Additional files 7,
8). Among these are a number of pro-apoptotic proteins.
The minimal peak includes the death receptors
TNFRSF10A (DR4) and TNFRSF10B (DRS5), the decoy
death receptors TNFRSF10C and D (see Additional file 7)
and all but TNFRSF10C show significant down-regula-
tion. EGR3, which has been reported to induce the expres-
sion of the death ligand FASL [43] is among the most
dramatically down-regulated genes in this GISTIC Peak.

Loss of Heterozygosity (LOH) was also analyzed to further
characterize likely tumor suppressor genes (See Methods).
LOH was indicated frequently throughout the genome,
but without any clearly preferred regions (data not
shown).

Associations among prevalent gains and losses

The correlation of the occurrence of the recurrent CNAs
was studied to assess potential interactions among the
prevalent CNAs. The Pearson's correlation of the copy
number values in all pairs of the 30 genomic regions iden-
tified by GISTIC (16 gain and 14 loss) was calculated.
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Figure 6

Chromosome 8 Deletions and Associated Expression

Changes. a) GISTIC Q-values for loss on chromosome 8, plot-

ted as in Fig. 2. b) Expression ratios for genes in the genome region depicted by blue dotted lines in panel "a" and represented

on the HGUI33A and B arrays. Red bars indicate the log, rati
and the mean value in tumor samples without gain of this gen

o of the mean value in tumor samples with copy gain of this gene
e. Orange bars represent the log, ratio of the mean value in

tumor samples with copy gain of this gene and the mean expression level in the normal samples.

After correcting for multiple testing, 17 distinct pairs
showed a FDR of < 25% (see Additional file 10).

Two adjacent GISTIC peaks on chromosome 19 are the
most significantly correlated, likely because they are often
co-amplified. The next most significant association is
between 12p12.1, which over-expressed BCAT1 and is
adjacent to KRAS, and 15q26.3, which contains IGFI1R
among other genes. Associations were detected between
the BCAT1 and IGFIR peaks and the 8q24 peak contain-
ing MYC and PVT1. Curiously, the only anti-correlations
among the significant interactions involve the IGF1R gain
peak (4/5) or the IGF2R loss peak (1/5). These anti-corre-
lations may indicate that alteration of signalling through
the IGF axis may create selective pressure against acquiring
certain other aberrations. Interestingly the deletion of the
death receptors TNFRSF10A and TNFRSF10B on chromo-
some 8p did not correlate with the amplification of their
ligand TNFSF10 on chromsome 3q.

Discussion

We have applied high-resolution SNP arrays to survey the
diversity of copy number alterations in ovarian cancer.
Statistical analysis of the frequency and magnitude of
these changes across the genome has identified the most
significant changes. The analysis of expression changes
correlated with these events has greatly reduced the field
of potential "driver" genes for these most relevant CNAs.
Co-occurrence analyses of these significant CNAs sug-

gested potential synergistic or antagonistic relationships
between some of the CNAs. Comparisons of subtypes and
matched primary/metastatic samples have revealed
potential differences among ovarian cancer subtypes and
striking similarity among samples from the same patient.
As a whole, these analyses provide a unique view of ovar-
ian cancer and insight into key CNAs and their driver
genes.

The strategy used here to evaluate CNA-specific expression
changes highlights the difficulty of assigning CNA driver
gene status on the basis of expression. Many likely candi-
date drivers were shown to have CNA-specific expression
differences relative to tumors lacking the CNA in question
and to whole ovary. However, the difference was often
more dramatic when compared to normal samples than
when compared to tumors lacking the CNA in question.
Likely this is due to other mechanisms of expression dis-
regulation in cancer that have an effect on expression sim-
ilar to that of the CNA [28]. Additionally, differences
between the mix of cell types in a tumor and whole ovary
normal samples may cause certain disparities. For exam-
ple, amplified CLND11 is reported as under-expressed
when compared to our whole ovary normal samples, but
is over-expressed when comparing LCM ovarian cancer
and normal fallopian epithelium. Unexpected results
such as this highlight the importance of using more than
one reference expression level.
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The expression pattern of the amplified MYC oncogene,
especially relative to its neighbor PVT1, presents another
interesting example of this phenomenon. The relatively
minor expression change in tumors with MYC amplifica-
tion may be due to over-expression of MYC in a subset of
the non-amplified tumors through alternate mechanisms.
The apparent under-expression of MYC upon amplifica-
tion relative to whole ovary normal samples could be due
to different cell type proportions in the tumor and normal
samples. The LCM tumor and normal data set provides no
clarity, as it did not show significant over-expression of
MYC or PVT1.

Despite the long history of MYC as an oncogene, recent
evidence suggests that PVT1 may be a driver of this ampli-
con. While MYC and PVT1 knock-downs both reduced
proliferation of breast and ovarian cancer cell lines with
amplification and over-expression of MYC and PVTI,
knock-down of PVT1 in these lines also elicited a strong
apoptotic response. Knock-down of MYC did not [44].
Mouse T-cell lymphomas show retroviral insertions at
PVT1 and over-expression of PVT1 and one of PVTI1's
microRNA products and more retroviral insertions are
seen at the PVT1 locus than at the MYC locus [45]. Many
transformed cell types, including neuroblastomas, express
PVT1 and do not express MYC [46]. In the end, both genes
may be important in the context of their amplification as
PVT1 may be regulated by MYC [46] and PVT1-encoded
microRNAs may regulate MYC [47].

The functions of these putative driver genes, selected on
the basis of their location in the GISTIC peak and copy-
driven expression, suggest an important role for apopto-
sis-related genes in this cohort of tumors. Genes showing
significant CNA-specific expression changes were submit-
ted to the Ingenuity Knowledge Base (Ingenuity Systems®,
http://www.ingenuity.com) in order to determine if the
GISTIC peaks highlight related genes. CNA-specific genes
were selected rather than all genes with cancer-specific
expression in order to detect direct relationships among
genes in GISTIC peaks. The most significantly over-repre-
sented network inferred from pairs of associated genes
documented in the Knowledge Base shows relationships
among CASP8, CASP10, and CFLAR (gained on chromo-
some 2), DIABLO (gained on chromosome 12), NFKBIB
(IKB) (gained on chromosome 19), and the TNFRSF10
family (deleted on chromosome 8) (see Additional file
11). Additionally, we have shown amplification of the
TFNSF10 chromosome 3, although this was not among
the GISTIC peaks. Analysis of the over-representation of
genes from canonical pathways among the genes with sig-
nificant CNA-specific expression changes shows that
Death Receptor signaling is among the most significant
pathways (Additional file 12). Taken as a whole, these

http://www.biomedcentral.com/1755-8794/2/21

findings indicate that modulation of apoptosis may be a
major driving factor in the selection of CNAs.

Conclusion

Based on these analyses, we believe that the identification
of driver genes in tumor amplicons can be greatly facili-
tated by selecting statistically significant minimal recur-
rent amplicons and by studying gene expression patterns
in conjunction with gene network data. The combination
of the expression and high-resolution copy number data
has provided a short list of candidate genes that are con-
sistent with tumor driving roles.
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Additional material

Additional file 1

Table S1: Comparison To Previously Reported Recurrent CNAs. The
table lists published examples of regions of gain and loss in ovarian cancer.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1755-
8794-2-21-S1 xls]

Additional file 2

Table S2: Sample Information. The table provides the available clinical
details for each tumor sample.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1755-
8794-2-21-S2 xls]

Additional file 3

Figure S1: Copy Number Alteration Trends by Subtype. Raw copy
number values were segmented into contiguous regions with the same copy
number, or segments. The average log, cancer/normal ratio of each seg-
ment is inferred as that segment's log, ratio (See Methods). a) The
number of transitions from segment to another (breakpoints) per sample,
stratified by ovarian cancer subtype. b) The sum of segment log, ratios that
are > 0.3 (gain) in each sample, stratified by subtype. c) The sum of the
log, ratios for each segment that are < -0.3 (loss) in each sample, stratified
by subtype.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1755-
8794-2-21-S3.pdf]
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Additional file 4

Figure S2: Copy Number Profiles of Matched Primary and Metastatic
Samples. Heatmap of nine samples from four patients plotted and clus-
tered as in Fig. 1. The primary/metastasis status of each sample and the
ID of patient from which each sample was derived are annotated by color
columns between the dendrogram and heatmap. Labels for these sample
annotations are provided in a legend below the heatmap.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-21-54 iff]

Additional file 5

Figure S3: Comparison of CNA and CNV lengths. The length of each
genomic segment of contiguous copy number (see Methods) is plotted as a
histogram. a) Lengths for segments with an average log, ratio > 0.3 (gain)
are shown in red. Lengths of polymorphisms in normal populations
reported as a gain of copy number [25] are plotted in blue. b) Segments
with an average log, ratio < -0.3 (loss) are shown in red. Lengths of pol-
ymorphisms in normal populations reported as a loss of copy number [25]
are plotted in blue.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-21-S5.pdf]

Additional file 6

Table 1: Recurrent Gain Regions. The table lists details regarding the
significant regions of gain.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-21-S6.xls]

Additional file 7

Table 2: Recurrent Loss Regions. The table lists details regarding the sig-
nificant regions of loss.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-21-S7 xls]|

Additional file 8

Table S3: Significant Expression Differences in CNAs. The table pro-
vides statistics for the copy-number-associated expression changes in each
region of gain or loss.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-21-S8 xls]|

Additional file 9

Figure S4: GISTIC and Heatmaps for CNAs on Chromosomes 3, 8,
and 20. Details of the amplicon structure and statistical significance in
32 ovarian serous adenocarcinoma samples is presented for a) chromo-
some 3; b) chromosome 8; c) chromosome 20. Heatmaps and GISTIC
amplification significance were prepared and plotted as in Fig. 1 and 2.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-21-89.iff]

Additional file 10

Table S4: Interactions Among CNAs. The table provides statistics for the
association among regions of gain and loss.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-21-S10.xls]

Additional file 11

Figure S5: Pathway Analysis of Genes with CNA-specific Expression.
Pathway analysis inferred connectivity among genes in GISTIC peak
regions of gain and loss with CNA-specific expression. Network nodes
have been colored using the log, ratio for expression change in tumor sam-
ples with a given CNA relative to normal whole ovary. Green represents
decreased expression and red indicates increased expression. White net-
work nodes represent molecules not in our set of genes, but that are related
to these genes through the Ingenuity database.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-21-811.pdf]

Additional file 12

Table S5: Canonical Pathways Enriched in Genes with CNA-specific
Expression. The table lists statistics regarding the over-representation of
genes from canonical pathways in the regions of gain and loss.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-21-S12 xls]
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